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Abstract: A general control system tracking learning framework is proposed, by which an optimal
learned tracking behavior called ‘primitive’ is extrapolated to new unseen trajectories without
requiring relearning. This is considered intelligent behavior and strongly related to the neuro-motor
cognitive control of biological (human-like) systems that deliver suboptimal executions for tasks
outside of their current knowledge base, by using previously memorized experience. However,
biological systems do not solve explicit mathematical equations for solving learning and prediction
tasks. This stimulates the proposed hierarchical cognitive-like learning framework, based on state-
of-the-art model-free control: (1) at the low-level L1, an approximated iterative Value Iteration for
linearizing the closed-loop system (CLS) behavior by a linear reference model output tracking is
first employed; (2) an experiment-driven Iterative Learning Control (EDILC) applied to the CLS
from the reference input to the controlled output learns simple tracking tasks called ‘primitives’ in
the secondary L2 level, and (3) the tertiary level L3 extrapolates the primitives’ optimal tracking
behavior to new tracking tasks without trial-based relearning. The learning framework relies only on
input-output system data to build a virtual state space representation of the underlying controlled
system that is assumed to be observable. It has been shown to be effective by experimental validation
on a representative, coupled, nonlinear, multivariable real-world system. Able to cope with new
unseen scenarios in an optimal fashion, the hierarchical learning framework is an advance toward
cognitive control systems.

Keywords: hierarchical control; reinforcement learning and approximate dynamic programming;
iterative learning control; primitives; unknown dynamics; input-output observable system

1. Introduction

Cognitive control systems are characterized by perception, learning, planning and
memorization, defining a clear path toward general intelligent systems that are able to opti-
mally handle new, unseen before situations and display adaptability. The best examples of
collections of such complex control systems are offered by certain biological systems (living
organisms, humans in particular) who intelligently solve complex tasks by combining
knowledge gathered through experience via learning and planning mechanisms that are
encoded in the brain. As such, the brain acts as a processing unit that is able, at a higher
level, to project future strategies in order to achieve goals through reasoning and planning,
decompose complex strategies into well-known possibly simpler strategies (planning),
memorize new experiences to augment the current knowledge base, and process feedback
signals by fusing visual, tactile, auditory, and olfactory information for task execution
improvement through learning. Finally, it guides the lower-level neuromuscular control
system to act in the environment to achieve higher-level goals.

This intelligence of living organisms has developed without solving explicit math-
ematical equations; therefore, this kind of complex intelligence serves as inspiration for
developing model-free control, learning, and planning techniques. One suitable paradigm
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for explaining the above techniques is the process of learning neuromotor skills, which
rely on well-acknowledged control formulations such as those found in feed-forward-
and feedback-based control and predictive-based control. A common trait of all these
techniques is that they are almost always posed and solved in optimization-based set-
tings [1]. In such settings (e.g., taking error-based learning), the error gradient is exploited
to improve the control solutions. Alternatively, use-dependent learning addresses the
permanent compromise between repeatable tasks whose improved execution is improvable
for high-performance and non-repeatable tasks that require a significant relearning effort.

One illustrative natural behavior for some of the above concepts is the imitating
behavior of biological systems: the first execution of an imitation task is nearly optimal.
The brain can analyze, memorize, and decompose the imitation task into subtasks for
each limb and plan for corresponding immediate future tracking tasks. The control of
each limb is already encoded in the neuromuscular system through an inverse dynamical
model that is not explicitly represented. Another illustrative situation occurs when new
neuromotor tasks are solved by first decomposing them into tasks with known solutions
and then recomposing the new solution from existing ones. The previously described
behavior unites several concepts that can be formally called a primitive-based learning
framework [1].

Primitive-based control has been researched for at least two decades, in various
forms, by transforming the time scale [2,3], concatenation-based mechanisms [4–6], and
decomposition/re-composition in time [7,8]. More recently, primitive-based control has
been studied in [9–13], mostly as part of hierarchical learning frameworks [14–18]. How-
ever, the application of the Iterative Learning Control (ILC, a full list of the acronyms
used in the paper is presented in abbreviations part) technique [19–25] over linearized
feedback closed-loop control systems (CLSs) as a primer mechanism for primitive-based
learning was proposed in [8]. An experiment-driven ILC (EDILC) variant was crafted in
a norm-optimal tracking setting to learn reference-input controlled output pairs called
primitives. Such a primitive tuple contains a reference input to the CLS (called the input
primitive) coupled with its paired control system output (called the output primitive).
Subsequently, the output primitive is usually shaped as a Gaussian function, but it can
be any shape suitable for approximation purposes. Delayed copies of the output prim-
itives are used to approximate a new trajectory that must be tracked. The coefficients
that combine the output primitives linearly to approximate the new trajectory are used to
combine the delayed and copied input primitives to obtain the optimal reference input.
For the assumed linear CLS, this reconstructed reference input is optimal with respect to
the criterion by which the original primitives are learned; therefore, when set as input
to the CLS, it leads to theoretically perfect new trajectory tracking. It does this without
repetitive-based relearning using the EDILC.

The primitive-based approach is sensible to the CLS’s linearity assumption; therefore,
a control that makes the CLS as linear as possible has to be learned. One framework to en-
sure this linearization is the approximate (adaptive) dynamic programming (ADP) [26–30],
also known as reinforcement learning (RL) [31–35], designed for the output reference model
(ORM) paradigm. Specifically, a model-free iterative Value Iteration (IVI) algorithm as a rep-
resentative ADP/RL approach can serve this goal by using general function approximators
such as neural networks (NNs). Hence, it is called the approximated IVI (AIVI).

With a linear ORM’s output well tracked by the CLS output, an approximate linearized
CLS from the reference input to the controlled output is ensured in a wide range, together
with some inherent disturbance attenuation ability. Two major problems with ADP/RL
are exploration and state knowledge [36–40]. The former is still an open issue, although
much research is underway. Enhanced and accelerated exploration is achievable with
pre-stabilizing controllers, which can also be designed based on the unknown dynamics
assumption principles. The state availability was solved with virtual state-space models
constructed from input-output (I/O) samples of general unknown but assumed observable
nonlinear systems [41,42]. Using historical I/O samples from the system as an alternate sys-
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tem, state representation has been used in more complex but unformalized environments,
such as video games [43].

This work aims to integrate the learning control techniques and machine learning
techniques previously presented in a hierarchical cognitive-based control framework tai-
lored to extrapolate optimally learned tracking control to novel tracking tasks. Tracking
should be achievable without relearning through trials by exploiting the already learned
optimal tracking skills. It is obtained through a hierarchical learning architecture where (a)
the closed-loop system at a lower level (called L1 level herein) is first linearized using the
ORM principle. This is achieved through nonlinear state-feedback control, where a virtual
state is built from finite sequences of I/O system data samples. Learning such a controller
is performed using AIVI; (b) an EDILC is used at the secondary upper L2 level to learn the
optimal tracking skills called primitives, by repetitions; (c) the tertiary and last L3 level
is dedicated to extrapolating the optimally learned tracking skills, without repetitions, to
new tracking tasks.

Progress and contributions with respect to work [8] are:

• At level L1, CLS linearization is strongly ensured using a virtual state-feedback neuro-
controller learned by AIVI. The new state-space representation relies on a virtual
transformation empowered by observability theory.

• At level L2, the model-free EDILC dedicated to primitive learning is improved in
several aspects: (1) the gradient information is extracted using a single gradient
experiment in the vicinity of the current iteration nominal trajectory, irrespective of
the CLS’s number of controlled outputs; (2) EDILC monotonic convergence is derived
by optimally selecting the learning rate parameter in order to trade-off learning speed
and robustness. This is achieved using two approximate CLS models for a double-safe
mechanism; (3) proper initialization of the gradient-based search specific to EDILC
results in fewer iterations for convergence.

• The primitive-based mechanism at level L3, for optimally predicting the reference
input ensuring theoretical perfect tracking of a previously unseen desired trajectory, is
designed to: (1) handle desired trajectories longer than the learned primitives, and (2)
indirectly handle constraints on the CLS’s output.

The following bottom-up presentation of the proposed hierarchical learning frame-
work results in an effective validation of a hybrid software-electrical system that is coupled,
multivariable, and has a delay. The case study is representative of many mechatronic systems.

2. The Linear ORM Tracking for Observable Systems with Unknown Dynamics

A common and general representation for a deterministic controlled system model in
a discrete-time state space is {

sext
k+1 = E

(
sext

k , ak
)
,

yk = vk,1, yORM
k = LsORM

k ,
(1)

where E() is a partially known nonlinear state map, k is the sample index, ak = [ak,1, . . . , ak,mu ]
T ∈

ΩA ⊂ <mu lumps the mu control action inputs of the system within a known domain ΩA.
A number of p measurable system outputs are formally collected in the partial output
vector yk = [yk,1, . . . , yk,p]

T ∈ ΩY ⊂ <p with known domain ΩY. Another p measurable

system outputs formally complete the remaining output as yORM
k = [yORM

k,1 , . . . , yORM
k,p ]

T ∈
ΩYORM ⊂ <

p with known domain ΩYORM , to be contextualized later on. The state sext
k =[

vT
k ,
(
sORM

k
)T , ρT

k

]T
lumps three types of state variables stemming from three independent

systems. First, a virtual state-space system is defined as follows:{
vk+1 = F(vk, ak),
yk = vk,1,

(2)
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which is a transformation of the true state–space system{
sk+1 = f(sk, ak),
yk = g(sk),

(3)

where sk = [sk,1 . . . sk,n]
T ∈ ΩS ⊂ <n gathering the n (which is unknown) true system

states that cannot be measured, ak are the control action inputs of the true system, and
the measurable true system outputs are yk. The system functions as nonlinear maps
f(sk, ak) : ΩS ×ΩA → ΩS , g(sk) : ΩS → ΩY are unknown and are assumed to be continu-
ously differentiable. Some assumptions regarding (1) were introduced. The pair (f, g) is
entirely state observable, meaning that the true state sk from (3) is recoverable from the
present and past I/O measurements of ak, yk. The observability property is used in the
sense defined for linear systems. Further, (3) is assumed to be controllable, and the system’s
relative degree (delay included) is known and constant.

With unknown system functions (f, g), observability and controllability can only be
inferred from the working experience with the system, from technical manuals, or from
the literature. The system’s relative degree and its non-minimum phase (NMP) type are
recognizable from historical I/O response data.

Relying on the system’s (3) complete observability, using Lemma 1 from [41] shows how
to build transformation (2) whose virtual state vector is defined in terms of I/O samples of

(3): vk = [(Yk,k−τ)
T , (Ak−1,k−τ)

T ]T
∆
= [(vk,1)

T , (vk,2)
T , . . . , (vk,2τ+1)

T ]T ∈ ΩY × . . .×ΩY︸ ︷︷ ︸
τ+1 times

×

ΩA × . . .×ΩA︸ ︷︷ ︸
τ times

∆
= Ωv ⊂ <p(τ+1)+muτ . For a more detailed element-wise correspon-

dence, the indexing Yk,k−τ = [(yk)
T . . . (yk−τ)

T ]
T ∆
= [(vk,1)

T . . . , (vk,τ+1)
T ]

T
, Ak−1,k−τ =

[(ak−1)
T . . . (ak−τ)

T ]
T ∆
= [(vk,τ+2)

T . . . (vk,2τ+1)
T ]T is utilized. Remarkably, knowing ΩY, ΩA,

makes Ωv known. The τ ∈ N (N is the set of positive integers) indexes the historical I/O
measurements, and its value is related to the order of (3); therefore, it is also correlated
with the unknown observability index of (3).

Definition 1. The unknown observability index of (3) is the minimal value τmin of τ for which
state sk is fully recoverable from the I/O measurements Yk,k−τ , Ak−1,k−τ . The role of this index is
similar to that of linear systems.

Under the observability assumption, there exists a minimal value τ = τmin which
makes sk fully recovered from I/O data and uniquely associated with vk which is a sort of
alias for sk, but in a different dimensional space [41]. For τ > τmin, the size increase of vk
does not add valuable information about sk. In practice, τ should be as large as possible
without negatively affecting the computational complexity of the subsequent learning of
state-feedback control based on high-dimensional vk.

Based on transformation (2), system (2) is also I/O controllable, having the same I/O
as (1). The main feature of (2) is its complete state availability, making it fully state ob-
servable but without entirely known dynamics because the map F(.) is partially unknown.
Input delay (dead-time) systems also hold transforms such as (2) to render them fully
state observable.

The second component of sext
k is the state sORM

k of the ORM model which will be
matched by the CLS by proper control design; let this known ORM state-space model be{

sORM
k+1 = GsORM

k + Hρk,
yORM

k = LsORM
k ,

(4)

where sORM
k = [sORM

k,1 , . . . , sORM
k,nm

]
T ∈ ΩSORM ⊂ <

nm gathers the nm ORM states in known

domain ΩSORM , ρk = [ρk,1, . . . , ρk,p]
T ∈ Ωρ ⊂ <p lumps the ORM’s inputs in their known
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domain Ωρ; ρk will also serve as CLS input. The ORM outputs are collected in yORM
k

introduced in the first place. Note that ρk completes the definition of sext
k in (1).

The tuple (G, H, L) characterizes the linear ORM for which an I/O pulse transfer
matrix (t.m.) is yORM

k = TORM(q)ρk (q is the unit time step advance operator). Information
about (3), such as relative degree, non-minimum phase character, and bandwidth, must
be synthesized within the ORM (4), as dictated by classical control rules. Commonly,
this selection is better reflected in a TORM(q), as it is more straightforward and easier to
interpret (bandwidth, overshoot).

To fulfill the Markovian property of (1), the exogenous reference input signal ρk is
described by the known generation model dynamics ρk+1 = Γ(ρk), where ρk acts as a
measurable state variable. Note that the extended model (1) has two outputs stemming
from (3) and (4). In summary, the dynamics E(.) will be partially unknown owing to the
partially unknown dynamics of its component F(.). The main feature of (1) is its full state
observability, that is, the state is fully measurable, and the domain of sext

k is known as
ΩSext = Ωv ×ΩSORM ×Ωρ.

The ORM tracking problem finally poses as the optimal control search over an infinite-
horizon cost V∞

ORM:

a∗k = arg min
ak

V∞
ORM(ak), V∞

ORM(ak) = ∑∞
k=0 ‖ yk(ak)− yORM

k ‖2
2,

s.t. dynamics (1).
(5)

The norm ‖ . ‖2 defined as the vector-wise Euclidean distance, penalizes at each
sampling instant the CLS’s output deviation from the ORM’s output. Problem (5) is a type
of imitation (or apprentice) learning with the ORM (3) acting as a teacher (or expert or
supervisor) and with system (1) trying to mimic (or follow) the ORM dynamics. Assuming
that (5) is solvable in the following, ADP/RL techniques are well suited for finding closed-
form optimal control laws of the type ak = C

(
sext

k
)

with the control action input as a
nonlinear mapping of the extended state. An AIVI is in fact employed to solve (5) as a
competitive alternative to the recently proposed Virtual State-Feedback Reference Tuning
(VSFRT) [42]. This is considered the L1 level control and is presented next.

3. The L1 Level—ORM Tracking AIVI-Based Solution
AIVI is a type of model-free offline batch reinforcement Q-learning that is used to

find the optimal control solution to (5). AIVI most often uses NNs as function approxima-
tors because of their easily customizable architecture, training software availability, and
generalization capacity. As such, AIVI uses one NN to parameterize the nonlinear control
action as ak = C

(
sext

k , ψ
)

and another NN to parameterize the well-known Q-function as
Q
(
sext

k , ak, π
)
. Here, ψ and π formally gather all the NN tunable weights corresponding

to some generic NN architectures. Starting from some initial solutions ψ0 and π0, two
AIVI-specific steps are called iteratively, and in this particular order, the Q-function update
and controller improvement. The steps are formally expressed as

π j = arg min
π

1
B

B

∑
i=1

[Q
(

sext[i]
k , u[i]k , π

)
− r
(

sext[i]
k , a[i]k

)
−Q

(
sext[i]

k+1 , C
(

sext[i]
k+1 , ψj−1

)
, π j−1

)
]
2
, (6)

ψj = arg min
ψ

1
B

B

∑
i=1

Q
(

sext[i]
k , C

(
sext[i]

k , ψ
)

, π j
)

, (7)

respectively, with penalty r
(

sext[i]
k , a[i]

k

)
= yk(ak)− ‖ yORM

k ‖2
2, over a batch consisting of

B transition samples (also known tuples or experiences) of the form
{(

sext[i]
k , a[i]

k , sext[i]
k+1

)}
,

i = 1, B. Here, j indexes the AIVI iteration. It is easily shown that (6) and (7) are equivalent
to the NN training of the Q-function and controller, respectively. The transition samples
set is collectable from the controlled system (5) under any sufficiently exploratory (i.e., it
visits many state-action combinations which uniformly span their space) controller. Even
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a random control strategy may be suitable for this purpose; however, a priori stabilizing
controllers accelerate the exploration process: faster visiting more state-action combinations
while simultaneously dealing with operational (e.g., safety) constraints. This off-policy
offline is more data efficient than online on-policy reinforcement learning, where the
exploration-exploitation dilemma throughout learning, combined with the lower data
efficiency, is a major challenge. When all (or a random subset) of the transition samples are
used in each AIVI step, the approach ensures the so-called experience replay.

The AIVI steps converge to the optimal virtual state feedback controller, ensuring
that the CLS tracks the ORM in terms of reference input-controlled output at the L1
level [31,32,40,41]. It is assumed that the CLS is indirectly linearized in the ORM tracking
sense. Thus, it is prepared to receive the L2 level learning phase, next presented.

4. The L2 Level—EDILC for Learning Primitives

The L2 level aims to learn pairs of reference inputs and CLS outputs called primitive
pairs or simply primitives, where the CLS outputs have a basis function shape (e.g.,
Gaussian), to be used later for function approximation. To this end, we search for ρk which
makes yk track a desired trajectory yd

k . The CLS is assumed to be reset with each ILC
iteration to zero initial conditions. The CLS response to non-zero (but constant) initial
conditions and repeated disturbances is easily absorbed into yd

k . At the given ILC iteration
j, the CLS reference input-controlled output relationship is written in lifted (or supervector)
notation over an N-length experiment, as in

Yj = TPj, (8)

where the reference input at iteration j is Pj = [(Pj
1)

T
(Pj

2)
T

. . . (Pj
p)

T
]
T
∈ <pN×1, Pj

l =

[ρ
j
0,l , ρ

j
1,l , . . . , ρ

j
N−1,l ]

T
∈ <N×1, l = 1, p, the CLS output at iteration j is Yj =

[(Yj
1)

T
(Yj

2)
T

. . . (Yj
p)

T
]
T
∈ <pN×1, Yj

l = [yj
0,l , yj

1,l , . . . , yj
N−1,l ]

T
∈ <N×1, l = 1, p. The

impulse response terms of the pulse transfer matrix (t.m.) operator T(q) characterizing
the CLS are used to build the matrix T. To see how T emerges, the p× p causal CLS at the
current iteration j is (in time notation)

yj
k,1

yj
k,2

. . .
yj

k,p

 =


T1,1(q)T2,1(q) . . . Tp,1(q)
T1,2(q)T2,2(q) . . . Tp,2(q)

. . .
T1,p(q)T2,p(q) . . . Tp,p(q)


︸ ︷︷ ︸

T(q)


ρ

j
k,1

ρ
j
k,2

. . .
ρ

j
k,p

, (9)

where j = 0, 1, 2, . . . is the iteration index, k = 0, 1, . . . is the discrete-time index, yj
k,l is

the lth output at time k in iteration j, ρ
j
k,l is the lth input at time k in iteration j, and Ti,l(q)

are the pulse transfer functions (t.f.) from input i to output l. The t.m. T(q) encompasses
the feedback CLS with some kind of a multiple input multiple output (MIMO) (possibly
nonlinear) feedback controller over a MIMO (possibly nonlinear) controlled system. The
feedback CLS is square; that is, each reference input drives one controlled output. In
general, T(q) was coupled.
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With each rational t.f. Ti,l(q) admitting an infinite Ti,l(q) = · · ·+ ti,l
−2q2 + ti,l

−1q + ti,l
0 +

ti,l
1 q−1 + ti,l

2 q−2 + · · · power series expansion, a truncated lifted notation of length N for
the ILC system is

yj
0,1

yj
1,1
...

yj
N−1,1
−−−

...
−−−

yj
0,p

yj
1,p
...

yj
N−1,p



=


T1,1T2,1 . . . Tp,1

−−−−−−−−
...

−−−−−−−−
T1,pT2,p . . . Tp,p


︸ ︷︷ ︸

T



ρ
j
0,1

ρ
j
1,1
...

ρ
j
N−1,1
−−−

...
−−−

ρ
j
0,p

ρ
j
1,p
...

ρ
j
N−1,p



≡ Yj = TPj, (10)

where each Ti,l =


ti,l
0 ti,l

−1 . . . ti,l
1−N

ti,l
1 ti,l

0 . . . ti,l
2−N

...
...

. . .
...

ti,l
N−1 ti,l

N−2 . . . ti,l
0

 ∈ <N×N is built from the impulse response

coefficients of Ti,l(q) and all the Ti,l build the T ∈ <pN×pN (note the difference between T
and T(q)).

Let the desired output trajectory be Yd = [(Yd
1)

T
(Yd

2)
T

. . . (Yd
p)

T
]
T
∈ <pN×1, Yd

l =

[yd
0,l , yd

1,l , . . . , yd
N−1,l ]

T ∈ <N×1, l = 1, p. The learning goal is formally expressed as an
optimization problem without constraints as:

P∗ = arg min
P

J(P), J(P) =
1
N
‖ E(P) ‖2

2=
1
N
‖ TP− Yd ‖2

2 +
λ

N
‖ P ‖2

2, (11)

where the tracking error in the current iteration is Ej = Yd − TPj. The non-zero regulariza-
tion coefficient λ may be useful in cases where, for example, Yd does not acknowledge a
possible NMP T(q). For simplicity, no regularization is used next (λ = 0). Directly working
with T in practice raises several numerical difficulties: ill-conditioning, large size, and
its identification is costly. A convenient numerical solution to (11) is P∗ = (TTT)−1TTYd.
However, without using T explicitly, (11) is solved based on an ILC-specific iterative update
law as a gradient descent search starting from an initial P0:

Pj+1
1

Pj+1
2
. . .

Pj+1
p

 =


Pj

1
Pj

2
. . .
Pj

p

− ξ


∂J(P)
∂P1
...

∂J(P)
∂Pp


∣∣∣∣∣∣∣∣
P=Pj

=


Pj

1
Pj

2
. . .
Pj

p

− ξ
∂J
(

Pj
)

∂P
, (12)

with a positive-definite matrix ξ = diag(ξi), i = 1, p is a user-selectable learning rate.
The gradient in (12) computed according to the cost in (11) is 2

N ·T
TEj and is based on an

unknown T. The next EDILC Algorithm 1 extracts this gradient information experimentally,
and its steps are:
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Algorithm 1

Step 0. Initialize P0 = Yd, then for each j = 0, ε call the subsequent steps.
Step 1. In a nominal experiment, with the current iteration reference input Pj, measure Ej.

Flip Ej to obtain udf (Ej): the upside-down flipped version of Ej.
Step 2. In a so-called gradient experiment, use µ·udf (Ej) (with scaling factor µ) as an additive

disturbance on the current iteration Pj. With the disturbed reference input, the CLS output Yj
G. It

is valid that Yj
G = T

(
Pj + µ·ud f

(
Ej
))

= Yj + µTud f
(

Ej
)

. Irrespective of the number of control
channels p, a single gradient experiment was performed.

Step 3. Calculate
∂J(Pj)

∂P = 2
N ·ud f

(
Yj

G−Yj

µ

)
, since TTEj = ud f

(
Tud f

(
Ej
))

provably holds.

Step 4. Call (8) to update Pj.
Step 5. Go to Step 1 if j < ε, otherwise exit with Pε.

The output of the model-free EDILC algorithm is the primitive pair
{

Pε ∆
= P̃

∗
, Y
}

where the input primitive is P̃
∗
, the output primitive is Y. Several such pairs can be learned,

and they can be indexed
{

P̃
∗[δ]

, Y[δ]
}

. Note that Y is used instead of Yd in the primitive

because of the following reasons: after the algorithm, Y and Yd are close; it is the pair{
P̃
∗
, Y
}

that intrinsically encodes the behavior T(q). In addition, P̃
∗

is not exactly the P∗

solving (11) because EDILC stops after a finite number of iterations. Algorithm 1 runs in
a mixed-mode: each iteration requires two real-time experiments which are proportional
to the number N of samples of the desired trajectory. These computations are repeated
for a number of iterations ε. We conclude that this algorithm complexity is O

(
N2). Note

that the gradient computation has been greatly optimized: it requires a single gradient
experiment than the previous variants of the EDILC algorithm in [8] which required a
number of gradient experiments equal to the number of CLS inputs, in which case the
complexity would have been O

(
N3).

Monotonic convergence is desirable for EDILC and is ensured by the proper selection
of step size ξ. The learning level L1 makes the CLS match TORM(q) to some extent; however,
a mismatch is expected. The I/O samples from the EDILC trajectories used to learn

{
P̃
∗
, Y
}

offer the opportunity to identify a linear lower-order model for the CLS, which commonly
has low-pass behavior. We denote the model identified from the I/O data as T̃(q). Then,
TORM(q) and T̃(q) are both rough CLS estimates, which can be used to derive suitable step
sizes for monotonic EDILC convergence. The most conservative selection of ξ is selected
by solving the subsequent optimization:

ξ∗1 = arg max
ξ

∑
p
i=1 ξ1,i, s.t.ξ1,i > 0, ‖ Ip×p − 2

N TORM(q)ξ1TT
ORM

(
1
q

)
‖∞< 1;

ξ∗2 = arg max
ξ

∑
p
i=1 ξ2,i, s.t.ξ2,i > 0, ‖ Ip×p − 2

N T̃(q)ξ2T̃
T
(

1
q

)
‖∞< 1;

ξ∗ = diag[ξi], ξi = min(ξ1,i, ξ2,i), i = 1, p,

(13)

where ‖ . ‖∞ is the norm calculated as the greatest singular value of a t.m. over the
frequency domain, while the identity transfer matrix is Ip×p. Derivation of the convergence
condition for the t.m. norm inequality constraints in (13) is presented in Appendix A.

TORM(q) is usually selected diagonally to ensure decoupling between the control chan-
nels through controller design, at least in the steady state, for example, by including integral
action in the controllers. For example, for a first-order square reference model of size 2-by-2,
the continuous-time unitary-gain t.m. is selected as TORM(s) = diag

(
e−sTm1
1+sT1

, e−sTm2
1+sT2

)
(s is

the continuous-time Laplace complex argument), where T1 and T2 are the time constants
that impose the transient behavior, Tm1, Tm2 are delays. The real achieved behavior in

continuous time can be modeled as T̃(s) =
[

T̃11T̃12; T̃21T̃22

]
with T̃11(s) =

k11(T11s+1)e−sTm11

s2+b11s+c11
,

T̃21(s) =
k21s(T21s+1)e−sTm21

s2+b21s+c21
, T̃12(s) =

k12s(T12s+1)e−sTm12

s2+b12s+c12
, T̃22(s) =

k22(T22s+1)e−sTm22

s2+b22s+c22
where the
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second-order t.f.s on the anti-diagonal capture any coupling transient that possibly van-
ishes in time and oscillates at most, while the second-order t.f.s from the main diagonal
captures any transient responses that are oscillatory at most and may or may not achieve
the desired unit gains. Time delay and NMP zeros must be included in the ORM definition
without difficulty, if present. The equivalent discretized causal behavior model T̃(q) of the
CLS T̃(s), identifiable from I/O data, is (where mij ∈ N are the delay steps)

T̃(q) =

 b1
11q−1+b2

11q−2

1+a1
11q−1+a2

11q−2 q−m11 b0
12+b1

12q−1+b2
12q−2

1+a1
12q−1+a2

12q−2 q−m12

b0
21+b1

21q−1+b2
21q−2

1+a1
21q−1+a2

21q−2 q−m21 b1
22q−1+b2

22q−2

1+a1
22q−1+a2

22q−2 q−m22

. (14)

During ILC operation, T̃(q) is identified using I/O data either from the nominal or
gradient experiment, or from both. The model can be re-estimated or can be continuously
refined with every ILC iteration, with no computational burden, owing to the offline
experimental nature of ILC. Model precision is not crucial because uncertainty only affects
the monotonic convergence condition, and more cautious learning can be attempted. In
any case, using low-order models such as (14) is recommended because the ORM control
ensures that the CLS approximately matches TORM(q).

A better initial value than P0 = Yd in the EDILC law (12) could theoretically be found
based on the desired ORM TORM(q). This could further improve the convergence speed of
the subsequent EDILC. The initialization is expressed as:

P0 = arg min
P

1
N
(TORMP− Yd)

T(
TORMP− Yd

)
+

λ

N
PTP, (15)

where the term TORMP is evaluated by simulation, based on TORM(q), on a finite-time
scenario with length N. However, experimental investigations reveal that this initialization
renders oscillatory P0 near its ends because of noncausal filtering involved in the model-
based solution of (15).

The EDILC learns primitives under constraints imposed on the operational variables,
such as on the control action ak (and also on its derivative) and on the system (and also
the CLS) output yk (and also on its derivative). The reference input constraints are not of
interest in this type of tracking problem. These constraints are mostly of the inequality type
owing to the underlying dynamical system. They can be directly handled either as hard
constraints appended to (7) or as soft constraints by additional terms in the cost function of
the optimization (7). It was shown [44] that inequality-type hard constraint handling is still
possible with EDILC in an experimental-driven fashion with unknown system dynamics.
For primitive-based learning with EDILC, inequality-type constraints on ak are possible,
but generally not an issue, as long as the CLS operates in the linearized range resulting
from the level L1 learning phase. Any constraints on ak (and possibly on its derivative) may
negatively impact the level of L2 learning trajectory tracking performance. Therefore, the
constraints on yk are more interesting, mainly for safety reasons such as saturation, which
when violated in mechanical systems could lead to permanent damage. The constraints on
yk will not be handled explicitly at this level L2, but rather indirectly at the next level L3
and deferred to a later section.

Concluding the level L2 learning aspects discussion, the final tertiary learning level
L3 is presented next.

5. The L3 Level—New Desired Trajectories Optimally Tracked by Extrapolating
Primitives’ Behavior

Suppose a new desired trajectory Yd is to be tracked; this time, without relearning by
EDILC. This amounts to finding the optimal reference input P∗ to obtain a CLS output that
perfectly tracks Yd. A solution to use and extrapolate the behavior of learned primitive
pairs was proposed in [8]. Because the solution uses delayed copies of the output primitives
from the learned pairs serving as basis functions for approximating Yd, the reason for using
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EDILC to learn output primitives that have good approximation capability is transparent.
Among others, Gaussian shapes are well-known in function approximation theory; there-

fore, primitive pairs
{

P̃
∗[δ]

, Y[δ]
}

where the output primitives Y[δ] have a Gaussian-like
shape, are commonly learned with EDILC.

In the following, the desired trajectory Yd is assumed to start from zero and end in
non-zero values, component-wise. To accommodate for fine approximations whenever
Yd ends in a non-zero value and starts from zero with a non-zero slope, both Yd and the

copied primitive pairs
{

P̃
∗[δ]

, Y[δ]
}

will undergo a time-extension process. The length of

Yd is N (same as the primitives’ length), and with no generality loss, N is assumed even. A
longer desired trajectory was deferred to a later discussion. The optimal reference input
calculation Algorithm 2 is summarized below.

Algorithm 2

Step 0. Initialize P0 = Yd, then for each j = 0, ε call the subsequent steps.
Step 1. Let yd

k,1, yd
k,2, . . . , yd

k,p be the components of Yd. In lifted notation, these trajectories are

Yd
1, Yd

2, . . . , Yd
p.

Step 2. Extend each Yd
1 , . . . , Yd

p to size 2N, padding with the first and last sample of Yd
1 , . . . , Yd

p,
respectively with N/2 values to the right and to the left, respectively. We denote the extended

trajectories Yd[e]
1 , Yd[e]

2 , . . . , Yd[e]
p .

Step 3. Arrange Yd[e] = [Yd[e]T

1 , Yd[e]T

2 , . . . , Yd[e]T
p ]

T
∈ <2pN .

Step 4. The N-length input primitives
(

P̃
∗[δ]
1

)
,
(

P̃
∗[δ]
2

)
, . . . ,

(
P̃
∗[δ]
p

)
and N-length output

primitives
(

Y[δ]
1

)
,
(

Y[δ]
2

)
, . . . ,

(
Y[δ]

p

)
, from the δth learned pair, are extended to size 2N by

padding to the left and right N/2 zeros, respectively. Padding with zeros is employed because

both P̃
∗[δ]

, Y[δ] start and end at zero, owing to the Gaussian-like shape of Y[δ]. We denote{
P̃
∗[δe]

, Y[δe]
}

as the extended primitives.

Step 5. Make M copies of the randomly occurring δ extended pairs
{

P̃
∗[δe]

, Y[δe]
}

, let them be

called as
{

P̃
∗[πe]

, Y[πe]
}

, π = 1, M.

Step 6. Delay each component P̃
∗[πe]
1 , . . . , P̃

∗[πe]
p and Y[πe]

1 , . . . , Y[πe]
p of the π pairs by an

integer uniform number θ ∈ [−N, N]. Because the delay is a non-circular shift, padding is again
required to either end, based on the sign of θ. The value used for padding for a number of |θ|
samples is the first or last sample value of the unshifted signals. Let

P̃
∗[θπ e]
1 , . . . , P̃

∗[θπ e]
p , Y[θπ e]

1 , . . . , Y[θπ e]
p be the notation for the delayed input and output primitive of

each of the π pairs.

Step 7. Obtain P̃
∗[θπ e]

= [P̃
∗[θπ e]T

1 , . . . , P̃
∗[θπ e]T

p ]
T
∈ <2pN and

Y[θπ e] = [Y[θπ e]T

1 , . . . , Y[θπ e]T
p ]

T
∈ <2pN . The basis function matrix is

Y[b] =
[
Y[θ1e], . . . , Y[θMe]

]
∈ <2pN×M. A visual summary of the extension with padding, delay

with padding, and final concatenation is shown for the output primitives in Figure 1.
Step 8. Compute w = [w1, . . . , wM]T ∈ <M as the minimizer of ‖ Y[b]w− Yd[e] ‖2 with linear

least-squares. Each component of w multiplies a specific Y[θπ e].
Step 9. Based on Theorem 1 from [8], the optimal reference to ensure the tracking of Yd is:

P̃
∗
=

M

∑
π=1

wπP̃
∗[θπ e]

, (16)

Step 10. In (16), P̃
∗
= [P̃

∗
1

TP̃
∗
2

T . . . P̃
∗
p

T ]
T ∈ <2pN . To obtain N-length channel-wise optimal

reference inputs, the p components are clipped in the middle of their intervals.
Step 11. The clipped optimal references are set as CLS inputs, and the CLS output tracks Yd.

The algorithm ends.
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Algorithm 2 is entirely performed offline, not impacting the real-time control task. Of
course, the planner is allowed sufficient computation time. If the trajectories to be tracked
on each subinterval are very long, this may impact performance, but we have tried to solve
this particular issue by dividing the longer trajectories in shorter, manageable trajectories.
Essentially, Algorithm 2 has two complexity components: the least squares matrices prepa-
ration part which has complexity O

(
N3) and the least squares regression solution which

combines matrix multiplication and the SVD factorization. For this numerical solution, the
complexity is O

(
M2X

)
where M is the size of the regression vector w and X = 2pN is the

number of examples (N is the experiment length and p is the number of CLS inputs and
outputs). Hence, the complexity of Algorithm 2 is O

(
N4) but since p is usually a small

constant, it can be approximated to O
(

N3).
The optimality of P̃

∗
in (16) with respect to the tracking performance and its relation

to the true optimal solution P∗ of (11) is analyzed next.

Theorem 1. When Yd[e] is approximated with a bounded reconstruction error ζ, then P∗ can be
computed with arbitrary precision.

Proof. The desired trajectory is decomposed as in Yd[e] = ∑M
π=1 wπY[θπe] + ζ, where ζ is

the bounded reconstruction error. The optimal reference input ensuring perfect tracking
is P∗ = (TTT)−1TTYd[e] and is expressed as P∗ = (TTT)−1TT

(
∑M

π=1 wπY[θπe] + ζ
)

=

∑M
π=1 wπP̃

∗[θπe]
+ (TTT)−1TTζ. As ‖ ζ ‖2 → 0 , then ‖ (TTT)−1TTζ ‖2≤‖ (TTT)−1TT ‖2

‖ ζ ‖2 → 0 follows, where ‖ • ‖2 applied to a matrix is the induced 2-norm by a vector,
which represents the matrix’s largest singular value, ‖ • ‖2 applied to a vector is the
Euclidean norm. �

Theorem 1 shows that a good approximation of the desired trajectory in terms of a
small error leads to a reference input close to the optimal one. This ensures good tracking
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performance. To achieve a small approximation error, the number of basis functions can be
adjusted along with the desired shape.

Managing Longer Desired Trajectories

Suppose that each signal component yd
k,1, yd

k,2, . . . , yd
k,p of Yd has length Ω as a multiple

of N (padding is again usable when Ω is not a multiple of N). One solution to obtain
the desired optimal reference input that achieves CLS output tracking of Yd is to extend

the primitive pairs
{

P̃
∗[δe]

, Y[δe]
}

to length Ω with appropriate padding. In addition,
proportionally more M copies of these extended pairs were used. This will increase the size
of w and the ill-condition the least squares. An intuitive mitigation is to perform tracking
experiments on subintervals of length N as divisions of Yd.

For example, a longer trajectory of length 2N, comprising two shorter trajectories of
length N, is displayed in Figure 2 for a single input single output (SISO) system. The end
of trajectory 00′ is the start of trajectory 0′B. A base reference frame in discrete-time is
< k0yd > with a discrete-time index k.
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Figure 2. A trajectory consisting of two connected curves 00′ and 0′B; moving the reference frame to
0′ makes the trajectory 0′B start in zero.

One solution is to translate the origin of the base reference frame < k0yd > to the
starting point of each piece of the desired trajectory of length N. In Figure 2, < k0yd > is
translated to < k′0′yd′ >. This is equivalent to having the desired trajectory 0′B starting
from the origin. Thus, the planner always computes the optimal reference inputs for a
desired trajectory starting in zero initial conditions. Considering that the tracked trajectory
0A does not perfectly track the desired one 00′ and there exists a vertical distance ε between
the endpoints of 0A and 00′, then in the translated reference frame < k′0′yd′ > the closed-
loop CS will have a non-zero initial condition in the ε-vicinity near 0′. In practice, ε is
expected to be small. The CS response due to the non-zero initial condition vanishes
over time.

After executing the tracking task on the second subinterval with desired trajectory 0′B,
the execution is translated back in the base frame < k0yd > for visualization; afterwards,
the reference frame < k′0′yd′ > is moved in the start of the desired trajectory of the third
subinterval, and the entire process repeats itself for all subintervals. After all subinterval
tracking tasks are executed, the actual obtained trajectories are translated back to the base
reference frame and then concatenated to be presented as a longer tracking task.

Inequality-type constraints on Y can be handled indirectly at the tertiary learning level.
The aim of this learning level is to ensure the theoretical perfect tracking of Yd, meaning
that Y = Yd. This implies that any constraint on Yd is imposed on Y also. We note that
inequality constraints on the rate of Y are again not of particular interest when trajectory
tracking is aimed; therefore, the magnitude constraints are more feasible in the lifted form
as Yd

low ≤ Yd ≤ Yd
up. As a result, the constraints on Y are softly handled.
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With the discussed aspects of the L3 learning level, the entire hierarchical three-level
framework shown in Figure 3 was validated on a real-world system.
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6. Validation Case Study
6.1. The Hybrid Software-Electrical Controlled System

Figure 4 shows the proposed multivariable nonlinear controlled system. The USB-
based communication between an Arduino-based board and a computer (PC) manages
the pulse-width modulated interface (PWM) used for voltage input action setting and for
the analog-to-digital interface to read controlled voltages. Here, the PWM duty cycles
are the system’s input actions, a = [a1, a2]

T . Their domain [0;1] is shifted to [−0.5,0.5] for
symmetric operation. Let Vo1 and Vo2 be the capacitors C1 and C2 voltages, respectively.
The system controlled outputs are shifted to [–2.5; 2.5] V for symmetric operation; therefore,
they are calculated on the PC as y1 = Vo1 − 2.5, y2 = Vo2 − 2.5. All communication,
processing and control tasks are performed using MATLAB software package.
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Part of this Hammerstein-like system is electrical (circuit parameters are C1 = C2 =
47 µF,C3 = 16.5 µF, R1 = R2 = 10kΩ,), while the input nonlinearities (characterized by a
hyperbolic tangent function) and a linear t.f. on the first input action (which has a resonant
mode at approximately 7.3 rad/s) run on a PC. The system is zero-order-hold sampled at
Ts = 0.1 s, rendering the I/O as ak = [ak,1, ak,2]

T and yk = [yk,1, yk,2]T. Prior experiments
reveal a unit step delay Ts to be included when defining the ORM for level L1 learning and
also in defining yd

k for level L2 learning [45].

6.2. ORM Tracking Learned for Feedback Linearization (Level L1)

First, a PI-type controller of the form ak,1 = [0.15 + 0.1Ts/(q− 1)](ρk,1 − yk,1), ak,2 =
[0.35 + 0.25Ts/(q− 1) ](ρk,2 − yk,2) is employed to collect transition sample experiences
from the CLS under noisy additive disturbances on the control action inputs [45]. These
disturbances were used to enhance exploration. For a prescribed time of 1500 s, sequences
of piecewise constant reference inputs with random amplitudes within some tunable do-
mains drive the CLS dynamics. The state of a transition tuple

(
sext

k , ak, sext
k+1

)
is sext

k =

[yk,1, yk,2, . . . , yk−5,1, yk−5,2, ak−1,1, ak−1,2, . . . , ak−5,1, ak−5,2, sm
k,1, sm

k,2, ρk,1, ρk,2 ]
T . Tran-

sitions from the time steps when ρk+1 = ρk were considered. Approximately 14,000 transitions
were formed and used for AIVI learning.

At the same time, to achieve indirect CLS linearization by ORM tracking, level L1
learning requires the selection of a linear ORM model as TORM(s) = diag(e−sTs /(s + 1),
e−sTs /(s + 1)), in the easy-interpretable continuous-time. Before discretizing TORM(s),
note that it acknowledges the dead-time of one sampling period observed for the system,
in addition to the relative degree one induced by the zero-order hold. This is read from the
discrete-time I/O sample acquisition of the transition collection phase. The discretized t.f.

TORM(q) = diag
(

0.0952q−2

1−0.9048q−1 , 0.0952q−2

1−0.9048q−1

)
is then expressed as a state-space model resulting

from an observable canonical transformation. The resulting 4th order state-space uses two
extra states denoted with v, owing to the time delay of each t.f. from the TORM(q). The
model used is ([45]):


sm

k+1,1
vk+1,1
sm

k+1,2
vk+1,2

 =


0.9048 0.0952 0 0

0 0 0 0
0 0 0.9048 0.0952
0 0 0 0




sm
k,1

vk,1
sm

k,2
vk,2

+


0 0
1 0
0 0
0 1

[ ρk,1
ρk,2

]
,

ym
k = [ym

k,1ym
k,2]

T =[1, 0, 1, 0]× [sm
k,1vk,1sm

k,2vk,2]
T .

(17)

A single hidden layer feed-forward controller NN of size 28–15–2 is learned to output
ak for the input sex

k , using the AIVI iteration steps, which implies NN training for both the
controller and for a Q-function approximator NN, having a similar architecture but size
30–100–1. The CLS with the converged AIVI NN controller after six iterations of the AIVI
approach is shown the ORM tracking ability in Figure 5. To check this convergence, the
controller resulting after each iteration of the AIVI is tested on a scenario in which sequences
of piecewise constant reference inputs drive the CLS. The ORM tracking performance was
measured with a regularized finite-length version of V∞

ORM, defined as Vtest = 1/N·VN
ORM,

with N = 2000. The convergence is illustrated in Figure 6. It occurs relatively quickly, and
the best controller is shown in Figure 5.
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Figure 5. Tracking ORM results: ak,1, yk,1,ak,2,yk,2 with AIVI (blue); ak,1,yk,1,ak,2,yk,2 with PI control
(black); ym

k,1, ym
k,2 (red).
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This concludes the L1 level indirect CLS linearization by matching the behavior of
TORM(q). The subsequent EDILC L2 level learning benefits from this assumption.

6.3. Two Primitives Learned with EDILC (Level L2)

A number of δ = 2 primitives of length N = 400 samples are learned using the EDILC
Algorithm 1 with P0 = Yd, µ = 0.01, ε = 30, and the learning rate ξ = diag(299.13, 281.35)
was determined by solving (13) using TORM(q) and an approximate CLS t.f. identified
as [45]

T̃(q) =

 0.1278q−2

1−0.77258q−1−0.1126q−2
0.02189q−2−0.02101q−3

1−1.213q−1+0.2206q−2

0.0756q−2−0.05602q−3

1−0.8129q−1+0.7474q−2
0.1554q−2

1−0.4374q−1−0.422q−2

. (18)

For the first primitive
{

P̃
∗[1]

, Y[1]
}

, the desired trajectory spanning N = 400 time steps

(k = 0, 399) is yd[1]
k,1 = χ1exp(χ2

(
k− χ3)

2), (χ1 = 2, χ2 = −0.002, χ3 = 200) and yd[1]
k,2 = 0,

whereas the second primitive
{

P̃
∗[2]

, Y[2]
}

is characterized by the same length and by

yd[2]
k,1 = 0, yd[2]

k,2 = yd[1]
k,1 . That is, for each primitive, one desired output is Gaussian, while the

other is zero. The first primitive
{

P̃
∗[1]

, Y[1]
}

learned using EDILC is shown in Figure 7.
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Figure 7. Learning results for {
∼
P
∗[1]

, Y[1]}: yd[1]
k,1 and yd[1]
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k,1, ρ0

k,2 (black); y30
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6.4. Optimal Tracking Predicted from Primitives (Level L3)

At level L3, it is desired to track yd
k,1 = max{−0.7, min[0.7, χ1sin(χ2kTs)sin(χ3kTs)]}

(χ1 = 1.1, χ2 = 0.6, χ3 = 0.02) and yd
k,2 = χ1sin(χ2kTs)sin(χ3kTs), (χ1 = −0.9, χ2 = 0.01,

χ3 = 0.3) for k = 0, Ω− 1, where Ω = 1600 = 4×N. Trajectory yd
k,1 is clipped in amplitude

with min/max operators to induce an output constraint. Then, the CLS output Y will be
constrained because, by the primitive-based mechanism, level L3 ensures that Y = Yd.
Then, Yd is divided into four subintervals, and the optimal reference input calculation
by the primitive-based approach together with the trajectory tracking takes place on
one subinterval of length N at a time. Each subinterval is offset to start the tracking
at zero intervals. The parameters in Algorithm 2 are N = 400, δ = 2 primitive pairs,
M = 400 copies of the two primitives are employed, θ ∈ [−400, 400], to fulfill Theorem 1.

Figure 8 displays the extended, padded, delayed, once-again padded, and concate-
nated output primitives Y[θπe]

1 , Y[θπe]
2 . Notably, the basis function matrix is Y[b] ∈ <1600×400.

The tracking results for each subinterval are re-offset in the original reference frame
and displayed in Figure 9 where, for comparisons, the tracking results obtained with
P1 = Yd

1, P2 = Yd
2 are also plotted. It is obvious that tracking is more accurate with the

primitive-based approach (red line vs. blue line) than with respect to the case when it is not
used (black line vs. blue line). The latter case corresponds to using only the CLS linearized
with L1 level, with the reference inputs being set as usually, leaving the control system
to reactively ensure trajectory tracking. Primitive-based tracking also better satisfies the
constraints (in a soft, not a hard sense), which is enforced on the first axis only.
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Figure 9. The recomposed tracking result on the long desired trajectory: yd
k,1 and yd

k,2 in blue; yk,1 and
yk,2 (in red) obtained with optimal reference inputs ρ∗k,1 and ρ∗k,2, respectively; yk,1 and yk,2 (in black)
are with ρk,1 = yd

k,1, ρk,2 = yd
k,2.

The tracking MSEs obtained with the primitive-based mechanism for the first and
second axes are 0.44·10–3 and 0.31·10–3, respectively. When P1 = Yd

1, P2 = Yd
2, the tracking

MSEs for the first and second axis are 6.50·10–3 and 3.75·10–3, respectively. A ten-fold
improvement in tracking was realized using the primitive-based approach.

The observed improvement is of no surprise, since the primitive-based tracking
solution behaves in an anticipative manner, whereas the tracking based on the L1 control
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only is “reactive” and only decides based on the provided reference input. The anticipative
behavior of the primitive-based solution inherits its character from the level L2 subjected
to the ILC concept. It proves that an optimal behavior can be extrapolated successfully to
new trajectories to be tracked, without requiring learning by repetitions with ILC.

7. Implementation Issues and Analysis of the Primitive-Based Framework

One of the most important aspects affecting the entire hierarchical learning perfor-
mance is the CLS linearity assumption achieved at level L1. Therefore, it is critical to ensure
that the CLS matches the linear ORM as accurately as possible. While the mismatch does
not affect the L2 level too much because the EDILC displays good learning ability even for
some nonlinear CLS (the perturbation-based gradient experiment performed in the vicinity
of the nominal trajectory where linearity holds), the level L3 operations have proven to be
more sensitive to this mismatch because the optimal reference reconstruction relies on the
superposition principle. Therefore, all efforts in learning AIVI NN controllers are justified,
both in terms of NN complexity and in terms of the required database size and exploration
effort. Better parameterization (more specifically, a linear one using polynomials as basis
functions, as opposed to a more generic, such as, e.g., a NN) of the Q-function may need
fewer transition samples for learning; however, the downside is that it requires more insight
about the underlying controlled system. This insight is still needed in terms of relative
degree, system order, minimum-phase character, and in matching the system bandwidth
with the linear ORM’s bandwidth. Together, these impact the virtual state size (hence
the learning space complexity and the function approximators architectural complexity).
With careful AIVI design, the NN should be preferred because the underlying training
management (e.g., early stopping) allows the more complex NN architectures to use just
as much as needed in terms of approximation capacity. Another advantage is automatic
feature selection, which is inherently encoded in the NN layers. Yet another aspect of
offline AIVI learning is that it does not require online computational power (as in e.g., [46]).
The resulting NN controllers take up to a few hours to learn offline; however, they are
easily implementable afterwards on hardware with no special computing requirements for
typical mechatronic systems. The efforts needed for this L1 level control, also regarded as
limitations, are:

− a good estimation of the controlled system’s relative degree. A too small degree
is equivalent to partial observability and will incur a performance degradation in
achieving linearized ORM tracking behavior. A higher degree will add information
redundancy which is not a real issue except for the computational costs involving the
resulted controller.

− some additional required information leading to a degree of subjectiveness in the
design: the underlying system’s minimum-phase character, and its bandwidth to be
matched with the linear ORM’s bandwidth. This information quantification necessi-
tates some experience from the designer and some insight into the process phenomena.

− the controller computational complexity is not seen as an important issue. Indeed,
there is more complexity than with a PI/PID controller with few parameters; however,
the used NN architectures are shallow, allowing for less than 1ms inference time on a
wide range of embedded devices, which would extend the application range of the
control. The benefits in terms of nonlinear control performance well balance the costs.

Concerning level L2 learning, it should be used mostly in cases where P0 = Yd does
not render the output Y close to the basis function shape imposed by Yd. Otherwise,
the impact on level L3 is not damaging, since essentially just about any shape of Y will
eventually have some approximation capacity. The major question at this stage is how to
learn primitives to be useful for level L3. This is discussed among the aspects of the next
and final learning levels. The L2 level design is dependent only on the initial solution P0

and the linaerity assumption. The limitations associated with these are

− the L2 level CLS requires resetting conditioned which for some system may be more
restrictive. ILC solutions for systems without perfect resetting such stochastic resetting
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exists, but not in a model-free style. However, for most mechatronic systems, this is
not an issue.

− The initialization for P0 can be optimized using, e.g., (15), for a neal-optimal approxi-
mate model-based initialization. This would require fewer EDILC iterations. On the
other hand, model-based initialization based on non-causal filtering showed some
oscillations at the beginning and at the end of P0 hence it was not applied here.

− The linearity assumption about the CLS. This must be ensured with the L1 level
virtual state-feedback control. There is a certain degree of tolerance, as EDILC was
applied before on smooth nonlinear systems and the underlying linear system’s theory
showed effectiveness and learnability.

Most aspects concern level L3 implementation details. The discussion about how to
learn the proper primitives starts backward, with the new desired trajectory Yd. From
Algorithm 2’s steps, Yd undergoes a transformation process (extrapolation plus padding,
then concatenation), resulting in Yd[e] as a single signal. The same is valid when obtaining

Y[θπe] = [Y[θπe]T

1 , . . . , Y[θπe]T
p ]

T
, except for the additional delay process involved. It is obvious

that the final Y[θπe] should resemble a basis function (here, Gaussians were used, also known
as radial basis functions), which means that only one output channel should be Gaussian
and the rest should be zero. Therefore, the practical rule is that if the CLS has p channels,
then a number of p primitives should be learned, each time with a different output channel
being a Gaussian, while the other outputs are zero.

Learning Gaussian-like shapes as output primitive trajectories is advantageous be-
cause a Gaussian is described with only two design parameters: mean (center) and variance
(width). With the function approximation, the width of the Gaussian-like output primitive
influences the approximation capacity in relation to the shape of Yd: if Yd is non-smooth,
more copies of output primitives should be used when their widths are small. Conversely,
when Yd is smooth, a good approximation is achievable with fewer copied, wider output
primitives. The Gaussian polarity (pointing upward or downward) is not important as
long as the CLS linearity holds, because a negative weighting coefficient suitably reverses
polarity and helps with the approximation.

Typically, the number of copies (parameter M) does not significantly affect the approxi-
mation quality. The number of delay/advance steps for each copied primitive (parameter θ)
should be chosen from an interval such that the copied and time-shifted output primitives
span the entire approximation range of interest for Yd. In summary, the limitations at this
particular L3 level include:

− correlating the shape of the basis functions with the shape of the desired trajectory to
be tracked on each subinterval.

− selecting the adequate number of copies for the learned primitives. While more is
better in the sense that the approximation quality does not increase past a certain
number M of copies, it could increase the computational cost for the underlying
regression and reference input recomposition. We still argue that the computations
are performed online and manageable.

− the tracking has to be of good quality for each subinterval, to avoid large deviations at
the end, since this would shift the initial point for trajectory tracking of the next subin-
terval. This was found to depend largely on the ORM matching (CLS linearization
quality) at the level L1.

Concluding, the discussed aspects also reveal the sensitive issues across the proposed
framework. At level L1, it is important to ensure exceptional ORM matching for level L3 to
accept behavior extrapolation. This is related to AIVI learning, which is strongly tied to
exploration quality. This is an open issue in ADP/RL and requires further investigation.
At level L2, with an impact on level L3, the basis function shape of the output primitives
with respect to the desired trajectory shape is another trade-off and an open issue.
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8. Conclusions

The three-level hierarchical cognitive-based learning framework validated here uses
several tools from control systems and from machine learning to extrapolate an opti-
mal tracking behavior to new tracking situations by avoiding explicit knowledge of the
underlying system dynamics. This framework, inspired by intelligent life, could make
progress toward more autonomous and adaptive learning control systems, as required
by modern paradigms. It includes all traits of intelligence: memorization and learning
from past experiences, generalizing behavior outside of the current knowledge base, and
self-improvement in terms of specified performance. The framework’s validation on more
complex and different systems will prove its potential and may lead to faster adoption and
industrial implementation.
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Appendix A

Since ‖ E(P) ‖2
2 = ETE = E1

TE1 + . . . + Ep
TEp, the gradient ∂J/∂P is

∂J
∂P

=


∂J

∂P1
...

∂J
∂Pp

 =
1
N


∑

p
i=1 Ei

TEi
∂P1
...

∑
p
i=1 Ei

TEi
∂Pp

. (A1)
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It is provable by matrix calculus that ∂Ei
TEi

∂Pj
= 2

(
Tj,i
)T

Ei, leading to the c.f. gradient

∂J
∂P

=


∂J

∂P1
...

∂J
∂Pp

 =
2
N
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(
T1,1)T(T1,2)T

. . .
(
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T2,1)T(T2,2)T . . .
(
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...(
Tp,1)T(Tp,2)T . . . (Tp,p)T
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︸ ︷︷ ︸

TT


E1
E2
...

Ep

. (A2)

The gradient-based search (8) is then expanded in a mathematical form for each
reference input as

Pj+1
1

Pj+1
2
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1

Ej
2
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p
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If Ti,l corresponds to Ti,l(q), then
(

Ti,l
)T

corresponds to the t.f. obtained by replacing

q with 1/q in Ti,l(q). Herein, 1/q must not be mistaken for the t.f. argument q–1 as an
alternate notation to q. Replacing q qith 1/q in a causal t.f. leads to a noncausal one.
Extending each vector and matrices from (A3) for N → ∞ , we write in the time domain as
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Using the previous equation in the tracking error dynamics across the iterations it
follows that
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where the frequency domain properties of ‖ Ip×p − 2
N T
(

1
q

)
ξTT

(
1
q

)
‖

∞
are used for the

convergence analysis.
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