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Abstract: Automatic fingerspelling recognition tackles the communication barrier between deaf
and hearing individuals. However, the accuracy of fingerspelling recognition is reduced by high
intra-class variability and low inter-class variability. In the existing methods, regular convolutional
kernels, which have limited receptive fields (RFs) and often cannot detect subtle discriminative
details, are applied to learn features. In this study, we propose a receptive field-aware network
with finger attention (RFaNet) that highlights the finger regions and builds inter-finger relations. To
highlight the discriminative details of these fingers, RFaNet reweights the low-level features of the
hand depth image with those of the non-forearm image and improves finger localization, even when
the wrist is occluded. RFaNet captures neighboring and inter-region dependencies between fingers
in high-level features. An atrous convolution procedure enlarges the RFs at multiple scales and a
non-local operation computes the interactions between multi-scale feature maps, thereby facilitating
the building of inter-finger relations. Thus, the representation of a sign is invariant to viewpoint
changes, which are primarily responsible for intra-class variability. On an American Sign Language
fingerspelling dataset, RFaNet achieved 1.77% higher classification accuracy than state-of-the-art
methods. RFaNet achieved effective transfer learning when the number of labeled depth images was
insufficient. The fingerspelling representation of a depth image can be effectively transferred from
large- to small-scale datasets via highlighting the finger regions and building inter-finger relations,
thereby reducing the requirement for expensive fingerspelling annotations.

Keywords: fingerspelling recognition; depth sensor; finger attention; receptive field; inter-finger
relation

1. Introduction

For deaf people, sign language is a means to communicate. However, communication
between deaf and hearing people remains challenging. Automatic sign language recog-
nition tackles this communication barrier by translating sign language to text or speech.
Fingerspelling is a sign language that signals words letter by letter. Fingerspelling enables
the communication of technical terms and other terms lacking a representation in sign
language. Note that ~35% of words in social interactions refer to technical topics requiring
fingerspelling [1].

Vision-based fingerspelling recognition has been widely developed because cameras
are inexpensive and ubiquitously available. Fingerspelling recognition systems may benefit
from depth images acquired by structured light or time-of-flight sensors, which are robust to
illumination variations [2] and enable easy hand detections against a complex background.
However, intra-class variability, inter-class similarity, and inter-subject variability hinder
vision-based fingerspelling recognition, as shown in Figure 1. The inter-class similarity
refers to different fingerspelling signs sharing similar hand postures. The intra-class
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variability refers to the various representations of identical signs captured from multiple
views. The inter-subject variability refers to the various representations of identical signs
performed by different subjects.

Figure 1. Inter-class similarity, intra-class variability, and inter-subject variability of hand gestures
captured by a depth camera [3].

Accurate finger localization can potentially tackle inter-class similarity by detecting
small hand posture variations between two signs. To account for finger localization, we
propose a finger attention mechanism that enhances the finger regions in the depth image,
highlighting discriminative finger features in these regions. Moreover, building inter-
finger relations can tackle intra-class variability because inter-finger relations are inherently
invariant to viewpoint changes. To account for inter-finger relations, we enlarge the
receptive fields (RFs) of the convolutional kernels and model neighboring and inter-region
dependencies between fingers. We now present the challenges of inter-class similarity and
intra-class variability and illustrate our approach to handling them.

The first challenge is caused by inter-class similarity. A standard way to handle this is
to highlight finger regions because accurate finger localization facilitates identifying slight
posture variations across signs and further distinguishing signs that show inter-class simi-
larity. The conventional method [4] assumes that finger localization and finger occlusion
problems can be solved by the depth level. For this purpose, it manually decomposes the
hand image into a few depth levels. Finger localization by this method is affected not only
by manual predefinition of the depth level but also by the appearance of the forearm region
at the depth level of the fingers. To deal with this issue, we highlighted the finger regions
for low-level feature extraction using depth finger attention (DFA), as shown in Figure 2.
DFA simultaneously considers the hand depth image and the forearm-removed image
(non-forearm image) to explore the finger regions. There are two reasons behind simultane-
ously considering the hand depth image and non-forearm image. The first reason is that as
most subjects signal with a preferred posture, the background pattern is sign-dependent.
A model may tend to learn the sign representation according to the background pattern,
which biases the learning toward the background [5]. When the fingers inside the hand
region are not highlighted, the finger localization can be incorrect, and signs with inter-class
similarity are poorly recognized. To handle the background-bias problem, we provide the
non-forearm image as a reference for the hand depth image. The model then highlights the
inside of the hand region rather than the outside region (the sign-dependent background
pattern). The second reason is interference by forearm appearance in the hand depth image.
Although the forearm can be removed from the hand image by detecting the wrist point [6],
this approach is non-robust to occlusion of the wrist point by the fingers. Such occlusions
can lead to inaccurate wrist point detection and unexpected finger removal. To tackle this
limitation, we provide the hand depth image containing the forearm as a complementary
reference for the non-forearm image. DFA can then highlight the finger regions on at least
one of the two images.
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Figure 2. Hand gesture recognition models: (left) the conventional method and (right) RFaNet.
Most conventional methods recognize hand gestures in color and depth input images, whereas
RFaNet only processes a depth image to recognize hand gestures. RFaNet employs finger attention
to highlight fingers before a CNN extracts the features and enlarges the RF to build long-range
connections across finger features for better hand-gesture recognition.

The second challenge is caused by intra-class variability over multiple views. An iden-
tical sign viewed from multiple angles can have various representations in a convolutional
neural network (CNN), leading to poor recognition. As convolutional operations focus on
the local neighborhood, they capture the local finger features within a small RF (or field of
view [7]), as shown in in Figure 2. When one sign is viewed from a different perspective, the
change in local finger features leads to a variant representation. However, the long-range
dependency between the fingers of an identical sign is invariant to viewpoint changes.
Capturing the long-range dependency could improve the recognition of signs with intra-
class variability. To handle this issue, we designed the second key component, a non-local
receptive field (NLRF), that captures the neighboring and inter-region dependencies between
fingers. The NLRF block employs atrous spatial pyramid pooling (ASPP) [7] to enlarge the
field of view on multiple scales, and hence develops the long-range dependencies of distant
fingers, as shown in Figure 2. Although ASPP varies the sampling distance from the kernel
center, the feature maps from the previous convolutional layer have a uniform resolution.
Consequently, the background enhancement is incorrect and the features are rendered less
discriminative. Inspired by the receptive field block [8], we employed standard convolu-
tional operations with various kernel sizes followed by the atrous convolution, accounting
for the impact of RF eccentricities. However, directly merging the feature maps from
various kernel sizes into a spatial pooling may model the dependency between fingers
and the neighboring background rather than the dependency between distal fingers. The
neighboring and inter-region dependencies are not simultaneously considered. To avoid
this problem, we modified the non-local block [9] to further capture the dependencies of
the feature maps extracted from various RFs. The non-local operation computed interac-
tions between the multi-scale feature maps, and thus jointly captured the neighboring and
inter-region dependencies across distal fingers, facilitating the modeling of inter-finger
relations. Because the inter-finger relations of a sign are inherently invariant to viewpoint
changes, a representation based on inter-finger relations could reduce intra-class variability.

Fingerspelling recognition systems may experience limited accuracy when the number
of labeled images is insufficient. The number of labeled data can be increased by inviting
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multiple subjects to perform hand gestures under various conditions, but this approach is
expensive. Furthermore, the data annotation of hand gestures often requires specialized
domain knowledge, which reduces the scalability of the data. Transfer learning tackles
this issue by training a deep neural network model via sufficiently many data in a source
domain and fine-tuning the model using small data in a target domain [10]. The source
domain does not necessarily require relevance to the target domain but must share certain
common representations with it. The representations learned from the large-scale datasets
facilitate learning from the small-scale datasets. Nihal et al. [11] observed that computer-
vision tasks share similar features. They trained a model on ImageNet and transferred
the knowledge to Bangla sign alphabet recognition [12]. Observing similar hand gestures
in British and American sign languages, Bird et al. [13] conducted transfer learning from
British to American sign languages, based on color modality and bone modality (finger
joints). However, the background of the color modality may affect transfer learning in
this method. The depth modality could facilitate the transfer learning of fingerspelling
recognition because finger features are robust to illumination changes and background
complexity. Therefore, in this study, we only adopted depth modality for fingerspelling
recognition and demonstrate its advantage in the application of transfer learning on limited
training datasets.

The DFA and NLRF blocks were the key components for mitigating inter-class simi-
larity and intra-class variability, respectively. We assembled the DFA and NLRF blocks to
the top and bottom of a backbone network (VGG-9 [14]) and proposed a model—Receptive
Field-aware Network with finger attention (RFaNet)—for fingerspelling recognition, as shown
in Figure 3. The primary contributions of the proposed model to fingerspelling recognition
are summarized below.

1. We introduce RFaNet for effective fingerspelling recognition.
2. The DFA block on the top of RFaNet highlights the finger regions and facilitates the

identification of slight hand-posture variations across signs with inter-class similarity.
3. The NLRF block at the bottom of RFaNet captures inter-finger relations by fusing

multi-scale feature maps of various RFs. By learning the representations of inter-finger
relations, the NLRF block improves the recognition of signs with intra-class variability
because the representation of a sign is invariant to viewpoint changes.

4. RFaNet outperformed state-of-the-art methods on two standard benchmark finger-
spelling datasets.

5. RFaNet effectively learned the fingerspelling representations from large- to small-scale
datasets by highlighting the finger regions when the training data were insufficient.

The rest of the paper is organized as follows: Section 2 presents a review of related
works in the literature; Section 3 describes RFaNet for fingerspelling recognition; Section 4
presents the experimental results, which are compared and analyzed; Section 5 extensively
describes the experimental results of the RFaNet in transfer learning applications; and
Section 6 concludes the study.
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Figure 3. Overview of our hand gesture recognition model. (a) RFaNet. (b) DFA block. (c) NLRF
block. (d) Variant of non-local block (vNL). SE: squeeze-and-excitation block; non-forearm image:
hand depth image after forearm removal process; r: atrous sampling rate which corresponds to the
stride when sampling the input signal.

2. Related Work

In this section, we describe the relevant recent works on fingerspelling recognition,
RF, and attention mechanisms.
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2.1. Fingerspelling Recognition

Usually, fingerspelling recognition applies depth modality, which is robust to illumina-
tion variations. Hu et al. [15] detected hands by assuming them as the closest objects to the
sensor in depth images. Zhang and Tian [16] extracted the depth features and integrated
them with a three-dimensional point cloud. Wang et al. [17] considered not only the depth-
modality features (depth and skeleton features) but also the color modality features (color,
texture, and contour features). Tao et al. [18] applied a CNN that recognizes letter signs cap-
tured from different perspectives in the depth modality. Modanwal and Sarawadekar [6]
observed that the forearm usually appears in the hand image and is irrelevant to the hand
gesture. They suggested removing the forearm from the hand image to improve hand
gesture recognition. They developed a robust wrist-point detection algorithm to separate
the palm and forearm based on hand anatomy. Removing the forearm is essential for
capturing the fingers and extracting finger features in the hand image. Motivated by this
result, we removed the forearm from the hand-depth image and extracted the low-level
features from the finger and palm regions.

Rioux-Maldague and Giguère [4] decomposed the depth map of the hand into several
layers, each representing a depth-level of the hand region. Partial fingers and palm regions
at similar depth values appear in the same layer and are represented as depth features at
the corresponding depth level. Decomposing a hand into different depth levels can handle
finger occlusion. When one finger partially occludes another finger, both fingers belong to
two depth levels and appear in two layers. This facilitates the localization of fingers, which
is important for distinguishing fingerspelling signs. Accordingly, we were motivated to
decompose the hand region into several depth-feature maps containing various depth
information and facilitating finger localization.

2.2. Receptive Field

Conventional methods usually employ very deep convolutional networks that rec-
ognize objects at multiple scales, leading to huge computational costs. The cost can be
reduced by replacing deep backbones with a lightweight model, in which enlarged RFs
can potentially increase the field of view at multiple scales. The ASPP [7] enlarges the
RFs by changing the sampling distance from the kernel center to capture the long-range
dependency. Using ASPP, Wang et al. [19] extracted the spatial information around an
object occluded by other objects. ASPP exploits and preserves the fine details around occlu-
sions. Tan et al. [20] yielded a fixed-length feature representation using spatial pyramid
pooling, which recognizes hand gestures regardless of input size. This method facilitates
the propagation of gradients from the final fully connected layer to the input layer. The
resolution of the input feature maps from the previous convolutional layers is uniform in
the ASPP. Lu et al. [21] suggested that when inferring occlusion relationships, a sufficient
RF is required at different scales for aggregating the cues around the occlusion region.
Therefore, they extended the ASPP to different scales of the RF, enabling the complete
sensing of foreground and background objects. Liu et al. [8] developed a receptive field
block (RFB) that considers the relationship between the size and eccentricity of the RF. The
RFB improves feature representation and can be equipped on top of a lightweight network
for object detection tasks.

2.3. Attention Mechanism

Attention mechanisms are helpful for recalibrating the channel dependency of a
computer vision task [22]. They model the long-range dependency of natural language
processing [23]. Wang et al. [24] designed a residual ASPP block that extracts multiscale
features from stereo images and a parallax-attention module that fuses these multiscale
features to capture the stereo correspondences. Han et al. [25] simultaneously applied an
ASPP block and a channel attention module for multiscale context extraction and channel-
wise feature recalibration, respectively. The features extracted from the two branches
were fused by weighted summation for the semantic labeling of high-resolution remote



Mathematics 2021, 9, 2815 7 of 22

sensing images. Liu et al. [26] densely connected the branches of an ASPP to cover the
dense feature scales of RGB and depth modalities. Using a selective self-mutual attention
module, they then integrated the attentions of the RGB and depth modalities to capture the
long-range dependencies in RGB-D salient object detection. Yang et al. [27] developed a
depth-aware attention module to refine the RGB and depth feature maps for suppressing
the effect of color–depth misalignment. This module highlights important fingers for
fingerspelling recognition. Inspired by the interactive learning of attentions from two
modalities, we exploited the merits of ASPP and attention mechanisms to enlarge RFs
at multiple scales and build the long-range dependencies of distant fingers. Our idea is
to leverage the neighboring and inter-region neighboring dependencies between fingers.
The resulting fingerspelling representation is invariant to viewpoint changes and further
reduces intra-class variability.

3. Receptive Field-Aware Network with Finger Attention

In this section, we first introduce the overall architecture of the proposed fingerspelling
recognition method, RFaNet; then, we describe how the key components of RFaNet facili-
tate tackling the fingerspelling recognition tasks.

Figure 3a shows the overall architecture of RFaNet. RFaNet was trained to enhance
the finger regions and to build inter-finger relations in the depth image. A VGG-9 [14] is
adopted as the backbone network. The proposed DFA and NLRF blocks are inserted at
the top and bottom of RFaNet, respectively. The DFA block was designed to extract the
low-level features from the finger and palm regions rather than the background regions.
The NLRF block is designed to fuse the neighboring and inter-region information and
extract a fingerspelling representation invariant to viewpoint changes. Experimental
results supported the hypothesis that the DFA and NLRF blocks improved the overall
fingerspelling recognition performance. We share our code and models at: https://github.
com/yaomao-cheng/RFaNet_model/tree/master (accessed on 25 October 2021).

3.1. Depth Finger Attention Block

Fingerspelling recognition is usually hindered by inter-class similarity, i.e., by the
similar appearances of more than one sign. Accurate finger localization is crucial for
identifying slight hand posture variations. Unlike the method in [4], which manually
divides the hand depth image into several depth-level layers for finger localization, the
proposed DFA block applies learnable convolutional operations to obtain several depth
feature maps from a hand depth image. However, the convolutional model may tend
to learn sign-dependent background patterns, because most subjects make signs with a
preferred posture, resulting in similar background patterns for identical signs (known
as the background-bias phenomenon [5]). To guide the model toward the finger regions,
the DFA block jointly processes two depth images: the hand depth image and the same
image with the forearm removed (non-forearm image), which provide complementary
information, as shown Figure 3b. As the non-forearm image references the hand depth
image, the DFA block can highlight inside the hand region rather than the outside, i.e., a
sign-dependent background pattern. The forearm was removed by a wrist-point detection
algorithm [6], thus creating the non-forearm images. However, when the fingers occlude
the wrist point, they can be incorrectly removed by the algorithm. In such cases, the hand
depth image (possessing forearm) could provide complementary finger information that
enhances the finger region.

In the non-forearm image path, the squeeze-and-excitation (SE) block [22] is employed
to adaptively recalibrate relations across feature maps to effectively highlight finger regions,
as shown in Figure 3b. These recalibrated feature maps from the non-forearm image are
fused (by addition) with the feature maps from the hand depth image for learning to excite
finger regions. This fusion ensures that the hand depth image and non-forearm image
could provide complementary finger features, leading to finger localization even under
wrist occlusion. The DFA block is inserted in the first layer of the proposed model, which

https://github.com/yaomao-cheng/RFaNet_model/tree/master
https://github.com/yaomao-cheng/RFaNet_model/tree/master
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enables the following layers to extract discriminative features in the finger regions, as
shown in Figure 3a. It facilitates the identification of slight hand posture variation across
signs with inter-class similarity.

Given a feature map of the non-forearm image UN =
[
uN

1 , uN
2 , . . . , uN

C
]
∈ RH×W×C

extracted by the convolutional kernels, where H = W = C = 64 in this study, the SE block
first squeezes the global spatial information via a global average pooling to obtain the
channel-wise statistics, as follows:

zN
c =

1
H ×W

H

∑
i=1

W

∑
j=1

uN
c (i, j), (1)

where zN
c represents the channel-wise statistics of the c-th channel. Then, the SE block

captures channel-wise dependencies by two fully connected layers, as follows:

sN = σ
(

W2δ
(

W1zN
))

, (2)

where σ and δ denote the sigmoid activation and rectified linear unit [28] functions, respec-
tively, W1 ∈ R C

r ×C, and W2 ∈ RC× C
r . We set the reduction ratio r to 2. The output of the

SE block was obtained by recalibrating the channel-wise features, as follows:

FN = sN⊗UN , (3)

where ⊗ represents the element-wise product implemented by broadcasting the sN values
along the spatial axis. The SE block learns to excite the informative features of the non-
forearm image and can potentially boost the finger localization ability.

The DFA block fuses the feature maps of the hand depth image FH and the non-
forearm image FN. Among several operations in the fusion strategy—addition, product,
and concatenation—we empirically reported that the addition operation provides better
classification accuracy at less computational cost than the others. Therefore, addition was
selected as the fusion strategy of FH and FN in the DFA block. By recalibrating the channel-
wise dependencies of the features FN, the DFA exploits the contextual information outside
small RFs and enhances the features inside the hand region. The feature map FN provides
a reference for FH, guiding the model toward the finger regions rather than sign-dependent
background patterns. Moreover, the feature map FH provided complementary information
to FN when the fingers were incorrectly removed in FN under wrist occlusion. Jointly
processing FH and FN focuses the attention on fingers in the depth image by highlighting
the salient finger regions, thus improving the low-level finger representations.

3.2. Non-Local Receptive Field Block

A fingerspelling sign captured from multiple views may have various representations,
resulting in intra-class variability. However, the inter-finger relations of a sign are inherently
invariant to viewpoint changes. To capture inter-finger relations, the proposed NLRF block
enlarges the RF and field of view to capture the long-range dependencies of distal fingers.
Unlike the ASPP [7] and receptive field block (RFB) [8], the NLRF block not only applies
standard convolutional operations with various receptive fields, followed by the atrous
convolution, but also modifies the non-local block [9] to capture the relation of feature maps
with multiple fields of view, which facilitates the modeling of the relations between distal
fingers. The NLRF block exploits multi-scale feature maps using three atrous convolutions,
with rates r = 1, 3, and 7, as shown in Figure 3c. The reason behind using the three rates
is that the atrous convolution with a high rate only samples a region with checkerboard
patterns, leading to a gridding problem [29] and the loss of neighboring information.
We followed the suggestion in [29] to select rates that did not possess a common factor
relationship (i.e., 1, 3, and 7). The rate parameter r represents the stride where the operator
sampled the input signal. We applied the maximal atrous sampling rate r = 7 because



Mathematics 2021, 9, 2815 9 of 22

the feature map from the previous layer is of spatial resolution 16 × 16. We empirically
found that the atrous convolution with r = 5 did not significantly improve the classification
accuracy, and thus was removed (see Section 4.5 for a detailed analysis). The removal of
the atrous convolution with r = 5 reduces the computational cost.

To relate the small and large fields of view, the feature maps from the branches of
atrous convolution with rates r = 1 and 7 are fused by a variant of non-local (vNL) block.
The reason underlying this fusion step is shown in Figure 4. The ASPP and RFB directly
merge the feature maps with various RFs and fields of view, such that all pixels in the
spatial array of RF equally contribute to the output response. Therefore, the relation
between finger and background may be modeled rather than that between distal fingers
(e.g., index finger and thumb), leading to incomplete inter-finger relations. The branch r = 1
captures neighboring information in a local area, whereas the branch r = 7 captures inter-
region information in a large area. The neighboring information could provide the local
relations between neighboring fingers, whereas the inter-region information could provide
the non-local relations between distal fingers. Fusing the neighboring and inter-region
information could emphasize the most essential regions, according to local and non-local
relations, and better model inter-finger relations, as shown in Figure 4.

Figure 4. We adjusted the RF sizes in the original ASPP and RFB for a fair comparison. The feature
maps are derived from the output of ASPP, RFB, and NLRF. The dark outer region of the feature
map of the NLRF is zero-padded to fit the RF of atrous convolution with rate r = 7. vNL: variant of
non-local block; r: atrous sampling rate.

The non-local block [9] applies a self-attention mechanism to enhance the features
at a given position by aggregating the information at other positions of the same input
feature vector. Different from the non-local block, which derives the value, key, and
query from an identical input, our vNL enhances the features at a position of the atrous
convolution with the rate r = 7 (a large RF) by aggregating the information at other positions
of atrous convolution with the rate r = 1 (a small RF). The vNL facilitates the modeling
of the long-range dependencies of multi-scale feature maps. Figure 3d shows that the
vNL processes the feature maps produced from the branches r = 1 and 7 in the previous
layer. The vNL shares a similar framework to the non-local block comprising context
modeling, transformation, and fusion [30]. The global context features are modeled as
the dot-product (matrix multiplication) of the feature embeddings of two positions, in the
branches r = 1 and 7, respectively. The channel-wise dependencies of the global context
features, captured by a 1 × 1 convolution, are as shown at the bottom of Figure 3d. The
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global context features are aggregated at the features of each position in the branch r = 7
by a broadcast element-wise addition. We employed max-pooling to the feature maps of
the branches r = 1 and 7 after a linear transformation to reduce the computational cost
and extract shift-invariant features. The max-pooling could reduce the background effect
because the background feature values were smaller than the hand feature values. Figure 4
shows that the NLRF block effectively captures the neighboring dependency of the index
and middle fingers in the small RF and the inter-region dependency of the index finger
and thumb within the large RF.

3.3. Optimization

Optimization was performed by summing two loss functions. The first loss function
is the categorical cross-entropy loss function for multi-class classification:

LCE = − 1
NK

N

∑
i=1

K

∑
k=1

yik log ŷik, (4)

where N is the mini-batch size, K is the number of classes, yik denotes the ground-truth
label, and ŷik is the network output.

We also considered the sparsity-induced penalty term [31] in the loss function. This
penalty term forces the scaling factors to be sparse in the batch normalization layer to
improve the generalization ability. The complete loss for training RFaNet is as follows:

L = LCE + λ ∑
γ∈Γ
|γ|, (5)

where γ is the scaling factor, Γ is the set of scaling factors in the network, and λ regulates
the tradeoff between the classification accuracy and generalization ability.

4. Experimental Results
4.1. Datasets

We evaluated RFaNet on the following datasets. Each sample in these datasets consists
of a pair of RGB and depth images. Figure 5 shows sample depth images from these
datasets, where certain signs share similar hand shapes.

Figure 5. Samples from ASL, NTU, and OUHANDS datasets. The letter on the top of each panel
represents the gesture label of the dataset. Each column represents the gestures that share similar
hand shapes but different labels across three datasets. The letters j and z were excluded due to their
dynamic characteristics.

ASL Fingerspelling Dataset. The ASL fingerspelling dataset comprises 24 letter signs
of the American Sign Language alphabet acquired by the Microsoft Kinect sensor [3].
The dynamic letters j and z were excluded because RFaNet recognizes fingerspelling
from a single depth image, which cannot reveal the dynamic characteristics of the letters,
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as shown in Figure 5. These letter signs were performed by five subjects in front of
various backgrounds and from different viewpoints. Each letter sign has 500 samples for
each subject.

This dataset contains a few invalid samples in which the hand is missing or the letter
sign does not belong to the ground-truth label, which was described in Yang et al. [27].
Therefore, we manually removed these invalid samples from the training and testing data.

NTU Digit Dataset. The NTU digit dataset comprises 10 digit signs acquired by the
Microsoft Kinect sensor [32]. These digit signs were performed by 10 subjects, where each
subject performed 10 times for each digit sign.

OUHANDS Dataset. The OUHANDS dataset comprises 10 signs acquired by the Intel
RealSense F200 sensor [33]. This dataset includes hand and non-hand samples. Only the
hand samples were selected for the present experiment. The hand samples were performed
by 23 subjects, and 2150 and 1000 samples were adopted as the training and testing data,
respectively.

4.2. Hand Detection and Depth Map Enhancement

The hand is assumed as the closest object to the camera, which is reasonable in practice.
We detected the hand and enhanced its corresponding depth map to suppress the noise
as well as improve the representation of the hand gesture. The first step applied Otsu’s
method [34] to select a threshold from the depth image. Pixel values smaller than the
threshold were assumed as the background and set to zero. The second step applied the
connected-component labeling algorithm [35] to group the non-zero pixels as foreground
objects. In the NTU dataset, the objects closest to the camera were sometimes the knee
regions of subjects seated on a chair. We thus selected the top foreground object as the
hand because the hands are usually above the knees. The third step linearly scaled the
pixel values in the hand region to 0–1 to enhance the hand texture.

When cropping the hands, the unequal width–height ratios hindered the batch learn-
ing because the image samples in a mini-batch should have identical width–height ratios.
If the width was greater than the height, we resized the width to 64 pixels and maintained
a constant width–height ratio. The height was expanded to 64 pixels by zero-padding;
otherwise, we resized the height and expanded the width. Resizing and zero-padding did
not alter the shape of the hand gesture.

4.3. Training and Testing

RFaNet was trained with a 0.9 momentum over 10 epochs and a 10−4 weight decay.
The initial learning rate was 0.1, which was halved every 10 epochs. The proposed model
was trained with a mini-batch size of 64 on an NVIDIA GeForce GTX 1080 Ti GPU using
the PyTorch library.

The testing phase was implemented by leave-one-subject-out cross-validation (LOOCV).
One subject was adopted as the testing data while the remaining subjects were adopted
as the training data. The LOOCV was iterated until each subject was removed once. The
LOOCV revealed whether RFaNet could be generalized to an unseen subject and whether
RFaNet was robust to inter-subject variability, a common problem in practice.

We evaluated RFaNet in terms of classification accuracy. Furthermore, we computed
the precision, recall, and F-score in comparison with state-of-the-art methods. We computed
these measures as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)
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F = 2
Precision·Recall

Precision + Recall
, (9)

where TP, TN, FP, and FN represent the numbers of true positives, true negatives, false
positives, and false negatives, respectively. The F-score represents the harmonic mean of
precision and recall.

4.4. Comparison of Different RF Blocks

To assess the effectiveness of the proposed NLRF block, we inserted NLRF and other
blocks of receptive fields, namely ASPP and RFB, into the proposed RFaNet and compared
their performances. These blocks processed multi-scale inputs. Table 1 presents the
performance of RFaNet using different RF blocks. Note that only the NLRF block in RFaNet
was replaced with ASPP or RFB. The NLRF block achieved a significant performance boost
on both ASL and NTU datasets compared with ASPP and RFB.

Table 1. Performance comparison of RFaNet with different blocks of receptive fields, evaluated on
the ASL and NTU datasets. We simply replaced the NLRF block with ASPP and RFB to evaluate the
effects of these blocks. Numbers in parentheses indicate the standard deviation. #FLOPs: number
of floating-point operations; #Param: number of parameters in the model. The symbol + indicates
that the block was inserted into the proposed RFaNet. Bold values indicate the highest classification
accuracy among the three blocks.

Block #FLOPs (B) #Param (M) ASL (%) NTU (%)

+ASPP 1.67 4.73 94.48(1.91) 95.80(4.61)
+RFB 3.19 10.69 94.60(1.90) 95.50(4.55)

+NLRF 3.06 5.45 95.20(2.08) 96.50(3.63)

4.5. Effect of Different Receptive Fields in NLRF Block

To examine the effect of varying the RFs in the NLRF block of RFaNet, Table 2
presents the performance of various configurations of the NLRF block on both ASL and
NTU datasets. Each row indicates one configuration combining different branches of
atrous convolution. Configurations 2–4 applied the vNL block to building non-local (long-
range) connections across different branches of atrous convolution. The comparison of
Configurations 1 and 2 shows that the vNL block improved the classification accuracy
on both the ASL (+0.77%) and NTU (+0.10%) datasets. However, the computational cost
increased in terms of the number of FLOPs (+2.80 B) and parameters (+1.96 M) due to the
use of two vNL blocks. Notably, the vNL block was not applied to branches r = 1 and 3
because the RFs of these branches have a large overlap.

Table 2. Effects of various RFs in the NLRF block. The configuration r = 1 denotes the branch of
atrous convolution with rate 1, and 3 denotes that the branch was applied. The output feature
maps of the branches with symbols * and † were further processed by the vNL block for capturing
long-range dependencies. Configuration 3 adopted two vNL blocks to process branches r = 1 and
5 and branches r = 1 and 7, denoted by * and †, respectively. Numbers in parentheses indicate the
standard deviation. A graphical illustration of the NLRF configuration is depicted in Figure 3c. Bold
values indicate the highest classification accuracy among the four configurations.

Configuration #FLOPs
(B)

#Params
(M)

ASL
(%)

NTU
(%)r = 1 r = 3 r = 5 r = 7 vNL

1 3 3 3 3 1.67 4.73 94.48(1.91) 96.20(3.08)
2 3 *† 3 3 * 3 † 3 4.47 6.69 95.25(1.80) 96.30(3.43)
3 3 * 3 3 * 3 3.06 5.45 95.11(1.72) 96.25(3.70)
4 3 * 3 3 * 3 3.06 5.45 95.20(2.08) 97.00(3.09)

The comparison of configurations 2 and 3 shows that the classification accuracies
slightly decreased on the ASL (–0.14%) and NTU (−0.05%) datasets when removing one



Mathematics 2021, 9, 2815 13 of 22

vNL block. However, these classification accuracies were better than that of Configuration
1, which did not apply the vNL block. The comparison of Configurations 3 and 4 shows
that connecting the branches r = 1 and 7 led to better performance than connecting the
branches r = 1 and 5. Configuration 4 achieved comparable performance to Configuration
2 but saved computational cost. We selected configuration 4 as the NLRF configuration
due to the tradeoff between accuracy and computational cost.

4.6. Qualitative Analysis of Various Receptive Fields in NLRF Block

Next, we analyzed the effect of changing the RFs in the NLRF block of RFaNet. Visual
explanations were generated from the NLRF block using gradient-weighted class activation
mapping (Grad-CAM) [36]. Grad-CAM can produce localization maps, which highlighted
essential regions of the fingerspelling images corresponding to any decision of interest.
Therefore, the discriminative features learned by NLRF could be visualized by Grad-CAM.
Figure 6 shows the outcomes of each branch of atrous convolution from the NLRF block.
The atrous convolution with a large rate captured the long-range dependency, whereas that
with a small rate captured neighboring dependency. As the rate increased, the grid effect
was observed in the branch of atrous convolution with rates 5 and 7. The localization maps
highlighted the essential regions with checkerboard patterns, losing some neighboring
information because the regions between two pixels of the convolutional kernel were not
considered. Similar results from atrous convolutions with large rates were reported in [29].

Figure 6. Visualization of outcomes of each branch from the NLRF block. The left-most column
shows the depth image and its corresponding label. The middle two columns show the outcome of
each branch of atrous convolution. vNL(1,5) and vNL(1,7) represent the outcomes of the vNL block
determining the dependencies between the branches of atrous convolutions with rates 1 and 5 and
rates 1 and 7, respectively.

The rightmost column of Figure 6 shows that the vNL block integrated the atrous
convolution with small and large rates. However, the outcomes of the two vNL blocks
NL(1,5) and NL(1,7) were similar (the notation is explained in the caption of Figure 6),
which suggested that integrating the atrous convolutions with rates 1 and 5 and rates 1 and
7 gives similar contributions. Therefore, we maintained one of the vNL blocks and selected
NL(1,7), i.e., Configuration 4 in Table 2, because it provides slightly higher performance
and longer-range dependency than NL(1,5).

4.7. Effects of DFA and NLRF Blocks

To assess the effectiveness of the DFA and NLRF blocks, we performed comprehensive
ablation experiments on the ASL and NTU datasets. Table 3 shows the performances of
RFaNet in various configurations. Here, a VGG-13 was adopted as the backbone. The
comparison of rows 1 and 2 presents a performance boost on both datasets when adopting
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the DFA block, which demonstrates that selecting the representative finger regions from
the depth image facilitated accuracy improvement. The configuration of row 3 adopted a
VGG-9 as backbone instead of a VGG-13 because the insertion of the NLRF block increased
three convolutional layers and one vNL block. Therefore, the NLRF block was inserted
into the VGG-9 for a fair comparison. Inserting the NLRF block significantly improved the
performance on both datasets (cf. rows 1 and 3 of Table 3), demonstrating the effectiveness
of building short- and long-range dependencies. Moreover, employing both the DFA and
NLRF blocks significantly improved the accuracy for the ASL (+1.7%) and NTU (+7.0%)
datasets (cf. rows 1 and 4 of Table 3). For the computational cost, the number of parameters
of the model is less than that of the backbone (−5.14 M).

Table 3. Ablation study for various configurations of RFaNet on the ASL and NTU datasets in terms
of accuracy (%). Notably, the VGG-13 has four more convolutional layers than the VGG-9. These four
convolutional layers were inserted before the global average pooling layer. Numbers in parentheses
indicate the standard deviation. #FLOPs: number of floating-point operations; #Param: number
of parameters of a model. Bold values indicate the highest classification accuracy among the four
configurations.

Configuration #FLOPs
(B)

#Param
(M) ASL (%) NTU (%)Backbone DFA NLRF

1 VGG-13 1.43 10.59 93.50(2.30) 89.50(6.59)
2 VGG-13 3 1.59 10.63 94.26(1.94) 91.40(4.72)
3 VGG-9 3 2.91 5.41 94.87(2.33) 94.90(4.86)
4 VGG-9 3 3 3.06 5.45 95.20(2.08) 96.50(3.63)

4.8. Qualitative Analysis of DFA and NLRF Blocks

We conducted a qualitative analysis of the DFA and NLRF blocks in RFaNet. Figure 7
shows the effects of the DFA and NLRF blocks on the ASL dataset. As shown in the left two
columns, RFaNet without the DFA block highlighted only the hand contours. By contrast,
RFaNet with the DFA block highlighted the fingers in the depth image while ignoring the
wrist, which was irrelevant to the fingerspelling sign. Furthermore, using the DFA block
increased the softmax score of the ground-truth class, leading to correct classification.

Figure 7. Grad-CAM visualization of the effects of the DFA and NLRF blocks on the ASL dataset. The
left two columns show the feature maps of the first bottleneck layer of RFaNet to analyze the effect of
the DFA block. The right two columns show the feature maps of the last bottleneck layer of RFaNet
to analyze the effect of the NLRF block. w/o: without; P: softmax score of the ground-truth class.
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The right two columns of Figure 7 show that RFaNet without the NLRF block em-
phasized the background rather than the fingers, leading to a low softmax score of the
ground-truth class. When the NLRF block was inserted, RFaNet exploited the neighboring
and long-range dependencies to emphasize the key fingers related to the fingerspelling
sign. Therefore, fingerspelling signs in which the key fingers cover a large area (column 3)
and wide posture variation (column 4) were correctly classified.

4.9. Comparison with State-of-The-Art Methods

We compared the performances of RFaNet and state-of-the-art methods on the ASL
and NTU datasets. Table 4 lists the classification accuracy. For the ASL dataset, RFaNet
outperformed the state-of-the-art methods (95.30%). For the NTU dataset, RFaNet did not
outperform the state-of-the-art methods (98.00%). However, the state-of-the-art methods
did not simultaneously achieve the highest accuracy on both datasets, and RFaNet was
competitive against all compared methods. The high accuracies of RFaNet on both datasets
demonstrated the generalization ability of RFaNet for various fingerspelling tasks.

Table 4. Comparisons with state-of-the-art methods using LOOCV evaluation on the ASL and NTU
datasets. The “Method” column shows the classifiers used in state-of-the-art methods, where *
indicates that the feature descriptor and classifier are jointly trained in the method. Mod: modality;
A: accuracy; P: precision; R: recall; F: F-score. Bold values indicate the highest classification accuracy
among the state-of-the-art methods.

ASL NTU
Study Method Mod. A (%) P (%) R (%) F (%) A (%)

Pugeault et al. [3] RF D 49.00 – – – –
Kuznetsova et al. [37] RF D 57.00 – – – –

Wang et al. [38] SVM D 58.30 – – – 91.10
Dong et al. [39] RF RGBD 70.00 – – – –
Kane et al. [40] SVM D 71.58 – – – 90.75
Wang et al. [17] TM RGBD 75.80 – – – 99.60
Suau et al. [41] RF RGBD 76.10 – – – –
Feng et al. [42] SVM D 78.70 – – – 100

Warchoł et al. [43] HMM D 78.80 – – – –
Ameen et al. [44] CNN * RGBD 80.34 82.00 80.00 79.20 –

Nai et al. [45] RF D 81.10 – – – –
Maqueda et al. [46] SVM RGB 83.70 – – – 95.90

Zhang et al. [16] SVM D 83.80 – – – 94.50
Keskin et al. [47] SCF D 84.30 – – – –
Rady et al. [48] CNN * RGBD 84.67 – – – 99.85
Aly et al. [49] SVM D 88.70 – – – –

Rakowski et al. [50] ResNet * RGBD 90.60 91.80 90.60 90.30 –
Tao et al. [18] CNN * D 92.70 93.50 92.40 91.71 100

Yang et al. [27] DDaNet * RGBD 93.53 94.10 93.48 93.26 96.10
Ours RFaNet D 95.30 95.32 95.70 95.51 98.00

5. Extensive Experimental Results of RFaNet in Transfer Learning

The data annotation and collection of fingerspelling requires specialized domain
knowledge and expert interpreters. Thus, large-scale datasets are not commonly available
for fingerspelling recognition. Transferring the representation of hand gestures from a
large- to a small-scale dataset is always in demand. We evaluated the effectiveness of
RFaNet in transferring knowledge from the large-scale ASL dataset to the small-scale
NTU and OUHANDS datasets. ASL, NTU, and OUHANDS datasets are commonly used
fingerspelling datasets and comprise 60,000, 1000, and 3000 labeled samples, respectively.
These three datasets share similar hand gestures, even when they belong to different labels,
as shown in Figure 5.
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5.1. Implementation Details of Transfer Learning

Transfer learning for fingerspelling recognition was implemented by the following
process. First, RFaNet was pre-trained with the ASL dataset (source domain). Second, the
last fully connected layers and the corresponding softmax layer were replaced according
to the number of classes in the target dataset. Third, the initial two bottleneck layers had
their parameters frozen (shared with the source domain) when considering the OUHANDS
dataset as the target dataset. The first three bottleneck layers had their parameters frozen
when considering the NTU dataset as the target dataset. The number of frozen bottleneck
layers differed for the OUHANDS and NTU datasets because the OUHANDS dataset
contains more training data (3150) and is larger than the NTU dataset (1000). If the number
of parameters requiring fine-tuning and the target dataset were small, the model would
result in overfitting [51]. In the fourth step, the remaining model parameters were fine-
tuned on the target dataset.

5.2. Quantitative Results of Transfer Learning on NTU Dataset

Table 5 shows the experimental results of transfer learning when considering the
NTU dataset as the target dataset. For comparison, we implemented transfer learning on
DDaNet [27], a state-of-the-art method for the ASL dataset that adopts the color (RGB) and
depth modalities as inputs. The transfer learning protocol for DDaNet was identical to that
of RFaNet. Applying the transfer learning to RFaNet improved the accuracy compared
with RFaNet without transfer learning (+1.00%). Furthermore, the number of parameters
for RFaNet was less than that of DDaNet (−16.37 M), making mobile applications feasible.

Table 5. Results on the transfer learning where the NTU dataset is the target dataset. Numbers
in parentheses indicate the standard deviation of the LOOCV across 10 subjects. Mod.: modality;
#Param: number of parameters of the model; w/TF: with transfer learning; w/o TF: without transfer
learning. Bold values indicate the highest classification accuracy among the four methods.

Study Method Mod. #Param Accuracy (%)

Yang et al. [27] DDaNet w/TF RGBD 21.24 M 96.10 (4.12)
Yang et al. [27] DDaNet w/o TF RGBD 21.24 M 87.90 (4.75)

Ours RFaNet w/TF D 5.45 M 97.00 (3.09)
Ours RFaNet w/o TF D 5.45 M 98.00 (1.56)

5.3. Quantitative Results of Transfer Learning on OUHANDS Dataset

Table 6 shows the experimental results of transfer learning when considering the
OUHANDS dataset as the target dataset. After transfer learning, the accuracy and F-
score of DDaNet were lower than those of DDaNet without transfer learning (−0.80%
and −0.85%, respectively). However, after transfer learning, RFaNet showed improved
accuracy and F-score compared with RFaNet without transfer learning (+2.60% and +2.66%,
respectively). Furthermore, RFaNet outperformed the state-of-the-art methods in terms
of accuracy and F-score (92.90% and 93.00%, respectively), demonstrating the benefits of
learning the representations of hand gestures using depth modality from a large-scale
dataset (the ASL dataset).

5.4. Qualitative Results of Transfer Learning

For a qualitative analysis of transfer learning by RFaNet, we generated localization
maps using Grad-CAM [36] to highlight the essential regions corresponding to any deci-
sions of interest. This analysis visualized the representation of the hand gestures learned by
RFaNet during transfer learning. Figure 8 shows the qualitative analysis of transfer learn-
ing where NTU and OUHANDS datasets are the target datasets. The localization maps of
the NLRF layer revealed that RFaNet without transfer learning emphasized the regions
in the background, as shown in the number “6” of NTU and the letter “c” of OUHANDS.
Although the ring finger and thumb, respectively, were highlighted in letters “f” and “k”
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of OUHANDS, the other key fingers of these hand gestures were not emphasized, leading
to a low softmax score of the ground-truth class. After transferring the representation of
the hand gestures learned from the ASL dataset, the key fingers of the hand gestures were
highlighted, and the softmax score of the ground-truth class was increased, as shown in
the third row of Figure 8.

Table 6. Results of the transfer learning where OUHANDS is the target dataset. Numbers in
parentheses indicate the performance difference between networks with and without transfer learning.
Mod.: modality; #Param: number of parameters of the model; w/TF: with transfer learning; w/o TF:
without transfer learning. A: accuracy; F: F-score; HGR-Net: hand gesture recognition network; HOG:
histogram of oriented gradients; SVM: support vector machine. Bold values indicate the highest
classification accuracy among all methods.

Study Method Mod. #Param A F

He et al. [52] ResNet-50 RGB 23.60 M – 81.30
Huang et al. [53] DenseNet-121 RGB 7.04 M – 82.80

Howard et al. [54] MobileNet RGB 3.22 M – 86.50
Dadashzadeh et al. [55] HGR-Net RGB 0.499 M – 88.10

Matilainen et al. [33] HOG+SVM RGB – 83.25 –
Yang et al. [27] DDaNet w/TF RGBD 21.24 M 88.90 89.10

Yang et al. [27] DDaNet w/o
TF RGBD 21.24 M 88.10

(−0.80)
88.25

(−0.85)
Ours RFaNet w/TF D 5.45 M 90.30 90.34

Ours RFaNet w/o
TF D 5.45 M 92.90

(+2.60)
93.00

(+2.66)

Figure 8. Qualitative analysis of transfer learning on the NTU and OUHANDS datasets where “w/o”
and “w/” represent without and with, respectively. The NLRF layer was visualized by Grad-CAM.
Transfer learning was implemented by pre-training RFaNet with the ASL dataset and fine-tuning it
with the OUHANDS dataset. Because the amount of data in the NTU dataset is 1/3 of that of the
OUHANDS dataset, two and three samples were provided for the NTU and OUHANDS datasets,
respectively. P is the softmax score of the ground-truth class.

5.5. Network Visualization of Transfer Learning

In addition to the NLRF layer, we qualitatively visualized the output of each bottleneck
layer to demonstrate the effectiveness of RFaNet during transfer learning. Figure 9 shows
the outcomes from the initial three bottleneck layers for three examples. When RFaNet
learned the representation of the hand gestures from the ASL dataset, it could more
efficiently extract the low-level features in the small-scale target dataset than it could
without transfer learning. The key fingers were then accurately localized, leading to
correct classification. This result agreed with the empirical evidence showing that the
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initial bottleneck layers learned the low-level features that could be shared across different
tasks [56].

Figure 9. Visualization of the learned features when applying transfer learning to RFaNet, where S
and T represent the source and target dataset, respectively. Each row indicates the feature maps of
three bottlenecks of RFaNet. The asterisk indicates that RFaNet was trained using only the source
data and evaluated on the source data. The third and fifth rows indicate that RFaNet was pre-
trained with the source data, fine-tuned with the target data, and evaluated on the target data. This
study considered the ASL dataset as the source data due to the sufficiently large training data and
considered the OUHANDS and NTU datasets as the target data due to the relatively small amount of
training data. The icons in the prediction column were reproduced from [57].

5.6. Failure Modes

Figure 10 shows some failure modes of RFaNet on the ASL and NTU datasets. Our
model failed to capture the neighboring and inter-region dependencies of widely variable
hand postures. When the fingers extended outside the palm region, they were not correctly
highlighted in the localization maps, leading to incorrect classification. Dealing with large
hand-posture variations is left for future work.

Figure 10. Failure modes of RFaNet on the ASL and NTU datasets. The first and fourth rows
represent the labels corresponding to the images and feature maps, respectively. The second and
third rows represent the depth images and their Grad-CAM visualizations, respectively, according to
their target and predicted classes.
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6. Discussion
6.1. Effectiveness of the DFA and NLRF Blocks

The proposed DFA and NLRF blocks are inserted at the top and bottom of RFaNet,
respectively. The DFA block highlights the fingers in the depth image. The NLRF block
increases the size of the receptive fields and builds long-range connections across the
finger features, thus facilitating fingerspelling recognition. This result demonstrates that
building long-range connections across the branches of atrous convolutions with rates
r = 1 and r = 7 facilitates the network’s learning of discriminative features related to
fingerspelling. Furthermore, integrating the small and large receptive fields by the vNL
blocks improves fingerspelling recognition. The vNL block integrates the short-range and
long-range dependencies and exploits the relation between local and non-local interactions.
The NLRF block could effectively capture the fine fingerspelling details and important
features across the fingers. Furthermore, this integration allowed RFaNet to recognize
letter signs whose important fingers possess long-range dependency and hand shapes with
high inter-class similarity. The DFA and NLRF blocks highlight the finger regions and
explore the fingers’ dependencies, contributing to the performance boost of RFaNet.

6.2. Transfer Learning for Fingerspelling Recognition

The recognition accuracy of RFaNet on small-scale datasets (e.g., the NTU and
OUHANDS datasets) can be improved by transferring the representations of hand ges-
tures learned from large-scale datasets (e.g., the ASL dataset). The above experimental
results show that the proposed RFaNet learned better representations of the hand gestures
from a large-scale dataset than did DDaNet. As DDaNet learns the representation from
both color and depth modalities, it may learn to highlight the background information
revealed in the color modality corresponding to any decision of interest. This learning can
degrade the transfer learning because the low-level features relevant to the background
differ across datasets. Therefore, the initial bottleneck layers with frozen parameters may
not be shared across the source and target domains. However, RFaNet learns only from the
depth modality. As the DFA block of RFaNet facilitates the separation of hand gestures
from the background and highlights the fingers, the low-level features hardly involve the
background information. Therefore, the initial bottleneck layers pre-trained on the source
domain improved the classification accuracy in the target domain. This result demonstrates
that during transfer learning, RFaNet can boost fingerspelling recognition on small-scale
datasets without the effect of complex background information.

RFaNet efficiently learned the representations of hand gestures from a large-scale
dataset and facilitated the learning of a small-scale target dataset. The reasons are explained
here. First, as RFaNet processes only depth images, the hand gestures are not easily affected
by the complex background. Therefore, RFaNet can effectively transfer the representation
of the hand gesture learned from the ASL dataset to the small-scale NTU/OUHANDS
datasets, leading to improved recognition performance. Second, the DFA block in the
most initial layer emphasizes the fingers and palm regions, indicating that the learning of
hand-gesture representations is unaffected by gesture-irrelevant factors. Therefore, RFaNet
facilitated transfer learning when the training data of the target domain were insufficient.

6.3. Implementation in Actual Application

The implementation of the proposed fingerspelling recognition system in actual
experiments consists of two factors: hardware and software. The hardware factor considers
the depth camera and experimental environment. The training datasets were collected
by a Microsoft Kinect sensor (ASL and NTU) and a RealSense F200 sensor (OUHANDS).
Both depth cameras acquire depth images with a depth resolution of 1 mm and a spatial
resolution of 640 × 480 pixels. The distance from the subject to the depth camera is
in a range of 230–800 mm in an indoor environment. The software factor considers
hand detection and depth map enhancement. We detected the hand and enhanced its
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corresponding depth map to suppress the noise as well as improve the representation of
the hand gesture.

When using a new depth camera, the depth image should possess a depth resolution
of 1 mm and a spatial resolution of 640 × 480 pixels. Furthermore, the subject is kept
at a distance in a range of 230–800 mm from the depth sensor in order to obtain a hand
image with quality similar to that of the training datasets. If the hardware meets these
requirements in an indoor environment, the proposed fingerspelling recognition system
could be implemented using a new depth camera in actual experiments.

7. Conclusions

We proposed and evaluated RFaNet, a network that highlights the finger regions
and builds inter-finger relations for fingerspelling recognition. RFaNet aggregates the
low-level features in hand depth and non-forearm images to focus on the fingers. It fuses
the high-level multi-scale features of various RFs to model the neighboring and inter-
region dependencies between fingers, which makes the sign representation invariant to
the viewpoint and thus reduces the intra-class variability. In experimental evaluations on
the ASL dataset, RFaNet outperformed current state-of-the-art methods. When applied
to a small-scale fingerspelling dataset with insufficiently labeled data, RFaNet leverages
the depth representations learned from a large-scale dataset to boost the fingerspelling
recognition on the small-scale dataset. Using only depth images in RFaNet facilitated
transfer learning on limited training datasets without requiring expensive fingerspelling
annotations. This technique can improve communication between deaf and hearing people.
Large hand posture variations may affect neighboring and inter-region dependencies.
Therefore, the question of how to build inter-finger relations under large hand posture
variations is left for future work.
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