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Abstract: In the context of the long-term coexistence between COVID-19 and human society, the
implementation of personnel health monitoring in construction sites has become one of the urgent
needs of current construction management. The installation of infrared temperature sensors on the
helmets required to be worn by construction personnel to track and monitor their body temperature
has become a relatively inexpensive and reliable means of epidemic prevention and control, but
the accuracy of measuring body temperature has always been a problem. This study developed a
smart helmet equipped with an infrared temperature sensor and conducted a simulated construction
experiment to collect data of temperature and its influencing factors in indoor and outdoor con-
struction operation environments. Then, a Partial Least Square–Back Propagation Neural Network
(PLS-BPNN) temperature error compensation model was established to correct the temperature
measurement results of the smart helmet. The temperature compensation effects of different mod-
els were also compared, including PLS-BPNN with Least Square Regression (LSR), Partial Least
Square Regression (PLSR), and single Back Propagation Neural Network (BPNN) models. The
results showed that the PLS-BPNN model had higher accuracy and reliability, and the determination
coefficient of the model was 0.99377. After using PLS-BPNN model for compensation, the relative
average error of infrared body temperature was reduced by 2.745 ◦C and RMSE was reduced by
0.9849. The relative error range of infrared body temperature detection was only 0.005~0.143 ◦C.

Keywords: personnel health monitoring; construction site management; smart helmet; infrared
temperature measurement; temperature error compensation; BP neural network; COVID-19

1. Introduction

The emergence and spread of “COVID-19” around the world has brought new chal-
lenges to construction site management. Building construction sites are usually areas where
people gather and are highly mobile. Under the strict epidemic prevention and control pol-
icy, once an infected person appears in the workplace, if not detected in time, it will not only
affect the construction progress of the whole project, but also cause serious social hazards.
COVID-19 is an acute respiratory infectious disease caused by SARS-COV-2 virus infection.
Among the ascertained symptoms related to SARS-Cov-2 infection, there is an alteration of
body temperature [1]. Initial screening of febrile individuals can be effective in preventing
the spread of the virus [2–4]. Therefore, the real-time monitoring of the temperature of
construction personnel has become one of the necessary options in current construction
site management. At present, the body temperature monitoring of construction personnel
mostly utilizes handheld temperature guns or fixed infrared thermometers [5], but these
methods cannot achieve real-time monitoring and the tracking of body temperature. The
use of wearable devices with temperature measurement function in construction personnel
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management is a feasible solution for real-time body temperature monitoring, and smart
helmets equipped with infrared temperature sensors are an ideal carrier. A smart helmet is
a head-mounted intelligent device that combines Internet of things technology with an or-
dinary helmet to realize corresponding intelligent functions. Smart helmets are often used
in industries such as counter-terrorism, fire protection, and mining [6–8]. In recent years,
smart helmets used by construction workers have also emerged. Altamura [9] developed
a smart helmet named SAFE that can be applied to construction sites. The smart helmet
is equipped with a temperature sensor, heart rate sensor, and smoke detector, which can
monitor the wearer’s physical condition and surrounding environment in real time and
transmit data to the server through Wi-Fi. The intelligent HeadgearX helmet developed by
Aliyev [10] is equipped with ten kinds of sensors, including a smoke sensor, environmental
light sensor, and atmospheric sensor, and can communicate with mobile phone through
Bluetooth. The matching Android application is also developed to add more functions,
including those configurable air functions. Building project managers can monitor the
real-time status of all site personnel from a central Web server. Such research provides
direction and reference for the application of smart helmets in construction sites. Safety
helmets are necessary protective equipment for construction workers. If safety helmet is
used as the carrier of infrared temperature measurement module, it will not add additional
burden to workers while monitoring their temperature in real-time. However, the goal of
applying smart helmets for epidemic prevention and control in construction sites also puts
forward more requirements for the accuracy of temperature monitoring.

In recent years, non-contact infrared temperature-sensing technology has developed
rapidly, which has the characteristics of fast measurement speeds and high sensitivity.
However, in the actual measurement, the accuracy of infrared temperature measurement is
easily affected by the measurement distance, ambient temperature, emissivity of the mea-
sured object surface, and other factors. Therefore, there may be a large error between the
temperature of the human epidermis (forehead, arm, etc.,) obtained by infrared thermome-
try and the basal body temperature in a general monitoring environment [11,12]. This leads
to the common problems of low measurement accuracy and large measurement errors in
body temperature measurement using infrared thermometry sensors. A number of studies
have been carried out to improve the accuracy of infrared thermometry in measuring
human body temperature. Overall, these studies can be divided into two categories:

The first category involves empirical regression models by studying the error relation-
ship between body temperature measurements and true values. Xu, K. [13] proposed a
multiple linear regression method to establish an infrared temperature measurement error
compensation model to improve the measurement accuracy, but the physical meaning of
the model was not clear enough, and the factors affecting the accuracy were not sufficiently
considered. When the temperature measurement environment changed, the model could
not accurately predict the actual temperature of the human body. Guo, Z. [14] proposed
a nonlinear cubic polynomial fitting temperature compensation algorithm to address the
shortcomings of the linear compensation model. The accuracy of this algorithm was im-
proved by about 2.25 times compared to the linear model, but the error was still too large
for the accuracy requirements of body temperature measurement.

The second category established theoretical models between body temperature measure-
ments and influencing factors through theoretical analysis and experiments. Wei, S. L. [15]
established an infrared incidence angle compensation algorithm based on Stefan’s law to
reduce the temperature measurement error caused by the variation of infrared incidence
angle through the study and analysis of the measured data. However, this model did not
consider the influence of other factors and was difficult to apply practically. Shajkofeci, A. [16]
collected 19,392 sets of measurement data sets, and used the same precision infrared sensors
at different locations while tracking outside temperature, room temperature, and time of
measurement. On this basis, the relationship between outside, ambient temperatures, hours
in the day, and the measured forehead temperature’s first and second degrees of polynomials
were established. Using these models, the influence of external disturbance on tempera-
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ture measurement accuracy can be reduced. Although this method can greatly reduce the
collinearity between these influence factors, the method of modeling separately may ignore
the relationship between each influence factor.

In comparison, the first type of method is more practical, but a large amount of
experimental data is required for model building. The experimental process of the second
type of method is easy to control, but it is difficult to comprehensively consider various
factors that affect the temperature measurement accuracy. Therefore, there were also studies
that fused the two ideas and proposed a calibration algorithm that combines theory and
experience. Based on the blackbody thermal radiation principle, AI, H. [17] converted the
infrared signal into Celsius temperature signal through the correction look-up table method
and applied the twice linear regression algorithm to establish an error compensation model
for in-ear cavity infrared thermometry, considering the effect of ambient temperature, and
obtained the model parameters through the blackbody standard experiment. The results
showed that the temperature error in the range of 35~42 ◦C remains within±0.2 after using
the model. Pan [18] proposed a nonlinear polynomial regression model to compensate for
the measurement error caused by dust and measurement distance. The results showed that
the model can significantly reduce the measurement error caused by these two factors, but
did not help with the other influencing factors.

In general, a lot of progress has been made in the research of error compensation for
infrared temperature measurement, which has created a good foundation for practical
engineering applications. However, in different application scenarios, the causes of infrared
temperature measurement error are not the same. When infrared temperature measurement
technology is used in a smart helmet, the possible causes of measurement error include:
(i) The influence of the wearer’s environment on skin temperature; (ii) The influence of the
sensor’s environment on measurement accuracy; (iii) The influence of the wearer’s sweat
on skin reflectivity; (iv) The vaporization of the wearer’s sweat leads to the reduction of
skin temperature. These influences are related to a variety of factors. Therefore, in order
to improve the measurement accuracy, the compensation calculation of the measurement
error needs to fully consider the helmet-wearing environment and its contact with the
human body.

The aim of this study is to comprehensively analyze the factors affecting the accuracy
of the measured personnel’s forehead epidermal temperature measurement and to establish
a high-precision temperature measurement model, so as to reduce the misjudgment of the
construction personnel’s physical condition. Therefore, a smart helmet is developed in this
study, which can not only monitor the wearer’s temperature, but also obtain the tempera-
ture and humidity data inside the helmet. During the experiment, the wearer’s real body
temperature, ambient temperature and humidity, and ambient wind speed were collected.
By analyzing the relationship between these environmental variables and temperature
measurement error, the influence of the above factors on the temperature measurement
accuracy of the smart helmet was quantified. Considering the multicollinearity of envi-
ronmental variables and the nonlinear relationship between environmental variables and
temperature measurement error, a modeling method combining multivariate statistical
analysis theory and a neural network is proposed in this study, which can effectively
improve the accuracy of the temperature measurement error compensation model.

Since the use of smart helmets for project management and personnel health moni-
toring in the actual construction environment is still an emerging technical tool, and its
measurement precision largely affects the application and popularization of the smart
helmet, the research in this study has important social significance and practical value in
the context of a current human society that will coexist with the “COVID-19” epidemic for
a long time.
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2. Smart Helmet Development and Data Collection
2.1. Smart Helmet Temperature Measurement System

This study utilizes a smart helmet equipped with an infrared temperature sensor to
continuously monitor and track the body temperature of personnel to obtain actual tem-
perature data. The smart helmet is self-developed. In order to guarantee continuous data
acquisition and communication, and to consider the subsequent temperature data correc-
tion needs, the smart helmet measurement system also includes a Temperature/Humidity
(T/H) sensor for collecting the temperature and humidity inside the helmet, a 4G commu-
nication module for data transmission, a microprocessor for the control system, a digital
display for data reading, and a rechargeable power supply module. The system is arranged
as shown in Figure 1.
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Figure 1. Structure of smart helmet system.

The T/H sensor is placed inside the helmet to collect real-time temperature and
humidity data during the wearing process to support the subsequent temperature data
correction. The infrared temperature sensor is placed on the contact point between the
helmet liner and the human forehead to collect the infrared signal from the human forehead
skin. Although in practical applications a temperature measurement accuracy of 0.1 ◦C
is enough, higher measurement accuracy and resolution can bring more information,
which helps to improve the application effect of the model. The infrared temperature
sensor model used in this study is MLX90614ESF, and the measurement resolution of the
sensor is 0.01 ◦C (measurement accuracy is 0.05 ◦C). The infrared signal collected by the
infrared temperature sensor is transmitted to the microprocessor for processing after a
series of amplification and filtering, and the temperature data of the human forehead skin
is outputted. The smart helmet measurement process is shown in Figure 2.

Endurance capability is an issue that must be considered for Internet of things equip-
ment. In order to reduce power consumption, the helmet adopts an STM32F411 micropro-
cessor and carries out a low power consumption design. The average operating current of
the microprocessor is 5.4 mA. The wireless communication module adopts a Quectel EC20
communication module, with an average operating current of 6.1 mA (data transmission
every 10,000 ms). The total operating current of the smart helmet is 26.8 mA, and it is
powered by a rechargeable lithium battery with a capacity of 3200 mAh, which can last up
to 120 h.
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2.2. Influence Factors of Temperature Measurement Error

According to Kirchhoff’s Law and Stefan–Boltzmann Law, the relation between the
radiation energy, density, and temperature on the surface of an object complies with
Equation (1):

M = εσT4 (1)

where, M is the radiation emission (J/(s·m2)), that is, the radiation power emitted per
unit area, ε is the emissivity of the object, σ is Stephan–Boltzmann constant, T is the
thermodynamic temperature of the body (K). It can be seen from Equation (1) that, if the
radiation emission of an object is measured, the temperature of the object can be determined,
which is the theoretical basis for infrared temperature measurement [19]. Therefore, the
factors affecting the accuracy of infrared temperature measurement can be determined by
analyzing the factors affecting the radiation emissivity.

The radiation received by the infrared sensor is mainly divided into three parts: ra-
diation from the target, reflected radiation from the environment, and radiation from the
atmosphere [20]. In other words, the temperature measured by the infrared temperature
sensor includes the interference of various kinds of radiation in the measurement envi-
ronment. The environment reflection radiation mainly related to the temperature and
humidity of the environment in which the infrared sensor is located.

As the smart helmet is worn on the head, the temperature sensor location is close to the
forehead, so that the effect of atmospheric transmittance is almost negligible. At the same
time, since the construction workers may sweat a lot during the construction operation,
and the sweat will interfere with the measurement accuracy of the infrared sensor, this
study quantifies this factor by measuring the humidity inside the helmet. Besides, there is
convective heat exchange between the human forehead surface and the outside air, and
when the heat dissipation is high, the forehead temperature will drop, thus deviating from
the true body temperature. The convective heat transfer coefficient is related to the wind
speed in the environment, which means that the wind speed affects the measurement error
of the infrared temperature sensor [21].

In order to quantify the degree of influence of the environmental factors on the infrared
temperature measurement of smart helmets, the indicators selected for measurement
and analysis in this study include ambient temperature (AT), ambient humidity (AH),
temperature inside helmet (TI), humidity inside helmet (HI), and wind speed (WP).
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2.3. Smart Helmet Temperature Measurement Experiment

In order to explore the degree of influence of environmental factors on the infrared
temperature measurement of the smart helmet, and to establish a temperature error com-
pensation model, this study conducted several groups of indoor and outdoor experiments
to simulate the scenes of construction workers in indoor and outdoor construction op-
erations, respectively. During the experiments, the temperature of the human forehead
epidermis and the temperature and humidity inside the helmet were collected using the
smart helmet, and the temperature inside the ear was measured using an ear temperature
gun as the true value of body temperature [22]. Meanwhile, a thermometer, hygrometer,
and anemometer were used to measure the external ambient temperature, humidity, and
wind speed.

In order to simulate the working hours of a construction site, the experiment was
conducted from 8:00 to 12:00 and 14:00 to 18:00. The experiment was carried out in groups
of two persons each. One person wore a helmet to simulate the general labor intensity of
construction and performed simple movements in the defined site, while the other person
was responsible for reading and recording data from the display (Figure 3) on the helmet
on time and was called the recorder.
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There were three key datasets on the display. TP represented the body temperature
value collected by the infrared sensor on the smart helmet. SHTTP and SHTHU were the
temperature and humidity inside the helmet, respectively. The specific experimental steps
were as follows:

1. The experimenter wore a smart helmet and held a digital anemometer. The experi-
menter pressed the storage function of the digital anemometer to save the real-time
ambient wind speed (Figure 4).

2. The experimenter used the ear temperature gun to measure his or her ear canal
temperature, and then the recorder took a reading and recorded the value.

3. At the same time, the recorder quickly recorded the measured temperature displayed
on the helmet, the temperature and humidity inside helmet, the wind speed displayed
on the anemometer, and the ambient temperature and humidity displayed on the
ambient thermometer and hygrometer.

4. In each recording, the true body temperature was recorded once. The helmet-
measured temperature was recorded three times as measured temperature 1, mea-
sured temperature 2, and measured temperature 3. The average value was taken as
the final measured temperature (MT) of the infrared temperature sensor to reduce the
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random error. The difference between the measured temperature and the true body
temperature was recorded as the temperature error.

5. The above steps were repeated, and data were recorded every 5 min. Each experiment
lasted for 4 h. During the experiment, the experimenter was required to continuously
walk around appropriately and wear the smart helmet continuously without remov-
ing the helmet until the end of the experiment. In order to simulate the different
environments of indoor and outdoor construction, the experiment was divided into
indoor and outdoor parts. The data categories and experiment durations were the
same in both indoor and outdoor experiments for comparison purposes. The number
of samples in each part was 245 sets, with a total of 490 sets. Figure 5 shows the
distribution of the measured temperature and the true value of body temperature.
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As can be seen from Figure 5, the real body temperature is distributed between 36.4 ◦C
and 37.5 ◦C, while the measured temperature is generally lower than the real temperature.
The temperature data in this experiment can be considered to be in the normal range, as
long-term physical activity leads to the rise of human body temperature, which may even
exceed 38 ◦C [23–25].
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3. Modeling and Data Analysis
3.1. Modeling Method

The purpose of this study is to analyze the influence of various influencing factors
on the error of infrared temperature measurement according to the experimental data,
and to establish the error compensation model of infrared temperature measurement.
In previous studies, regression analysis (such as multivariate linear regression [26–30],
ridge regression [31,32], and logistic regression [33,34]) is usually used to analyze the
relationship between multiple factors and the establishment of a mathematical model.
Moreover, the ordinary least square (OLS) method is the most widely-used parameter
estimation method in regression analysis. Due to the multicollinearity problem among
the factors influencing the temperature measurement error discussed in this study, this
problem would have a great impact on the analysis results and even lead to model failure
if the ordinary least square method was used for regression analysis [35]. In addition, since
the infrared temperature measurement error was nonlinear, a simple linear processing
cannot properly correct such errors [36].

To solve the above problems, it is necessary to find an analytical method that can
overcome the problem of multicollinearity among the influencing factors. In previous stud-
ies, ridge regression, principal component regression, and partial least squares regression
have achieved good results in overcoming the problem of multicollinearity [37–40]. Ridge
regression is essentially an improved least squares estimation method. It is more practical
to obtain the regression coefficient at the cost of losing some information and reducing accu-
racy by abandoning the unbiased nature of the least squares method. Therefore, compared
with principal component regression and partial least squares regression, the regression
coefficient of ridge regression model is higher, but the accuracy is lower [40]. Both par-
tial least squares regression and principal component regression achieve the purpose of
data dimensionality reduction by extracting principal components, and then overcome
the influence of multicollinearity. Compared with the partial least square (PLS) method,
although the principal component analysis (PCA) method can effectively simplify a high-
dimensional variable system into a low-dimensional variable system, and all variables
in the new variable system are linearly independent, it cannot avoid the influence of
overlapping information in the original variables [41]. This overlapping information may
sometimes not have much explanatory significance for the dependent variable and thus
become noise. As the PCA completely leaves out the dependent variables when extracting
the principal components, the principal component may have a strong generalization
ability to the independent variable system, but its explanatory ability to the dependent
variables may become very weak. PLS absorbs the idea of extracting components from
PCA and simplifies the data structure on the one hand, and is able to correlate the set
of independent variables and the set of dependent variables on the other. That is, PLS
considers both the generalization of the components to the independent variables and
pays more attention to the explanatory significance of dependent variables [42]. Therefore,
using PLS method to extract the principal components of data can overcome the problem
of multicollinearity among influencing factors and effectively eliminate noise in the data.
Therefore, in this study, PLS method was used to extract the principal components.

To solve the problem of low accuracy regarding the prediction results of fitting mul-
tidimensional, nonlinear function by conventional methods, an artificial neural network
is widely used in fitting nonlinear function [43–45]. An artificial neural network has the
ability to approximate any nonlinear continuous function with arbitrary accuracy, and back
propagation (BP) neural networks have strong self-learning behavior, self-organization,
and a nonlinear approximation function [46,47]. As long as the number of neurons is
sufficient, a BP neural network can fit complex nonlinear functions with only a three-layer
structure, which greatly reduces the complexity of the network [48]. It not only reduces the
calculation time, but also ensures the accuracy of the model.

Therefore, in this study the principal components extracted by the PLS method were
used as input variables and the temperature errors were used as output variables for BP
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neural network training, and, finally, the temperature error compensation model coupled
with PLS and BP neural networks (PLS-BPNN) was established. This model can effectively
reduce the prediction error brought by linear processing and solve the nonlinear problem
of the temperature compensation model. Figure 6 shows the structure diagram of the
PLS-BPNN coupling model.
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3.2. Multicollinearity Analysis

Multicollinearity is a statistical phenomenon in which predictor variables in a re-
gression model are highly correlated [49]. It is a data problem which may cause serious
difficulty with the reliability of the estimates of the model parameters [50]. Therefore, the
influence of multicollinearity should be overcome. The influencing factors considered in
this study may have multicollinearity, because there is a theoretical correlation between am-
bient temperature and ambient humidity, inside temperature and humidity, and ambient
temperature and wind speed.

To verify this view, and to explore the correlation between ambient temperature (AT),
ambient humidity (AH), temperature inside helmet (TI), humidity inside helmet (HI), and
wind speed (WP) and temperature error (TE), the correlation coefficient between them is
calculated, and the results are shown in Figure 7.
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The correlation thermodynamic diagram can clearly show the correlation between each
variable. The scale on the right side of the thermodynamic diagram shows the color depth
corresponding to different correlation coefficients. The color and corresponding number of
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each box represent the correlation coefficient between the two variables’ corresponding to
the box.

The correlation coefficient is the quantity of linear correlation between variables. There
are many ways to define the correlation coefficient. The correlation coefficient used in this
study is the most widely used Pearson correlation coefficient [51]. The Pearson correlation
coefficients are between −1 and 1, where a result close to 1 indicates that the two variables
are positively correlated, a result close to −1 indicates that they are negatively correlated,
and one closer to 0 indicates that they are not correlated.

As can be seen in Figure 7, there are multiple correlations between independent
variables affecting the infrared temperature measurement of the helmet. For example,
the correlation coefficient between the infrared measured temperature and temperature
inside the helmet is 0.79, and the correlation coefficient between the ambient temperature
and the ambient humidity is −0.65. To further verify and quantify the multicollinearity
between independent variables, the variance inflation factor (VIF) diagnostic method and
tolerance value were used in this study to determine the degree of multicollinearity [52].
The VIF and tolerance are both widely-used measures of the degree of multicollinearity
of the ith independent variable with the other independent variables in a regression
model. Not uncommonly, a VIF of 10 or even one as low as 4 (equivalent to a tolerance
level of 0.10 or 0.25) have been used as a rule of thumb to indicate excessive or serious
multicollinearity [53].

The expression of variance inflation factor is: VIFi = (1− R2
i )
−1. Where Ri is t the

complex correlation coefficient of the ith independent variable
(
xi
)

and other independent
variables. The largest (VIF)k of all independent variables is often used to determine the
degree of multicollinearity. As can be seen from Table 1, the variance inflation factors
of three variables are greater than the critical value of 4, among which the VIF value of
ambient humidity is about 8.468, which is the largest among the six variables.

Table 1. Results of covariance test for the influencing factors of infrared temperature measurement of
smart helmets.

Variable Tolerance VIF

Measured temperature 0.271 3.684
Ambient temperature 0.280 3.577

Ambient humidity 0.118 8.468
Temperature inside helmet 0.191 5.234

Humidity inside helmet 0.171 5.845
Wind speed 0.663 1.509

3.3. Extraction of Principal Components

Therefore, this study next extracts the principal components of the independent and de-
pendent variables using PLS. The analysis of the influencing factors shows that there are six
possible factors affecting the infrared temperature measurement error, thus there are six in-
dependent variables, which are measured temperature (x1), ambient temperature (x2), am-
bient humidity (x3), temperature inside helmet (x4), humidity inside helmet (x5), and wind
speed (x6), and the temperature error (y) to be compensated is the dependent variable. Thus,
the 490 sets of experimental data were divided into two sets X = [x1, x2, x3, x4, x5, x6]490×6
and Y = [y]490×1. In order to eliminate the influence of data dimensions, X and Y are
normalized as E0 = [E01, E02, E03, E4, E05, E06]490×6 and F0 = [F0]490×1 , respectively. Then,
the first pair of principal components t1 and u1 of the two sets of variables can be extracted.
According to the standardized observation data matrices E0 and F0 of the two sets of



Mathematics 2021, 9, 2808 11 of 20

variable sets, the score vector of the first pair of components can be calculated and recorded
as t̂1 and û1, as shown in Formula (2) and (3).

t̂1 = E0w1 =

 x11 · · · x16
...

. . .
...

x4901 · · · x4906


 w11

...
w16

 =

 t11
...

t4901

 (2)

û1 = E0v1 =

 y1
...

y490

[v1] =

 u11
...

u4901

 (3)

where w1 and v1 are the transformation matrices of the first pair of principal compo-
nents.According to the principle of principal component analysis in PLS, in order to
maximize the correlation between t and u, that is, to maximize the covariance of t and u ,
the covariance cov (t1, u1) of the first pair of components t1 and u1 can be calculated by the
inner product of the sum of the score vectors of the first pair of components. Therefore,
the above requirements can be transformed into a mathematical conditional extreme value
problem, as shown in Formula (4).{

〈t̂1, û1〉 = w1
TE0

TF0v1 ⇒ max

w1
Tw = ||w1||2 = 1, v1

Tv = ||v1||2 = 1
(4)

Using the Lagrange Multiplier method, the above problem can be transformed into
finding the unit vectors w1 and v1, so that θ1 = w1

TE0
TF0v1 ⇒ max. Just by calculating

the eigenvalues and eigenvectors of the m order matrix M = E0
TF0F0

TE0, the maximum
eigenvalue of M is θ1

2, the corresponding unit eigenvector is w1, and the corresponding

v1 = w1
TE0

TF0
θ1

. The following results were obtained after calculation:

w1 = [−0.76526 −0.2092 −0.0361 −0.5499 0.0199 0.2579]

v1 = 1

Then, substitute w1 and v1 into Formula (2) and (3) to calculate t1 and u1. The regres-
sion equations of E0 about t1 and F0 about u1 are established respectively, E0 = t̂1αT

1 + E1,
F0 = û1βT

1 + F1, where E1 and F1 are residual matrix. After, replace the E0 and F0 with
E1 and F1 respectively, repeat the above calculation, t2, t3 · · · tr, and u2, u3 · · · ur can
be calculated.

In general, PLS does not need to select all the existing components; however, like
principal component analysis, only the first few components are selected. For the number
of principal components to be extracted for modeling, the value can be determined by a
cross validity test. Each time the ith sample is discarded, the remaining data samples are
regressed by PLS method, and the regression equation fitted after extracting h (h is the
number of principal components extracted) principal components is established. Then,
the ith sample discarded previously is substituted into this regression equation to obtain
the predicted value of y at the ith sample, which is denoted as ŷi(h). Then, repeat the
above steps for i = 1 to 490 to obtain the Prediction Residual Error Sum of Squares (PRESS)
of the dependent variable y when h principal components are extracted, as shown in
Formula (5). After that, all sample points are used to fit the regression equation with h
principal components, and the predicted value of ith sample is thus obtained, which is
denoted as ŷ−i(h). Then, the SS (Error Sum of Squares) of y can be calculated, as shown in
Formula (6).

PRESS(h) =
490

∑
i=1

yi − ŷi(h) (5)
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SS(h) =
490

∑
i=1

y−i − ŷ−i(h) (6)

Generally, when Qh = 1− PRESS(h)
SS(h−1) < 0.0975, it indicates that the insertion of the hth

new component has no significant improvement on the prediction ability of the model [54].
It is calculated that Qh < 0.0975 when h = 4, therefore only three principal components need
to be extracted in this study, and the expression is shown in Formula (7). t1

t2
t3

 =

 −0.7653− 0.2092− 0.0361− 0.5499 0.0199 0.2579
−0.5475 0.5350− 0.5133 0.0961− 0.3589 0.1119
−0.6450 0.4394 0.0354 0.2354 0.2023− 0.5416

E0
T (7)

3.4. Fitting by BP Neural Network Model

Compared with the general neural network, a BP neural network can adjust the
weights layer by layer, starting from the last layer, and the loss function is reduced to an
acceptable range through multiple epochs [46]. The general form of weight adjustment in
a neural network is ∆W = η(X)Tδ. Where, η is the learning rate, that is, the step size of
weight adjustment, X is the input matrix, δ is the learning signal, that is, the direction of
each weight adjustment, which is actually a gradient vector [55].

Suppose an N-layer BP neural network, its last layer of learning signal can be described
as δn = (t− y) f ′(XnWn), where t is the expected output, y is the model output, f ′(x) is the
derivative of the activation function, Xn and Wn are the input matrix and weight matrix of
the nth layer, respectively. Moreover, the learning signal of other layers other than the last
layer is δi+1 = δiWi f ′

(
XiWi), where i + 1 represents the layer after the ith layer.

This study adopts a three-layer BP neural network model, including input layer,
hidden layer and output layer. The input layer of the model is X = [t1, t2, t3], the output
layer is Z = [Z], and the expected output is Y = F0. Assuming that the hidden layer has m
neurons, then the output matrix of the hidden layer is H = [h1, h2, h3 · · · hm]. The weight
matrix from the input layer to the hidden layer is V =

[
v1, v2, v3 · · · vj · · · vm

]
, where vj

represents the weight vector of the jth neuron of the hidden layer. The weight matrix from
the hidden layer to the output layer is W = [w].

Due to the superposition of linear functions, no matter how many hidden layers are
calculated, the final output results are linearly varied, that is, the whole model is linear.
In order to remove the linearization of the whole neural network output and make the
whole neural network model non-linear, the sigmoid function is adopted as the activation
function in this study, as shown in Formula (8). Moreover, its derivative function is given
in Formula (9). Sigmoid function is a bounded differentiable real function that is defined
for all real input values and has a positive derivative at each point. It is often used as the
activation function of neural network [56–58].

f (x) =
1

1− ex (8)

f ′(x) =
e−x

(1 + e−x)2 (9)

Then, the output function of the output layer is Z = f (S), where S = ∑m
j=0 wjhj, and

the output function of the hidden layer is hj = f
(
Sj
)
, where Sj = ∑3

i=1 vijxi. Formula (10)
gives the means to calculate the loss function used in this study. Where n is the total number
of training samples, d(k) is the expected output of the corresponding input x(i), and z(k)
is the actual output of the corresponding input x(i). By substituting the output function
of the output layer and the output function of the hidden layer into the loss function, it
can be found that the loss function is a function of two weight matrices. In order to reduce
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the value of the loss function, the weight should be adjusted in the direction of negative
gradient, as shown in Formula (11) and (12).

E =
∑n

k=1(d(k)− z(k))2

n
(10)

∆Wj = −η
∂E
∂wj

(11)

∆Vij = −η
∂E
∂vij

(12)

where ∆Wj is the weight adjustment value from the jth neuron in the hidden layer to the
output layer, and ∆Vij is the weight adjustment value from the ith neuron in the input layer
to the jth neuron in the hidden layer, after taking the derivative of the above formulae, the
learning signals of the output layer and the hidden layer are defined as δZ = − ∂E

∂S and
δH

j = − ∂E
∂Sj

. Then, the expression for ∆Wj and ∆Vij is ∆Wj = −ηδZhj and ∆Vij = −ηδH
j xi,

respectively. In the process of gradient descent optimization, if the learning rate is set too
large, it will easily lead to model overfitting. However, if the learning rate is set too small,
it will reduce the model optimization speed. Therefore, this study adopts adaptive learning
rate to solve this contradiction. The adaptive rule of learning rate is given in Formula (13).

∆η(k) =


+a ∆E(k− 1) < 0

−bη(k− 1) ∆E(k− 1) > 0
0 else

(13)

where, a and b are step constants, a > 0, b > 0, k represents the kth epoch. ∆E(k− 1)
represents the gradient value of the squared error function for the k− 1 epochs of the BP
neural network.

In this study, the initial learning rate is η = 0.015, a = 1.05, b = 0.7, the number of
hidden layer neurons is 10. Seventy percent of the 490 groups of sample data are used
as training set: 15% as a test set, and the other 15% as a verification set. Mean Square
Error (MSE) is used to determine the fitting accuracy of the model. Figure 8 shows the
MSE change curve of the model. It can be seen from the figure that the MSE of the data
fitting results of the training set, test set, and verification set changes with an increase in
the number of model epochs. The training stopped after 25 epochs of the model, and the
model accuracy reached the requirements. The MES of the validation set was minimized at
the 19th epoch, with a value of 0.007289.
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4. Modeling and Data Analysis
4.1. Multicollinearity Analysis

In order to test whether the modeling method of coupling a PLS and BP neural
network has an improvement for the accuracy of the model compared with the single
modeling method, this study used Least Square Regression (LSR), Partial Least Square
Regression (PLSR), and BP neural network (BPNN) for modeling based on the same data,
respectively. The fitting scatter plots and residual histograms of four temperature error
compensation models are shown in Figures 9 and 10.
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Figure 9 shows that the PLS-BPNN temperature error compensation model has the
smallest relative error between the fitted values and the actual values, with most points
falling on a straight line. The fits of the other models behave similarly, with more scattered
points falling around the line. Besides, as shown in Figure 10, PLS-BPNN model also
has the smallest residual distribution of −0.5 to 0.3, while the LSR model has the largest
residual range of −1.0 to 1.0. This indicates that the PLS-BPNN model does significantly
improve the temperature compensation accuracy.

In order to more clearly compare the fitting effects of the four models, the relative
error, Root Mean Square Error (RMSE), and the temperature measurement results after
applying the models were statistically analyzed, as shown in Table 2.

Table 2. Statistical table of fitting effect of each model.

Model
Number of

Components R2 RMSE
Relative Error/Count

<0.1 ◦C 0.1 ◦C~0.3 ◦C >0.3 ◦C

LSR 6 0.96079 0.242418341 162 221 107
PLSR 3 0.97542 0.192571607 180 264 46
BPNN 6 0.98915 0.129683998 272 208 10

PLS-BPNN 3 0.99377 0.092084235 372 116 2
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Table 2 shows that the number of relative errors greater than 0.3 ◦C in the fitted
data results of the LSR, PLSR, and BPNN models are 107, 46, and 16, respectively, while
only two of the fitted results of the PLS-BPNN model have such a large error, and more
than 75% of the fitted data have an error less than 0.1 ◦C. The R2 of PLS-BPNN model is
0.99377, and the RMSE is about 0.092, indicating that more than 99% of the total error of
the smart helmet temperature measurement system can be explained by the dependence
between temperature error and various influencing factors. Less than 1% is influenced
by random factors. The R2 of the LCR, PLSR, and BPNN models are all lower than that
of the PLS-BPNN model, and the RMSE of all three models is also higher than that of the
PLS-BPNN model, indicating that the PLS-BPNN temperature error compensation model
is a better fit than the other three models.

4.2. Infrared Temperature Measurement Compensation Test

In order to further verify the effectiveness of PLS-BPNN temperature error compen-
sation model in practical engineering applications, 24 groups (as shown in Table 3) of
test data were obtained using self-developed smart helmets in this study. The data was
obtained in the same manner as the data used for modeling.

As can be seen from Table 3, the accuracy of the temperature data collected directly
by the smart helmet can hardly meet the needs for body temperature detection, and the
relative average error reaches 2.80 ◦C, and the RMSE is 1.052. Then, the temperature error
compensation was calculated using the PLS-BPNN model. After using the PLS-BPNN
model to compensate the calculation, the relative average error is reduced to 0.055 ◦C, and
the RMSE is also reduced to 0.0671. Figure 11 shows the relative temperature errors before
and after compensation.

From Figure 11, it can be seen that, after using the PLS-BPNN model, the relative
error range of the infrared temperature measurement results is 0.005~0.143 ◦C, and the
measurement accuracy has been significantly improved to meet the actual management
needs of the construction site.
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Table 3. Test data used to validate the model.

Measured
Temperature

(◦C)

Ambient
Temperature

(◦C)

Ambient
Humidity

(%)

Temperature
Inside Helmet

(◦C)

Humidity
Inside Helmet

(%)

Wind Speed
(m/s)

Temperature Error
(◦C)

33.05 26.41 71.75 28.79 70.86 3.65 3.44
33.12 26.35 42.95 24.04 49.26 1.45 3.49
32.47 27.70 47.09 24.22 44.09 1.99 4.32
33.51 29.07 46.55 28.79 48.14 0.38 3.10
32.32 28.14 40.6 24.81 48.55 1.34 4.30
32.71 26.98 42.69 24.20 50.00 1.01 3.86
32.74 27.55 42.69 24.58 50.00 2.71 3.86
32.75 27.03 46.78 24.39 46.3 2.75 4.05
32.77 27.46 46.94 24.44 47.16 3.11 4.02
34.92 23.56 60.39 28.97 53.82 0 1.96
33.66 25.80 71.26 29.05 71.56 2.99 2.82
33.73 26.46 68.73 27.52 68.64 0 3.04
34.65 24.76 78.36 27.83 70.49 0 1.76
34.66 32.94 56.11 30.69 67.29 1.46 2.14
33.67 26.46 48.72 27.36 46.05 2.83 3.13
34.66 24.49 58.48 29.79 57.46 1.39 2.04
34.63 23.71 60.16 28.22 53.56 0 2.24
34.65 32.01 56.23 30.63 63.02 0.19 2.34
34.67 24.67 74.39 27.87 73.96 0 1.83
35.12 24.35 81.18 28.35 70.19 0 1.49
35.54 24.56 59.59 29.50 56.59 0 1.42
36.24 34.79 40.16 32.48 36.00 1.90 0.96
31.88 27.49 44.32 24.58 51.26 2.88 4.62
33.80 25.27 81.39 27.40 73.73 0 2.70
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The above test results show that the PLS-BPNN temperature error compensation
model can better compensate the error between the measured value of the infrared temper-
ature measurement system of the smart helmet and the actual body temperature, which
further reflects the advantages of the coupled model in dealing with the multiple correla-
tion and nonlinearity between the independent variables. At the same time, with the help
of the PLS-BPNN model, the smart helmet equipped with an infrared temperature sensor
can also play the role of human body temperature tracking and monitoring, assisting in
epidemic prevention and control in the actual construction management.

5. Conclusions

For the problem that there may be a large difference between the temperature mea-
sured by the infrared temperature measurement system and the actual body temperature
of the smart helmet, this study developed a smart helmet equipped with an infrared tem-
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perature sensor and designed a simulated construction experiment to collect temperature
data and data of various influencing factors that may affect the accuracy of temperature
measurement in indoor and outdoor operating environments, including ambient tempera-
ture, ambient humidity, temperature inside the helmet, humidity inside the helmet, and
ambient wind speed. After that, a PLS-BPNN temperature error compensation model was
established based on the experimental data to correct the temperature measurement results
of the smart helmet. The model uses the PLS method to extract the principal components of
the temperature influencing factors and uses them as input variables to effectively eliminate
the effect of multicollinearity between input variables. Meanwhile, the advantage of a BP
neural network in nonlinear approximation was used to solve the nonlinear problem of the
coupled model.

In addition, this study also compared the temperature compensation effect of PLS-
BPNN model with LSR, PLSR, and BPNN models, and the results showed that the PLS-
BPNN model had a higher accuracy and reliability. For the experimental data collected
in this study, the relative error range of infrared body temperature detection was only
0.005–0.143 ◦C after the compensation calculation of the PLS-BPNN model, which fully
meets the requirements of personnel temperature monitoring in construction site manage-
ment. That is, with the assistance of the PLS-BPNN temperature compensation model, the
smart helmet equipped with infrared temperature sensor has good application prospects
in construction personnel health management.

In the research process, it was found that, if the multivariate statistical analysis theory
and neural network are well connected, the accuracy and efficiency of the model can be
greatly improved. Therefore, this provides a new horizon for future research to solve
similar problems.

In addition to this, the proposed research method has several limitations. Most of the
temperature data used for modeling by this model are in the normal range, and there is a
lack of data of people with fever, which may lead to the poor compensation effect of the
model for the partial error of hyperthermia (temperature greater than 37.5 ◦C). Collecting
more data can result in more accurate results. In future research, experimental data of
febrile patients can be collected to improve the accuracy and generalizability of the model.
Since neural network algorithms play a crucial role in the performance of the model, using
other neural network algorithms or using different activation functions in the same neural
network algorithm may help improve the accuracy and efficiency of our proposed method,
and future research can try to use different neural network algorithms to improve the
performance of the model.
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