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Abstract: The current study is focused on development and adaption of the higher order Haar
wavelet method for solving nonlinear ordinary differential equations. The proposed approach is
implemented on two sample problems—the Riccati and the Liénard equations. The convergence and
accuracy of the proposed higher order Haar wavelet method are compared with the widely used
Haar wavelet method. The comparison of numerical results with exact solutions is performed. The
complexity issues of the higher order Haar wavelet method are discussed.
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1. Introduction

Recently, the higher order Haar wavelet method (HOHWM) has been developed by
the workgroup of the current study [1]. The HOHWM can be considered a refinement
of the widely used HWM introduced in [2]. The HOHWM has been found to increase
accuracy as well as convergence over the regular HWM [1,3–6].

The HWM was proposed originally for solving differential equations [2,7,8]. It has
been shown in [9–17] that the HWM can also be successfully utilized for solving integral
and integro-differential and integral equations. In pioneering works of Lepik [14,15,18–21],
the integration techniques for the HWM were developed. The monograph [22] gives a
thorough overview of the HWM and its application in different research areas. The weak
formulation based HWM was introduced by Majak et al. in [23].

Engineering seems to be one of the most common areas of application for the HWM.
This includes solid mechanics [14,20,21], composites [24–33], etc. In [28], free vibration
analysis of the multilayer composite plate is performed and in [27,30–33] the HWM is
successfully utilized for vibration analysis of plate and shell structures. The propagation
of a solitary wave in a composite material is studied in [29]. Besides engineering, wavelet
methods are used in a wide range of applications in areas of natural sciences, medicine,
social and live sciences [2,34–36].

Pioneering study in the area of fractional differential and integro-differential equations
was performed by Lepik in [15], where the Caputo derivatives are used to convert the
fractional differential equations into integral equations, which only include integer order
derivatives. Thus, the wavelet expansion is applied for integer order derivatives. An
alternate approach was employed in [37–39]. According to the latter approach, the Caputo
derivatives are expanded into Haar wavelets by employing a fractional operational matrix.

Recent developments of the HWM cover extension to the multidimensional case [40–42],
treatment of adaptive methods [43], nonuniform Haar wavelet method [44], inverse prob-
lems [45], identification of software piracy [46], solutions to variational problems [47] and
boundary layer flow problems [48], etc.
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The accuracy and convergence are considered the most critical characteristics of the
HWM and any numerical method. These aspects are studied in [49–51]. In [50], the
convergence theorem is proven and the order of the convergence of the Chen and Hsiao
approach based HWM has been found to be equal to two. Obviously, the HWM needs
principal refinement in order to compete with similar strong formulation based method
like differential quadrature method, used widely in engineering design. These results
were confirmed in comparative study, performed by the workgroup, where HWM was
compared with DQM and finite difference method [52]. Motivated by the latter conclusions
Majak et al. developed the HOHWM in [1].

In the current study, the HOHWM is implemented for solving nonlinear differ-
ential equations. The Riccati equations are often selected for evaluation of numerical
methods [53–57], especially for new ones [2,58–60], since the analytical solutions are
known for a number of particular Riccati equations. The Riccati equations cover vari-
ous actual research problems including Kalman filtering, model reduction optimal Control,
etc. [59,61,62]. Liénard Equation [63–65] is chosen as an example of a nonlinear second
order equation. Liénard equations arise when studying nonlinear oscillations [66,67]. A de-
tailed analysis of the HOHWM is performed covering accuracy, convergence and complexity.

The structure of the article is following. In Section 2, the Haar functions and opera-
tional matrix of integration are given. In Section 3, the two model equations are introduced.
In Section 4, the both Haar wavelet method approaches (HWM and HOHWM) for solv-
ing Riccati and Liénard problems are described. In Section 5, the numerical results are
presented and analysed. Finally, the conclusions are given in Section 6.

2. Haar Wavelet Family

In the current study, the notation introduced in [21] is utilized. The integration domain
[A, B] can be divided into 2M equal subinteravals of length ∆x = (B − A)/(2M). The
maximal level of resolution J is defined as M = 2J . The Haar functions are defined as

hi(x) =


1 for x ∈ [ξ1(i), ξ2(i)),

−1 for x ∈ [ξ2(i), ξ3(i)),

0 elsewhere,

(1)

where

ξ1(i) = A + 2kµ∆x, ξ2(i) = A + (2k + 1)µ∆x,

ξ3(i) = A + 2(k + 1)µ∆x, µ = M/m, ∆x = (B− A)/(2M).

j = 0, 1, ..., J, k = 0, 1, ..., m− 1, i = m + k1

(2)

Index i is calculated from i = m + k + 1. Parameter m = 2j corresponds to the maximum
number of square waves that can be sequentially deployed in interval [A, B] for the given
j and the parameter k indicates the location of the particular square wave. The scaling
function h1(x) forms a special case in which m = 0, ξ1 = A, ξ2 = B, ξ3 = B. The Haar
series is orthogonal and therefore forms a good transform basis

∫ B

A
hi(x)hl(x)dx =

{
2−j i = l = 2j + k

0 i 6= l.
(3)

Thus, any square integrable function f (x) can be expanded into Haar wavelets as

f (x) =
∞

∑
i=1

aihi(x), (4)

where ai are the Haar coefficients.
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Integrating Haar functions (1) one obtains

pn,i(x) =



0 for x ∈ [A, ξ1(i)),

(x− ξ1(i))n

n!
for x ∈ [ξ1(i), ξ2(i)),

(x− ξ1(i))n − 2(x− ξ2(i))n

n!
for x ∈ [ξ2(i), ξ3(i)),

(x− ξ1(i))n − 2(x− ξ2(i))n + (x− ξ3(i))n

n!
for x ∈ [ξ3(i), B).

(5)

The Haar matrix can be written in terms of Haar functions as

Hil = hi(xl), (6)

where xl = (l − 1/2)∆x stand for collocation points. The operational matrix of integration
Pn is given as

(Pn)il = pn,i(xl). (7)

Combining (6) and (7), the function approximation can be expressed in matrix notation as

f (x) = aH. (8)

Based on (6) and (7), the n-th order operational matrix of integration can be written as∫
· · ·

∫ x

A︸ ︷︷ ︸
n

H dξ . . . dξ︸ ︷︷ ︸
n

= Pn. (9)

Obviously, the matrices H and Pn depend on x.
In boundary points the relation (5) simplifies to

Pn(A) = 0 ∀n > 0 (10)

and

(Pn(B))i = pn,i(B) =
(B− ξ1(i))n − 2(B− ξ2(i))n + (B− ξ3(i))n

n!
. (11)

In general, the relation (10) leads to simplified boundary conditions.

3. Model Equations
3.1. First Order Problems

Any nonlinear ODE of the form

u′(x) + f (x)u2(x) + g(x)u(x) + h(x) = 0 (12)

can be called a Riccati equation. The boundary condition for Equation (12) can be given as

u(xc) = uc, (13)

where xc is the boundary (A or B) and uc is a given constants. In the following the three
particular sets of coefficients ( f (x), g(x) and h(x)) of the Riccati equation are considered
for which the exact solution is known. The domain x ∈ [0, 5] was chosen since it reflects
the qualitative behaviour of the exact solution.

Problem 1 (constant coefficients):

u′(x) = 1− u2(x), u(0) = 0, x ∈ [0, 5],

ue(x) =
e2x − 1
e2x + 1

,
(14)
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where ue(x) is the known exact solution.
Problem 2 (constant coefficients):

u′(x) = 1 + 2u(x)− u2(x), u(0) = 0, x ∈ [0, 5],

ue(x) =

(
−1 +

√
2
)(
−1 + e2

√
2x
)

1 +
(

3− 2
√

2
)

e2
√

2x
.

(15)

Problem 3 (variable coefficients):

u′(x) = 2x− u(x)/x + u2(x)/x3, u(5) = 40, x ∈ [0, 5],

ue(x) =
2x3 + 30x2

2x + 15
.

(16)

In order to use the HWM and HOHWM, the Riccati Equations (14)–(16) can be quasi-
linearized. The approach shown in [68] is used. By applying quasilinearization one obtains:

Problem 1

u′r+1(x) + 2ur+1(x)ur(x) = u2
r (x) + 1, ur+1(0) = 0 (17)

Problem 2

u′r+1(x) + 2ur+1(x)(ur(x)− 1) = u2
r (x) + 1, ur+1(0) = 0, (18)

Problem 3

u′r+1(x) + ur+1(x)/x− 2ur+1(x)ur(x)/x3 = 2x− u2
r (x)/x3, ur+1(5) = 40. (19)

In (17)–(19) r denotes the iteration step. The vector ur+1(x) has to be computed using the
HWM or the HOHWM for each iteration until the difference between two consecutive
solutions becomes sufficiently small (10−8 was used here). Clearly, an initial value for r = 0
must be given to start the iteration. In the present study, the linear relation u0(x) = x was
used. The same applies to the upcoming subsection as well.

3.2. Second Order Problems

A nonlinear differential equation of the form

u′′(x) + f (u)u′(x) + g(u) = 0 (20)

is known as a Liénard equation. In the present study, f (u) = u and g(u) = 0 are considered.
In such a case, the exact solution is known. The two boundary conditions can be defined as

u(A) = cA, u(B) = cB, (21)

where A and B are on the boundary of the domain, cA and cB are arbitrary constants.
Problem 4

u′′(x) + u′(x)u(x) = 0, u(0) = 0, u(1) = 2 tanh(1), x ∈ [0, 1],

ue(x) = 2 tanh(x).
(22)

Problem 5

u′′(x) + u′(x)u(x) = 0, u(0) = 0, u(1) = 4 tanh(2), x ∈ [0, 1],

ue(x) = 4 tanh(2x).
(23)

The model equations can again be quasiliearised. This results in the following problems:
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Problem 4

u′′r+1(x) + u′r+1(x)ur(x) + u′rur+1(x) = u′r(x)ur(x),

ur+1(0) = 0, ur+1(1) = 2 tanh(1).
(24)

Problem 5

u′′r+1(x) + u′r+1(x)ur(x) + u′rur+1(x) = u′r(x)ur(x),

ur+1(0) = 0, ur+1(1) = 4 tanh(2).
(25)

4. Haar Wavelet Methods

The well known HWM involves expanding the highest order derivative present in the
equation into the Haar wavelet series as

u′r+1(x) = ar+1H, (26)

where H is the Haar wavelet matrix described in (6) and ar+1 is the row vector of Haar
wavelet coefficients for the given iteration. By integrating the above, one can arrive at

ur+1(x) = ar+1P1 + c1, (27)

where P1 is the first integration matrix introduced in (7) and c1 is an unknown coefficient.
The boundary condition (for other boundary value problems the process is analogous)
u(0) = 0 can be expressed as

ur+1(0) = ar+1P1(0) + c1 = 0. (28)

Obviously, (10) and (28) imply that c1 = 0. Substituting the obtained result into (27) yields

ur+1(x) = ar+1P1. (29)

The process is similar in case of a second order equation, in which case, two coefficients are
obtained and the two boundary conditions are used to obtain said coefficients.

In the case of the HOHWM, one expands a higher order derivative into the Haar
wavelet series. In general, according to [1], 2s (where s > 0) extra derivatives are used.

u(1+2s)
r+1 (x) = ar+1H. (30)

In the simplest case where s = 1 one obtains

u′′′r+1(x) = ar+1H. (31)

Integration of Equation (31) results in expression

ur+1(x) = ar+1P3 + c1x2/2 + c2x + c3, (32)

which includes two extra unknown coefficients c2 and c3. The algorithms for determining
integration constants for the HOHWM are described in details in [1] and are omitted herein.
In the simplest case, where s = 1, according to these algorithms, the differential equation
should be fulfilled at boundary points.

Thus, utilizing the boundary condition u(0) = 0 as well as the conditions DE(0) = 0
and DE(5) = 0 for (17), where DE refers to the quasilinearized differential equation, one
can arrive at

ur+1(x) = ar+1P3 + x +
x2(−ar+1P2(5)− 2ur(5)(ar+1P3(5) + 5) + ur(5)2)

50ur(5) + 10
. (33)
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The process is similar to the second order equation and is thus omitted. It must be
noted, however, that a total of 4 coefficients are present in this case.

Either (29) or (33) can be substituted into differential Equation (17) depending on
which wavelet method is implemented (HWM or HOHWM). The obtained linear algebraic
system of equations should be solved with respect to the coefficient vector ar+1. Finally,
for known vector ar+1 the solution of the differential equation can be computed by use
of (29) for the HWM and (33) for the HOHWM. These steps must be carried out at each
iterations step.

The expressions of the solutions for the HWM and the HOHWM, corresponding to
problems 2–5 can be derived similarly to expressions (29) and (33). It can be shown that for
problem 2, one obtains (29) in case of the HWM and

ur+1(x) =ar+1P3 + x

+
x2(10 + 2ar+1P3(5)− ar+1P2(5)− 2ur(5)(ar+1P3(5) + 5) + ur(5)2)

50ur(5) + 10

(34)

in case of the HOHWM. In case of problem 3, one can obtain

u = ar+1P1 − ar+1P1(5) + 40 (35)

and

u = ar+1P3 + ar+1

((
x2

25
− 2x

5

)
P3(5) +

(
x− x2

5

)
P2(5)

)
(36)

for the HWM and the HOHWM, respectively. When dealing with problems 4 and 5, it can
be shown that for the HWM

u = ar+1P2 − ar+1xP2(1) + 2xbr (37)

can be obtained and for the HOHWM

u =ar+1P4 + ar+1

((
br

x3 − 3x
6 + 2br

− 3x
3 + br

)
P4(1)− br

x3 − x
6 + 2br

P3(1)−
x3 − x
6 + 2br

P2(1)
)

+
3brx

3 + br
− b2

r
x3 − 3x
6 + 2br

(38)

can be obtained. In (37) and (38), br corresponds to the right hand side boundary condition.
In case of problem 4, br = 2 tanh(1) and in case of problem 5, br = 4 tanh(2).

Comparing the expressions (29), (35), (37) to (33) and (34), one can observe some
principal differences between the HWM and the HOHWM. In case of the HOHWM, the
solution depends strictly on the boundary values of the previous iteration, which is not the
case with the HWM. However, in case of (36) and (38), such a dependence is not realized
for the HOHWM.

5. Analysis of Numerical Results

The numerical experiments were carried out for three particular Riccati Equations, (14)–(16),
as well as two particular Liénard Equations, (22) and (23). The numerical solutions for
problem 1 are computed according to (29) or (33) and validated against exact solutions
at the midpoint (x = 5/2 for problems 1–3; x = 1/2 for probelms 4 and 5). The order
of convergence of the solution can be computed with (ke

J) and without (k J) use of exact
solution as [1,49,50]

ke
J = log2

(
FJ−1 − Fe

FJ − Fe

)
, k J = log2

(
FJ−2 − FJ−1

FJ−1 − FJ

)
, (39)
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where FJ and Fe stand for the numerical solution at resolution J and exact solution, re-
spectively. In the present study the numerical solution at the midpoint u(5/2) is used.
Since ke

J depends on the solution at the current resolution and the previous resolution (as
well as the exact solution), it cannot be calculated for the lowest resolution. Similarly, k J
depends on the solution at the current resolution as well as two lower resolutions so it
cannot be calculated for the two lowest resolutions. In the following r f refers to the number
of iterations that were carried out in order to get a satisfactory result.

The numerical solution of Riccati equation for problem 1 as well as the absolute er-
ror ∆u(5/2) = |ue(5/2)− u(5/2)|, the rates of convergence and the number of iterations
used to obtain the solution by applying HWM and HOHWM are given in Tables 1 and 2,
respectively. Similar results are obtained for problem 2 (Tables 3 and 4) and problem 3
(Tables 5 and 6). Finally, the results for problems 4 and 5 along with their corresponding abso-
lute error rates ∆u(1/2) = |ue(1/2)− u(1/2)| are given in Tables 7–8 and 9–10, respectively.

Table 1. Solutions to (17) where ue(5/2) = 0.986614298151 using HWM.

J 2M u(5/2) |ue(5/2)− u(5/2)| ke
J kJ r f

1 4 1.0041392106 1.75× 10−2 - - 6
2 8 0.9924682634 5.85× 10−3 1.5819 - 7
3 16 0.9881249553 1.51× 10−3 1.9542 1.4261 7
4 32 0.9869944074 3.80× 10−4 1.9907 1.9418 7
5 64 0.9867094717 9.52× 10−5 1.9978 1.9883 7
6 128 0.9866381006 2.38× 10−5 1.9995 1.9972 7
7 256 0.9866202493 5.95× 10−6 1.9999 1.9993 7
8 512 0.9866157860 1.49× 10−6 2.0000 1.9998 7
9 1024 0.9866146701 3.72× 10−7 2.0000 2.0000 7

Table 2. Solutions to (17) where ue(5/2) = 0.986614298151 using HOHWM.

J 2M u(5/2) |ue(5/2)− u(5/2)| ke
J kJ r f

1 4 0.9759511782 1.07× 10−2 - - 7
2 8 0.9865266209 8.77× 10−5 6.9262 - 7
3 16 0.9866085182 5.78× 10−6 3.9231 7.0127 7
4 32 0.9866139091 3.89× 10−7 3.8930 3.9252 8
5 64 0.9866142729 2.53× 10−8 3.9432 3.8894 8
6 128 0.9866142965 1.61× 10−9 3.9705 3.9413 8
7 256 0.9866142981 1.02× 10−10 3.9849 3.9695 8
8 512 0.9866142981 6.40× 10−12 3.9922 3.9844 8
9 1024 0.9866142982 4.01× 10−13 3.9973 3.9918 8

Table 3. Solutions to (18) where ue(5/2) = 2.400281157801 using HWM.

J 2M u(5/2) |ue(5/2)− u(5/2)| ke
J kJ r f

1 4 2.4071314442 6.85× 10−3 - - 6
2 8 2.4126017209 1.23× 10−2 −0.8468 - 6
3 16 2.4041410973 3.86× 10−3 1.6744 −0.6292 6
4 32 2.4012885555 1.01× 10−3 1.9379 1.5685 6
5 64 2.4005355806 2.54× 10−4 1.9853 1.9216 6
6 128 2.4003449232 6.38× 10−5 1.9964 1.9816 6
7 256 2.4002971091 1.60× 10−5 1.9991 1.9955 6
8 512 2.4002851463 3.99× 10−6 1.9998 1.9989 6
9 1024 2.4002821545 9.97× 10−7 1.9999 1.9997 6
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Table 4. Solutions to (18) where ue(5/2) = 2.400281157801 using HOHWM.

J 2M u(5/2) |ue(5/2)− u(5/2)| ke
J kJ r f

1 4 2.3223263560 7.80× 10−2 - - 6
2 8 2.3999392337 3.42× 10−4 7.8328 - 6
3 16 2.4002409325 4.02× 10−5 3.0875 8.0070 6
4 32 2.4002789788 2.18× 10−6 4.2063 2.9873 6
5 64 2.4002810290 1.29× 10−7 4.0807 4.2139 6
6 128 2.4002811500 7.83× 10−9 4.0392 4.0833 6
7 256 2.4002811573 4.83× 10−10 4.0193 4.0405 6
8 512 2.4002811578 3.00× 10−11 4.0094 4.0200 6
9 1024 2.4002811578 1.87× 10−12 4.0028 4.0098 6

Table 5. Solutions to (19) where ue(5/2) = 10.9375 using HWM.

J 2M u(5/2) |ue(5/2)− u(5/2)| ke
J kJ r f

1 4 10.4949337507 4.42× 10−1 - - 9
2 8 10.8281017790 1.09× 10−1 2.01631 - 10
3 16 10.9102237718 2.72× 10−2 2.0039 2.0204 11
4 32 10.9306854555 6.81× 10−3 2.00104 2.0048 10
5 64 10.9357966448 1.70× 10−3 2.00024 2.0012 10
6 128 10.9370741787 4.26× 10−4 2.00006 2.0003 10
7 256 10.9373935457 1.06× 10−4 2.00001 2.0001 10
8 512 10.9374733865 2.66× 10−5 2.00000 2.0000 11

Table 6. Solutions to (19) where ue(5/2) = 10.9375 using HOHWM.

J 2M u(5/2) |ue(5/2)− u(5/2)| ke
J kJ r f

1 4 10.9376310324 1.31× 10−4 - - 9
2 8 10.9375106883 1.07× 10−5 3.6158 - 10
3 16 10.9375006943 6.94× 10−7 3.9444 3.5900 10
4 32 10.9375000437 4.37× 10−8 3.9891 3.9413 10
5 64 10.9375000027 2.74× 10−9 3.9984 3.9884 10
6 128 10.9375000002 1.71× 10−10 4.0002 3.9983 10
7 256 10.9375000000 1.07× 10−11 4.0012 4.0002 10
8 512 10.9375000000 6.63× 10−13 4.0101 4.0006 11

Table 7. Solutions to (24) where ue(1/2) = 0.9242343145 using HWM.

J 2M u(5/2) |ue(5/2)− u(5/2)| ke
J kJ r f

1 4 0.92171227335 2.52× 10−3 0 0 4
2 8 0.92361442525 6.20× 10−4 2.0245 0 4
3 16 0.92407999821 1.54× 10−4 2.0061 2.0306 4
4 32 0.92419577632 3.85× 10−5 2.0015 2.0076 4
5 64 0.92422468252 9.63× 10−6 2.0004 2.0019 4
6 128 0.92423190668 2.41× 10−6 2.0001 2.0005 4
7 256 0.92423371257 6.02× 10−7 2.0000 2.0001 4
8 512 0.92423416403 1.50× 10−7 2.0000 2.0000 4



Mathematics 2021, 9, 2809 9 of 12

Table 8. Solutions to (24) where ue(1/2) = 0.9242343145 using HOHWM.

J 2M u(5/2) |ue(5/2)− u(5/2)| ke
J kJ r f

1 4 0.92412675792 1.08× 10−4 0 0 4
2 8 0.92422791226 6.40× 10−6 4.0704 0 4
3 16 0.92423391886 3.96× 10−7 4.0162 4.0739 4
4 32 0.92423428986 2.47× 10−8 4.0040 4.0171 4
5 64 0.92423431298 1.54× 10−9 4.0010 4.0042 4
6 128 0.92423431442 9.63× 10−11 4.0002 4.0010 4
7 256 0.92423431451 6.02× 10−12 4.0001 4.0003 4
8 512 0.92423431452 3.76× 10−13 4.0001 4.0001 4

Table 9. Solutions to (25) where ue(1/2) = 3.046376624 using HWM.

J 2M u(5/2) |ue(5/2)− u(5/2)| ke
J kJ r f

1 4 3.0425991607 3.78× 10−3 0 0 5
2 8 3.0455841415 7.92× 10−4 2.2530 0 5
3 16 3.0461865972 1.90× 10−4 2.0602 2.3088 5
4 32 3.0463296049 4.70× 10−5 2.0149 2.0748 5
5 64 3.0463648993 1.17× 10−5 2.0037 2.0186 5
6 128 3.0463736946 2.93× 10−6 2.0009 2.0046 5
7 256 3.0463758916 7.32× 10−7 2.0002 2.0012 5
8 512 3.0463764408 1.83× 10−7 2.0001 2.0003 5

Table 10. Solutions to (25) where ue(1/2) = 3.046376624 using HOHWM.

J 2M u(5/2) |ue(5/2)− u(5/2)| ke
J kJ r f

1 4 3.0485346088 2.16× 10−3 0 0 5
2 8 3.0464549533 7.83× 10−5 4.7840 0 5
3 16 3.0463809046 4.28× 10−6 4.1936 4.8117 5
4 32 3.0463768823 2.58× 10−7 4.0499 4.2024 5
5 64 3.0463766398 1.60× 10−8 4.0126 4.0524 5
6 128 3.0463766248 9.99× 10−10 4.0032 4.0132 5
7 256 3.0463766239 6.24× 10−11 4.0008 4.0033 5
8 512 3.0463766238 3.90× 10−12 4.0006 4.0008 5

All model problems showed that the HOHWM outperforms HWM considerably. The
rate of convergence of the HOHWM tends to four, i.e., doubles that of the HWM. In the
case of sample problem 1, the accuracy of 10× 10−7 was not achieved by the HWM even
with 512 collocation points, but by employing the HOHWM, such accuracy was reached
with 32 collocation points. Similar results are also obtained in the case of the other sample
problems. The number of iterations necessary to arrive at the solution corresponding to the
HWM and the HOHWM is same in the case of the second and the third sample problems.
In the case of the first sample problem, the number of iterations of the HOHWM is higher
for some resolutions, but just by one iteration.

When considering the computation times needed to reach the same accuracy using
the HWM and HOHWM (Table 11), one can see that the same level of accuracy is achieved
using less CPU time by employing the HOWHM instead of the HWM. This is because the
size of the matrices involved is considerably smaller in case of the HOHWM.

Table 11. CPU times for solutions of Equations (17) and (18) at the same level of accuracy.

Equation (17) Equation (18)

HWM, J = 9 HOHWM, J = 4 HWM, J = 8 HOHWM, J = 4

6.59283 1.8728 3.42749 1.87265
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6. Conclusions

The HOHWM has been implemented for solving nonlinear differential equations.
Three particular Riccati equations and two Liénard equations with known exact solutions
are examined.

The iterated numerical solution in case of the HOHWM can depend strictly on the
value of the previous iterated solution at the boundary (Equations (33) and (34)). That is
not the case when using the HWM. These dependencies are caused by satisfying differ-
ential equations in points, determined by the HOHWM algorithms (boundary points for
s = 1, etc.).

Both, the HWM and the HOHWM produce numerical solutions which were shown
to be in good agreement with the exact solution. However, the HOHWM has shown
principally higher accuracy in the case of the same mesh.

Computationally, the most expensive operation performed is the calculation of the
solution of the system of algebraic equations. However, the algebraic systems of equations
corresponding to the HWM and the HOHWM, have the same dimensions and symmetry
properties. From a practical point of view, it is interesting to estimate computational com-
plexity of the solutions providing the same accuracy. Thus, for example in the case of model
problem 1, to obtain the same accuracy, one can use the HWM with 512 collocation points
and the HOHWM with just 16–32 collocation points. Thus, by applying the HOHWM, it
is possible to obtain the results with the same accuracy as by applying the HWM with a
substantially lower computational cost. It is correct to note that the conclusions made are
based on solution of five sample problems related to the Riccati and Liénard equations.
Therefore, the study of nonlinear differential equations by employing the HOHWM needs
further attention.

Future study should be related to development and application of the HOHWM for
analysis of the nonlinear solid mechanics problems [69] and simulation of solitons and
shock waves, which are known for their complex behaviour and providing challenges for
any new numerical method [70,71].
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