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Abstract: The order of appearance of n (in the Fibonacci sequence) z(n) is defined as the smallest
positive integer k for which n divides the k—the Fibonacci number Fk. Very recently, Trojovský
proved that z(n) is an even number for almost all positive integers n (in the natural density sense).
Moreover, he conjectured that the same is valid for the set of integers n ≥ 1 for which the integer
4 divides z(n). In this paper, among other things, we prove that for any k ≥ 1, the number z(n) is
divisible by 2k for almost all positive integers n (in particular, we confirm Trojovský’s conjecture).
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1. Introduction

Let (Fn)n be the Fibonacci sequence which is defined by the binary recurrence
Fn+2 = Fn+1 + Fn, with F0 = 0 and F1 = 1. For any integer n ≥ 1, the order of appearance
of n (in the Fibonacci sequence), denoted by z(n) as z(n) := min{k ≥ 1 : n | Fk}. The
arithmetic function z : Z≥1 → Z≥1 is well defined (see [1] (p. 300)) and z(n) ≤ 2n is the
sharpest upper bound (as proved by Sallé [2]). We refer the reader to [3–9] for more (recent)
results on z(n). The first few values of z(n) (for n ∈ [1, 20]) are (see sequence A001177 in
OEIS [10]):

1, 3, 4, 6, 5, 12, 8, 6, 12, 15, 10, 12, 7, 24, 20, 12, 9, 12, 18, 30.

Recall that the natural density of A ⊆ Z>0 is the following limit (if it exists):

δ(A) := lim
x→∞

#A(x)
x

,

where A(x) := A ∩ [1, x] for x > 0. Recently, Trojovský [11] showed that the set
{n ≥ 1 : z(n) < εn} has natural density equal to 1 for all previously fixed ε > 0 (this
led to a generalized result about lim infn→∞ z(n)/n, see [12]).

Here, we are interested in some arithmetic properties of z : Z≥1 → Z≥1. For that, for
an integer m ≥ 2, we denote E (m)

z as the set of all n ∈ Z≥1 for which z(n) is a multiple of m
(i.e., E (m)

z := {n ≥ 1 : z(n) ≡ 0 (mod m)}).
We know that 1/3 of Fibonacci numbers are even (because 2 | Fn if and only if 3 | n).

However, Trojovský [13] (Theorem 2) showed that the situation is quite different if we
replace Fn by z(n). Indeed, he proved that z(n) is an even number for almost all positive
integers n. In other words, the natural density of E (2)z is equal to 1. He also posed the
following conjecture regarding the size of E (4)z :

Conjecture 1 (Conjecture 1 of [13]). The natural density of E (4)z is equal to 1.
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Therefore, the aim of this paper is to study this conjecture from a more general
viewpoint. We start by providing an infinite family of prime numbers (lying in an arithmetic
progression) belonging to some desired sets. More precisely, we prove the following:

Theorem 1. Let k ≥ 2 be an integer with k 6≡ 0 (mod 4). If p ≡ 2k − 1 (mod 2k · 5) is a prime
number, then

z(p) ≡
{

2 (mod 4), if k ≡ 1 (mod 4);
0 (mod 2k), if k ≡ 2 or 3 (mod 4).

In particular, if k ≡ 2 or 3 (mod 4), then all prime numbers p ≡ 2k − 1 (mod 2k · 5) belong

to E (2
k)

z .

Remark 1. We remark that if 4 | k, then gcd(2k − 1, 5) = 5 (actually 4 is the order of 2 modulo
5) and so no numbers of the form 2k − 1 + 2k · 5` can be a prime number (for k ≥ 2). Moreover,
the condition k 6≡ 0 (mod 4) ensures, by the Dirichlet’s theorem on arithmetic progressions, the
existence of infinitely many primes p ≡ 2k − 1 (mod 2k · 5).

Now, let us observe the following table 1:

Table 1. Proportion of arguments for which z(n) is divisible by 4, 8, 16, and 32, respectively.

x 10 20 50 100 200 500 1000 3000

#E (4)z (x)
x 0.4 0.45 0.56 0.58 0.585 0.606 0.623 0.643

#E (8)z (x)
x 0.1 0.1 0.22 0.23 0.24 0.26 0.277 0.298

#E (16)
z (x)

x 0 0 0.02 0.03 0.045 0.052 0.06 0.072

#E (32)
z (x)

x 0 0 0 0 0.01 0.02 0.026 0.032

Table 1 suggests that #E (2
k)

z (x)/x (for k ∈ [2, 4]) nondecreases as a function of x.
Therefore, a natural question arises:

Question 1. Is δ(E (2
k)

z ) = 1 for all k ≥ 1?

Clearly, Theorem 1 of [13] solves the case k = 1, while Conjecture 1 asks about the
case k = 2.

The next result shows that the answer for Question 1 is yes (in particular, it solves
Conjecture 1). More precisely, we have the following:

Theorem 2. Let k ≥ 2 be an integer. Then there exists a positive effective computable constant c
such that

#E (2
k)

z (x) ≥ x− cx
(log x)1/2k+6 ,

for all x > e125·8k+5
. In particular, the natural density of E (2

k)
z is equal to 1 for all k ≥ 2.

The proof of both theorems combines Diophantine properties of z(n) with analytical
tools concerning primes in arithmetic progressions.
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2. Auxiliary Results

In this section, we present some results which will be essential tools in the proof. The
first ingredient is related to the value of z(pk) for a prime number p and k ≥ 1:

Lemma 1 (Theorem 2.4 of [14]). We have that z(2k) = 3 · 2k−1 for all k ≥ 2, and z(3k) = 4 · 3k−1

for all k ≥ 1. In general, it holds that

z(pk) = pmax{k−e(p),0}z(p),

where e(p) := max{k ≥ 0 : pk | Fz(p)}.

The next lemma provides the largest arithmetic progression, which contains infinitely
many prime numbers, belonging completely to E (2)z .

Lemma 2 (Theorem 1 of [13]). The number z(4n + 3) is even for all integers n ≥ 0.

Another well-known arithmetic function related to Fibonacci numbers is the Pisano
period π : Z≥1 → Z≥1 for which π(n) is the smallest period of (Fk (mod n))k. The first few
values of π(n) (for n ∈ [1, 20]) are (see sequence A001175 in OEIS):

1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60.

Observe that π(n) and z(n) have similar definitions (these functions are strongly
connected as can be seen in Lemma 4). However, they have a very distinct behavior related
to their parity. Indeed, π(n) is even for all n ≥ 3, while Z≥1\E

(2)
z is an infinite set (since

z(5k) = 5k is an odd number for all k ≥ 0).
The next result provides some divisibility properties of the Pisano period for

prime numbers.

Lemma 3 (Theorem 2.2 of [14]). Let p be a prime number. We have that

(i) If p ≡ ±1 (mod 5), then π(p) divides p− 1.
(ii) If p ≡ ±2 (mod 5), then π(p) divides 2(p + 1). Furthermore, π(p) = 2(p + 1)/t for

some odd number t.

Observe that Fπ(n) ≡ F0 ≡ 0 (mod n) and then z(n) divides π(n). Our next tool
provides a characterization of the quotient π(n)/z(n).

Lemma 4 (Theorem 1 of [15]). We have that π(n)/z(n) ∈ {1, 2, 4} for all n ≥ 1. Moreover,
π(n) = 4 z(n) if and only if z(n) is odd.

The next tool is a kind of “formula” for z(n) depending on z(pa) for all primes p
dividing n. The proof of this fact can be found in [16].

Lemma 5 (Theorem 3.3 of [16]). Let n > 1 be an integer with prime factorization n = pa1
1 · · · p

ak
k .

Then

z(n) = lcm(z(pa1
1 ), . . . , z(pak

k )).

In general, it holds that

z(lcm(m1, . . . , mk)) = lcm(z(m1), . . . , z(mk)).

In order to prove Theorem 2, we need an analytic tool related to the profusion of
integers having factorization allowing only some classes of primes. The following notation
will be used throughout this work: Let P be the set of prime numbers and for an integer
q ≥ 2, set P(a, q) as the set of all prime numbers of the form a + kq for some integer
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k ≥ 0 (Dirichlet’s theorem on arithmetic progressions ensures that P(a, q) is an infinite set
whenever gcd(a, q) = 1). Moreover, let B be the union of B distinct reduced residue classes
modulo q. Let NB = {n ≥ 1 : p | n ⇒ p ∈ B} be the set of all positive integers whose
prime factors belong exclusively to B. Additionally, denote β := B/φ(q) (where φ(n) is the
Euler totient function) and

GB(s) := ζ(s)−β ∏
p∈B

(1− p−s)−1,

which has an analytic continuation to a neighborhood of s = 1. Here, as usual, ζ(s) denotes
the Riemann zeta function.

Our next auxiliary lemma is related to a work due to Chang and Martin [17]. More precisely,

Lemma 6 (Theorem 3.4 of [17]). For any integer q ≥ 3, there exists a positive absolute constant
C such that uniformly for q ≤ (log x)1/3, we have

#{n ≤ x : n ∈ NB} =
x

(log x)1−β

(
GB(1)
Γ(β)

+ O
(

C(log x)−1/4
))

, (1)

where, as usual, Γ(z) =
∫ ∞

0 tz−1e−tdt denotes the Gamma function.

Now, we are ready to deal with the proof of the theorems.

3. The Proofs
3.1. The Proof of Theorem 1
The Case k ≡ 1 (mod 4).

Note that if k = 4`+ 1, then

p ≡ 2k − 1 ≡ 24`+1 − 1 ≡ 1 (mod 5).

Thus, by Lemma 3 (i), we have that π(p) divides p − 1. Since p ≡ 2k − 1 ≡ 3
(mod 4) (because k ≥ 2), then there exist positive integers r and s with s odd, such that
2s = p− 1 = π(p)r. Moreover, since π(p) is an even number (since p ≥ 3), then r must
divide s. On the other hand, p ≡ 3 (mod 4) and Lemma 2 yields that z(p) is an even
number. Hence, by Lemma 4, we have that

π(p) = z(p) or π(p) = 2z(p).

Therefore

z(p) = π(p) = 2s
r or z(p) = π(p)

2 = s
r .

Since z(p) is even and s/r is odd (because so is s), the possibility z(p) = s/r is ruled out.
Therefore z(p) = 2s/r ≡ 2 (mod 4).

The case k ≡ 2 or 3 (mod 4).

If k = 4`+ 2, then

p ≡ 2k − 1 ≡ 24`+2 − 1 ≡ 3 (mod 5).

In addition, in the case k = 4`+ 3, we have

p ≡ 2k − 1 ≡ 24`+3 − 1 ≡ 2 (mod 5).

In any case, we can use Lemma 3 (ii) to deduce that π(p) = 2(p + 1)/t for some odd
integer t. Again, we use that z(p) is even (because of p ≡ 3 (mod 4) and Lemma 2) to
apply Lemma 4. Then, we obtain that

π(p) = z(p) or π(p) = 2z(p).
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That is,

z(p) = 2iπ(p) = 2i+1(p+1)
t

for some i ∈ {−1, 0}. On the other hand, p ≡ 2k − 1 (mod 2k · 5) and so p + 1 is a multiple
of 2k, say p + 1 = 2kr for some integer r. Thus

z(p) = 2i+1π(p) =
2i+1(p + 1)

t
=

2k+i+1r
t

≡ 0 (mod 2k),

where we used that i + 1 ≥ 0 and t ≡ 1 (mod 2). The proof is complete.

3.2. The Proof of Theorem 2

We have that

#E (2
k)

z (x) = #{n ≤ x : z(n) ≡ 0 (mod 2k)}.

Set t := 4b(k + 3)/4c+ 2 and note that

t = 4
⌊

k + 3
4

⌋
+ 2 > 4

(
k + 3

4
− 1
)
+ 2 = k + 1.

Thus, t > k which yields that E (2
t)

z ⊆ E (2
k)

z . In particular,

#E (2
k)

z (x) ≥ #E (2
t)

z (x) = #{n ≤ x : z(n) ≡ 0 (mod 2t)}.

Let Bk be the set of the 2t+1 − 1 = φ(2t · 5)− 1 reduced residue classes modulo 2t · 5
unless the class 2t − 1 (mod 2t · 5). Note that since z(n) is a multiple of z(p) for all prime
p in the factorization of n (by Lemmas 1 and 5), then a sufficient condition for z(n) to
be divisible by 2t is n to have at least one prime factor of the form 2t − 1 + 2t · 5` (since
2t | z(2t − 1 + 2t · 5`), by Theorem 1 and because t ≡ 2 (mod 4)). Therefore,

#E (2
k)

z (x) ≥ #E (2
t)

z (x) (2)

≥ #{n ≤ x : ∃p | n with p ∈ P(2t − 1, 2t · 5)}
= x− #{n ≤ x : p | n⇒ p ∈ Bk}. (3)

On the other hand,

{n ≤ x : p | n⇒ p ∈ Bk} = {n ≤ x : x ∈ NBk} (4)

and we can apply Lemma 6 to obtain an upper bound for the size of the previous set.
Thus, for β := #Bk/φ(2t · 5) = 1− 1/2t+1, Lemma 6 implies in the existence of an absolute
constant C > 0 such that

#{n ≤ x : n ∈ NBk} =
x

(log x)1/2t+1

(
GBk (1)

Γ(1− 1/2t+1)
+ O

(
C(log x)−1/4

))
, (5)

for all x > e125·8t
. Moreover, we have that

G2t−1,2t ·5(s) := ζ(s)−
1

2t+1 ∏
p∈P(2t−1,2t ·5)

(1− p−s)−1 (6)

and

G3,4(s) := ζ(s)−
2t+1−1

2t+1 ∏
p∈Bk

(1− p−s)−1. (7)
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Since both sets P(2t − 1, 2t · 5) and Bk ∩ P have nonzero density inside the set of all
primes, then G2t−1,2t ·5(s) � GBk (s) (i.e., G2t−1,2t ·5(s)� GBk (s) and GBk (s)� G2t−1,2t ·5(s)).
By multiplying (6) and (7), we obtain that

G2t−1,2t ·5(s) GBk (s) = ζ(s)−1

 ∏
p∈P(2t−1,2t ·5)

(1− p−s)−1

 ·( ∏
p∈Bk

(1− p−s)−1

)
= ζ(s)−1 ∏

p∈P(1,2)
(1− p−s)−1

=

(
∏
p∈P

(1− p−s)

)
·

 ∏
p∈P(1,2)

(1− p−s)−1


= 1− 1

2s ,

where we applied the Euler product ζ(s) = ∏p∈P(1− p−s)−1 (we refer to [18] (p. 39) and
that P(1, 2) = P\{2}. Thus, one has that G2t−1,2t ·5(1) GBk (1) = 1/2 and so G2t−1,2t ·5(1) is a
constant. Therefore, there exists a positive constant c such that (5) becomes

#{n ≤ x : n ∈ NBk} ≤
cx

(log x)1/2t+1 . (8)

Finally, we combine (3), (4), and (8) to infer that

#E (2
k)

z (x) ≥ x− cx
(log x)1/2k+6

holds for all x > e125·8t
(we used that t = 4b(k + 3)/4c+ 2 ≤ k + 5).

We also obtain that

1 ≥ δ(E (2
k)

z ) = lim
x→∞

#E (2
k)

z (x)
x

≥ lim
x→∞

(
1− c

(log x)1/2k+6

)
= 1,

and we obtain that the natural density of E (2
k)

z is equal to 1. The proof is then complete.

4. Further Comments

We close this paper by making some comments about the two other questions which
were raised in [13], namely,

Question 2. Are there infinitely many prime numbers p for which δ(E (p)
z ) = 1?

Question 3. Let m ≥ 1 be an integer. Is it possible to provide an explicit positive lower bound for
#E (m)

z (x)?

In a general scenario, in order to have δ(E (m)
z ) = 1 (by a mimic of the proof of

Theorem 2), it suffices to prove the existence of positive coprime integers a and b such
that P(a, b) ⊆ E (m)

z . This does not seem to be an easy task, since it depends on a better
knowledge of z(p) for prime numbers p. However, we even do not know if z(p) = p+ 1 has
infinitely many prime solutions. For this reason, Question 2 remains as an open problem.

On the other hand, Question 3 is too general (since nothing is required about this
lower bound—we are assuming that it should be a nondecreasing function of x). In this
case, we are able to answer this question reasonably as follows.



Mathematics 2021, 9, 2638 7 of 8

Proposition 1. For any m ≥ 3, we have that

#E (m)
z (x) ≥

⌊
x

Fm

⌋
(9)

holds for all x ≥ 2.

Proof. First, let us consider that m ≥ 13. By the primitive divisor theorem (see [19] for the
most general version), there exists a prime number p such that p | Fm and p - Fj for all
j ∈ [1, m− 1]. In particular, one has that z(p) = m. Now, if n ∈ pZ≥1, then n = par (for
some a and r ≥ 1, where gcd(p, r) = 1) and so, by Lemmas 1 and 5, we infer that

z(n) = lcm(z(pa), z(r)) = lcm(pa−e(p)z(p), z(r)) = lcm(pa−e(p)m, z(r)) ≡ 0 (mod m).

Thus n ∈ E (m)
z , yielding that pZ≥1 ⊆ E

(m)
z . In conclusion, we have

#E (m)
z (x) ≥ #{n ≤ x : p | n} =

⌊
x
p

⌋
≥
⌊

x
Fm

⌋
,

where we used that p ≤ Fm (since p divides Fm). For the case m ∈ [3, 12], we obtain the
inequality in (9) only by noting that z(2) = 3, z(3) = 4, z(5) = 5, z(4) = 6, z(13) = 7,
z(7) = 8, z(17) = 9, z(11) = 10, z(89) = 11, and z(6) = 12. This completes the proof.

Remark 2. We still remark that the bound p ≤ Fm cannot be improved (in general), since the
problem of the existence of infinitely many prime numbers in the Fibonacci sequence is still an
unsolved question (which is expected to have an affirmative answer).

We finish by raising the following conjecture which, in particular, solves the previ-
ous questions:

Conjecture 2. For all positive integer m, there exist positive constants cm and dm such that

#E (m)
z (x) ≥ x− cm

x
(log x)1+dm

,

for all sufficiently large x. In particular, δ(E (m)
z ) = 1 for all m ≥ 1.

5. Conclusions

In this paper, we work on a conjecture related to the arithmetic function z : Z≥1 → Z≥1,
which is defined as z(n) := min{k ≥ 1 : n | Fk} (the called order of appearance in
the Fibonacci sequence). Recently, Trojovský [13] showed that the natural density of
{n ≥ 1 : 2 | z(n)} is equal to 1. Furthermore, he conjectured that the same holds for the
set of positive integers n for which 4 | z(n). In this work, we confirm the expectation: for
any k ≥ 1, the natural density of the set {n ≥ 1 : 2k | z(n)} is equal to 1. Moreover, we
provide a nontrivial lower bound for #{n ≤ x : m | z(n)} depending on x and m (which is
related to the Question 2 of [13]). The proof combines arithmetical and analytical tools in
number theory.
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