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Abstract: GPS sensors are widely used to know a vehicle’s location and to track its route. Although
GPS sensor technology is advancing, they present systematic failures depending on the environmental
conditions to which they are subjected. To tackle this problem, we propose an intelligent system
based on fuzzy logic, which takes the information from the sensors and correct the vehicle’s absolute
position according to its latitude and longitude. This correction is performed by two fuzzy systems,
one to correct the latitude and the other to correct the longitude, which are trained using the MATLAB
ANFIS tool. The positioning correction system is trained and tested with two different datasets. One
of them collected with a Pmod GPS sensor and the other a public dataset, which was taken from
routes in Brazil. To compare our proposal, an unscented Kalman filter (UKF) was implemented. The
main finding is that the proposed fuzzy systems achieve a performance of 69.2% higher than the
UKF. Furthermore, fuzzy systems are suitable to implement in an embedded system such as the
Raspberry Pi 4. Another finding is that the logical operations facilitate the creation of non-linear
functions because of the ‘if else’ structure. Finally, the existence justification of each fuzzy system
section is easy to understand.

Keywords: localization; fuzzy systems; unscented Kalman filter; adaptive neuro-fuzzy inference
system (ANFIS); GPS; autonomous navigation

1. Introduction

The absolute location of a ground vehicle is the starting point for any autonomous
movement and it is of vital importance to reduce the error in the accuracy of GPS receivers
to ensure the safety of passengers. The main objective of this work is to obtain an intelligent
system capable of improving the accuracy in the estimation of the absolute position of a
land vehicle without relying on high-cost sensors or hardware with high computational
power, as a first step to develop a low-cost autonomous electric navigation car.

On the other hand, the reduction of the triangulation error to calculate the location
of the GPS receiver is the most outstanding contribution of this work, since the average
accuracy of the estimated location is increased from 3 m to 30 cm. However, it also
contributes from the electronic point of view, since simple logical operations, addition,
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and division, are used to implement the fuzzy system in a small embedded system such
as the Raspberry Pi 3 in a simple way. Compared to Kalman filters, it is not necessary to
know the nature of the noise. Moreover, because the fuzzy system has a structure that
converts numerical values to logical rules and vice versa, the knowledge base can be easily
understood, which is in contrast to neural networks [1].

The proposal of the present work consists of implementing a pair of fuzzy systems that
have the direct responsibility of correcting the latitude and longitude coordinate coming
from the GPS sensor, avoiding complex mathematical operations, and obtaining a complete
location system embedded in an electric car. Contrasting with what is found in the state
of the art where it is more common to find fuzzy logic as a tool of artificial intelligence
complementary to more classical techniques in the subject of location and tracking of land
vehicles such as the Kalman filter. For example, in [2], the unscented Kalman filter (UKF)
is combined with the unscented H-infinity (UH) filter in order to reduce the accuracy
error when tracking the position of a ground vehicle as it travels along a defined route.
This system uses fuzzy logic to automatically weight whether the UKF or the UH will act
at a given instant along that route, presenting an error reduction of approximately 5.6%
in the estimation, with respect to that of the pure UKF, improving the accuracy of the
GPS receiver.

In [3], the design of a fuzzy system that adaptively modifies the extended Kalman
filter (EKF) noisy covariances by fusing data from GPS, IMU, an odometer (at each wheel)
and the mathematical model of the vehicle is shown. In this work, an improvement (on
average) in the accuracy of the absolute position of the vehicle of about 49% is shown,
making the response of the proposed algorithm superior to that of the original Kalman
filter. Similarly, in [4] there is a four-wheeled robot where the EKF is used to fuse data from
a GPS, IMU, odometers on the wheels, and additionally a camera on the front of the robot; a
fuzzy system is designed to modify the noisy covariances of the EKF. The main objective of
this proposal is to strengthen the accuracy in the estimation of the trajectory to be followed
by the robot, achieving an average accuracy improvement of 80.6% with respect to the
EKF correction. On the other hand, [5] seeks to improve the movement of a two-wheeled
robot in environments with many obstacles. This is done by using measurements from a
GPS sensor and an adaptive neuro-fuzzy inference system (ANFIS) as control techniques;
obtaining a system capable of evading obstacles and estimating the best route for the robot
to travel.

In parallel, other artificial intelligence techniques are also currently being applied
to improve the response of the Kalman filter. As in [6] where they propose the use of
a recurrent neural network (RNN) to adaptively modify the input values of a network
real-time kinematic (NRTK) that fuses data from a GPS and an IMU and the kinematic
model of the car in real time. This is done in order to improve the tracking of the trajectory
of a car with an embedded sensor system, reducing the location accuracy error to 67.71% on
average. In [7], the authors use the variation of the Kalman filter, the cubature Kalman filter
(CKF), to adaptively modify the noisy covariances creating the strong tracking cubature
Kalman filter. The algorithm proposed in this work manages to improve the position
estimation of a vehicle with GPS and IMU sensors coupled, obtaining an average error
reduction of 56% with respect to the original version of the CFK when traveling along a
route. On the other hand, in [8] a classification algorithm is developed that combines a
convolutional neural network (CNN) mathematical model of different types of vehicles
and data coming from a GPS sensor to analyze the trajectory travelled by the sensor to
determine what type of vehicle is making the journey. The authors report a classification
accuracy of over 74%.

Again in [9], the authors present a fuzzy logic system capable of determining the
position of a moving robot in a shaded indoor environment (such as a tunnel or a covered
car park). Using GPS data and analyzing the chromaticity and frequency-component ratio
of the LED lights installed in the ceiling and compared to a navigation potential system.
The fuzzy system achieves, in the best case, an advantage of up to 89%. Similarly, in [10], a
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combination of fuzzy logic and optimal control theory is proposed to control the motors of
a racing car and achieve its displacement along a specific route without a driver. This is
done by taking advantage of the data provided by a GPS sensor, calculating the vehicle’s
yaw angle and using the mathematical model of the car. In this work, the authors achieve
a 30% improvement in the accuracy of vehicle trajectory tracking. In [11], a GPS sensor
is used as a reference and an inertial measurement unit (IMU) delivers data to an inertial
navigation system (INS) to reconstruct a trajectory. The INS by itself has a significant error
and to reduce it an ANFIS is used which has as inputs the IMU data and the error between
the INS and the GPS and as output delivers a corrected estimate of the INS. The authors
manage to reduce the INS error by up to 9.83%.

In [12], a GPS receiver delivers data to an extended Kalman filter (EKF) to track the
position of a car as it travels along a defined route. The EKF alone is not good at estimating
the position of the vehicle when the GPS receives poor signals from the satellites. The
authors propose a fuzzy system that adaptively adjusts the internal parameters of the
Kalman filter, such as the noisy covariances, to improve its estimates when the GPS has a
weak signal. The authors manage to improve vehicle tracking in adverse conditions for the
GPS sensor by up to 70%. In [13], by exploiting the fusion of data from an INS and a GNSS
sensor attached to a vehicle, the authors present a new fuzzy strong-tracking curbature
Kalman filter (FSTCKF) algorithm to improve the CKF response using a fuzzy logic system
and reduce the vehicle trajectory estimation error by 72.3%.

On the other hand, in [14], an algorithm is proposed that joins model free adaptive
control (MFAC) and particle swarm optimization (PSO) techniques to improve the position
tracking of unmanned ground vehicles. For this, they have a GPS, a sensor to measure
the angle of rotation of the wheel (which are fused by the mathematical model of the car)
and an INS. The authors propose a control algorithm that estimates the heading angle (or
direction that the vehicle should have in an instant of time) obtaining a high precision
in both the estimation of the angle and the tracking of the vehicle’s path. In contrast,
in [15], the authors use ultra-wideband (UWB) technology to improve the localization and
tracking accuracy of unmanned ground vehicles (UGV). Three UWB base stations are used
as a cluster in a 2D space for localization. Here, by collecting data from multiple tests,
they developed an algorithm composed of PSO techniques and genetic algorithms (GA)
to implement multiple groups of UWB base stations. The authors report UGV position
estimation accuracies between 20 cm and 60 cm. Finally, in [16], they have a GPS sensor and
an IMU as input to an extended Kalman filter with an adaptation mechanism to remove
noise coming from the IMU and guarantee a better INS response. The authors also develop
a deep learning framework with multiple short to long term memory modules (multi-
LSTM) to predict the vehicle position increment based on the Gaussian mixture model
(GMM) and the Kullback–Leibler (KL) distance. They then combine both algorithms to
optimize the estimation of a vehicle’s position achieving an error reduction of up to 93.9%.

In Section 2, the experiments performed are presented; in Section 3, it is shown how
the absolute position correction fuzzy system was designed; in Section 4, the design to
implement the UKF filter to compare its response with the proposed fuzzy system is
exposed; in Section 5, the results are shown with their discussion and finally in Section 6,
the conclusions are presented.

2. Materials and Methods

For the experimental development of this work we have a data acquisition system
(see Figure 1), which contains the Pmod GPS sensor [17] that receives signals from the GPS
satellite system of the United States of America. There is also a Sense HAT [18] nine-axis
inertial measurement unit to measure the vehicle’s steering angle for use by the Kalman
filter. The data from these sensors is acquired and recorded by a Raspberry Pi 3 using the
Python language. The module is coupled to an electric trolley with which several routes
were travelled (see Figure 2).
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The collected data were processed by the MATLAB tool anfisedit (adaptive neuro-
fuzzy inference system) for training and testing the proposed fuzzy algorithms. In the same
way, the behavior of the fuzzy systems in the presence of unknown data was evaluated with
the help of the evalfis toolbox. The design and implementation process of the proposed
fuzzy systems is described below.

2.1. The Data Acquisition System

In Figure 1, we show the modular data acquisition system implemented in this work.
The system consists of a GPS Pmod sensor that is used to obtain latitude and longitude
coordinates of the current position and a shield Sense HAT for Raspberry to measure the
current inclination on the three Pich, Roll, and Yaw axes through its accelerometer. All the
register data is stored in CSV format files for post processing on a PC.

To test our system, we traced four routes, which are shown in Figure 2. These routes
were traveled four times in order to generate enough data for the training and validation
of the fuzzy system.

The red markers in Figure 2 correspond to initial and final points from which the lines
that circumscribe the reference are constructed and the blue lines represent the path of the
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data acquisition module along each route. Parameters such as distance traveled, duration,
and velocity are presented in Table 1.

Table 1. Relevant data of the acquisition stage.

Route Distance (m) Time (s) Velocity (m/s)

(a) 1 282.45736 1020 0.276918

(b) 2 282.9798 840 0.336880

(c) 3 151.8607 480 0.316376

(d) 4 104.3988 420 0.248568

From the latitude and longitude data provided by the GPS sensor, we can estimate the
distance traveled by means of the Haversines equation [19] as

d = 2 · r · sin−1(M) (1)

with r = 6371 km (radius or the earth) and M =

√
sin2

(
ϕ2−ϕ1

2

)
+ cosϕ1 · cosϕ2 · sin2

(
λ2−λ1

2

)
.

Here, ϕ are the latitudes and λ the longitudes obtained from the sensors.

2.2. Approximation Data

On the approximation data, the fuzzy system performs a correction from the GPS data
(latitude and longitude). To do this, there is a training stage where, the system indicates the
size, proportion, form, or nature of the mentioned correction. In this stage, reference points
were established on each route (see red markers on each route of Figure 2) and straight
lines were drawn between point and point calculating their equations (see Figure 3).
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In Figure 3, a green line represents the reference of each route and the black dashed
line represents the data captured by the GPS sensor. Equation (1) is used to calculate the
distance between the coordinates given by the GPS sensor and the midpoints of the straight
lines that make up the routes (Equations (2) and (3)).

ϕm =
ϕ1 +ϕ2

2
(2)
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λm =
λ1 + λ2

2
(3)

with ϕ and λ for latitude and longitude respectively.
In Figure 4, it can be observed how the system performs a correction on route 1 from

a coordinate point (black point) given by the GPS sensor. The distance of the sensor data
to each midpoint of the lines that make up the path of the route is calculated. From the
calculated distances (blue lines in Figure 4), we select the smallest one to determine the
line of reference to which the sensor data should be corrected or approximated.
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Once the minimum distance has been calculated, the data who belongs to the line of
reference is evaluated. From this evaluation, the approximation of the GPS sensor data is
achieved as it is shown in Figure 5.

Mathematics 2021, 9, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 5. Data correction, (a) route 1, (b) route 2, (c) route 3, (d) route 4. 

The red dots in Figure 5, represent the approximation of the sensor data to the refer-
ence and the black dashed line represents the GPS sensor data and the green straight lines 
represent the reference of each route. Once the corrected coordinate points are obtained, 
they were stored in matrices for training and validation of the fuzzy systems, which will 
automatically correct new incoming sensor data. It should be noted that this post-pro-
cessing stage of the data was done offline using a desktop computer with the characteris-
tics specified Section 2. 

This strategy for establishing the fuzzy sets resembles the way a human being would 
intuitively calculate the distance of his current position with respect to a specific street; 
the issue of establishing the linguistic variables and their intuitive nature is discussed 
more extensively in [20] and [21]. 

Before using these corrected coordinates (red dots in Figure 5) in the training stage, 
it is necessary to apply a data cleaning technique such as removing the outliers. The crite-
rion used was the distance between the reference and the corrected latitude and longitude 
data: when the distance is greater than 3 m then the point is considered an outlier and is 
removed from the data set to be used for training. It is important to note that the raw data 
coming directly from the GPS sensor was used in the testing stage. 

2.3. Fuzzy System Design 
In this work, we use the ANFIS toolbox [22], which allows us to generate a MISO 

(multiple input, single output) fuzzy inference system based on the Takagi Sugeno 
method [23]. With this toolbox, the fuzzy system can simultaneously perform a correction 
from two inputs, latitude and longitude. In this regard, we generated two fuzzy systems 
one for latitude correction and the other one for longitude correction. Both fuzzy systems 
receive the same information from the sensor. The data used for training and validation 
is shown in Table 2. This is the data collected with the sensor for each route. This is illus-
trated in Figure 6, where 6a and 6b correspond to the training setup of the two fuzzy 
systems. Figure 6c represents the system on the testing stage. 

Figure 5. Data correction, (a) route 1, (b) route 2, (c) route 3, (d) route 4.

The red dots in Figure 5, represent the approximation of the sensor data to the ref-
erence and the black dashed line represents the GPS sensor data and the green straight
lines represent the reference of each route. Once the corrected coordinate points are ob-
tained, they were stored in matrices for training and validation of the fuzzy systems,
which will automatically correct new incoming sensor data. It should be noted that this



Mathematics 2021, 9, 2818 7 of 18

post-processing stage of the data was done offline using a desktop computer with the
characteristics specified Section 2.

This strategy for establishing the fuzzy sets resembles the way a human being would
intuitively calculate the distance of his current position with respect to a specific street; the
issue of establishing the linguistic variables and their intuitive nature is discussed more
extensively in [20,21].

Before using these corrected coordinates (red dots in Figure 5) in the training stage, it
is necessary to apply a data cleaning technique such as removing the outliers. The criterion
used was the distance between the reference and the corrected latitude and longitude data:
when the distance is greater than 3 m then the point is considered an outlier and is removed
from the data set to be used for training. It is important to note that the raw data coming
directly from the GPS sensor was used in the testing stage.

2.3. Fuzzy System Design

In this work, we use the ANFIS toolbox [22], which allows us to generate a MISO (mul-
tiple input, single output) fuzzy inference system based on the Takagi Sugeno method [23].
With this toolbox, the fuzzy system can simultaneously perform a correction from two
inputs, latitude and longitude. In this regard, we generated two fuzzy systems one for
latitude correction and the other one for longitude correction. Both fuzzy systems receive
the same information from the sensor. The data used for training and validation is shown
in Table 2. This is the data collected with the sensor for each route. This is illustrated
in Figure 6, where 6a and 6b correspond to the training setup of the two fuzzy systems.
Figure 6c represents the system on the testing stage.

Table 2. Datasets for the fuzzy systems.

Route Training Data Validation Data Total

1 751 250 1001

2 645 215 860

3 356 118 474

4 412 102 514
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From the training we found that the fuzzy systems for latitude and longitude cor-
rection were designed with 5 and 3 gaussian membership functions of type two [24],
respectively, it is 25 and 9 fuzzy rules for each. For both systems, linear type membership
functions were defined at the output. The results of the training stage for both fuzzy
systems are shown in Table 3.

Table 3. ANIFS training output.

Fuzzy System MF Input Lat MF Input Lon MF Output Fuzzy Rules RMSE (Train)

Latitude 5 gaussian type 2 5 gaussian type 2 linear 25 4.29 × 10−7

Longitude 3 gaussian type 2 3 gaussian type 2 linear 9 1.1 × 10−4

The selection of the membership functions was carried out by means of an optimiza-
tion process that consisted of varying both, the number of functions for each input and their
type (triangular, trapezoidal, Gaussian, and Gaussian type two). From this, we observed
the effect at the output for the different configurations and that with the best performance
on each fuzzy system is presented in Table 3.

To choose an adequate number on the membership functions that guarantees best
compromise between a low error and a minimum number of membership functions, a
tuning was performed on each fuzzy system. Multiple tests were launched varying the
number of membership functions for each entry in both fuzzy systems, results are presented
in Table 3.

After training, MATLAB’s evalfis tool [25] was used to evaluate them with the test
data. From the evaluation of both fuzzy systems, two vectors were obtained with the
corrected latitude and longitude outputs.

Figure 7 graphically shows the output of each system for the testing data. Figure 7a,b
shows the operating range of the fuzzy system correcting latitude and longitude respec-
tively; having as input the GPS sensor data. To compare our results, we implemented the
unscented Kalman filter (UKF) and results are presented below.
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2.4. Kinematic Model of Car and Tuning of UKF

The UKF takes the data from the inertial measurement unit (IMU) that measures the
rotation angle of the front vehicle wheels and the GPS sensor, which estimates the vehicle
position located in the center of the axis of the rear wheels as shown in Figure 8.
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The land vehicle model is linearized as follows:

.
ϕ = ϕ + s ∗ dt ∗ cos(φ) (4)

.
λ = λ + s ∗ dt ∗ sin(φ) (5)

.
φ = φ + dtφ (6)

.
s = s (7)

where s is the vehicle speed (measured by the GPS); φ the steering angle; ϕ and λ corre-
spond to latitude and longitude respectively (also given by the GPS). Analyzing the vehicle
model in the state space we have the equation

.
X = F ∗ X + B ∗ u (8)

.
ϕ
.

λ
.
∅
.
s

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ∗


ϕ
λ
∅
s

+


sin(φ)dt 0
cos(φ)dt 0

0 dt
1 0

 ∗
[

s
∅

]
(9)

where X is the vector states used by the UKF and u the vector of inputs from the sensors
and those used by the UKF.

Table 4 shows a synthesis of the optimization process of the UKF to find the values of
the noisy covariances that would help to improve the filter response without distorting
its output. This process consisted of varying the values of the main diagonals of the Q
(process noisy covariance) and R (measurement noisy covariance) matrices of the UKF
filter [26] and observing its effect at the filter’s. Here, 10 tests were performed and the one
with the best results is shown in row 6 of Table 4.

Equations (10) and (11), show the values of the R and Q covariance matrices for tuning
the UKF, highlighting, those that delivered the best correction response of the sensor data.

Q =


0.001 0 0 0

0 0.001 0 0
0 0 rad(350) 0
0 0 0 0.001


3

(10)
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R =

[
0.025 0

0 −0.025

]3

(11)

Table 4. Tuning of the covariances Q and R of UKF.

# Q R

1 ([0.1, 0.1, rad(350), 0.1])× 102 ([0.1,−0.1])̂2
2 ([0.1, 0.1, rad(350), 0.1])× 103 ([0.1,−0.1])× 103

3 ([0.1, 0.1, rad(350), 0.1])× 103 ([0.05,−0.05])× 103

4 ([0.001, 0.001, rad(350), 0.001])× 103 ([0.025,−0.025])× 103

5 ([0.0001, 0.0001, rad(350), 0.0001])× 103 ([0.025,−0.025])× 103

6 ([0.001, 0.001, rad(350), 0.001])×103 ([0.025,−0.025])×103

7 ([0.001, 0.001, rad(350), 0.001])× 103 ([0.025,−0.025])× 103

8 ([0.001, 0.001, rad(350), 0.001]) ×104 ([0.025,−0.025]) ×104

9 ([0.001, 0.001, rad(350), 0.001]) ×105 ([0.025,−0.025]) ×105

10 ([0.001, 0.001, rad(350), 0.001])× 106 ([0.025,−0.025])× 106

The final response of the UKF is obtained and shown in Figure 9, where the correction
made by the Kalman filter is observed. The difference of this correction with respect to the
reference is also observed. For this, the same data of the fuzzy system was used (Table 2).
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Figure 9 shows the reference in green, the dashed black line represents the GPS sensor
data and the purple line corresponds to the data correction produced by the Kalman filter.

Additionally, the UKF has a scaling parameter kappa (κ) whose value is 3-L (where
L is the length of the variable to be analyzed, i.e., 2); Beta (β) that incorporates a priori
knowledge of the variable to analyze, in this case it is assumed that the variables have a
gaussian distribution being then, β = 2. Finally, alpha (α) is a parameter that indicates the
propagation through the mean of the variable to be analyzed and it varies between 1 and
1 × 10−4, in our case we set this value to 0.01. The selection of these parameters is based on
the recommendations made in [27] and a tuning process to find the most optimal value.
The following section shows, graphically and numerically, the results obtained in both the
fuzzy system and those of the UKF, also a comparison of the two systems is presented.
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3. Results
3.1. Analysis of Results with Our Own Dataset

To facilitate the description of results, we abbreviate fuzzy position correction as FPC.
The comparison between the UKF response (purple) and our method (blue) is graphically
depicted for each route in Figure 10. In such figure both results are also contrasted with the
reference (green). These results are further quantified numerically by means of the RMSE
and presented in Table 5. From the RMSE results observed in Table 5, it is evident that the
proposed fuzzy system improves the absolute vehicle location accuracy by 26% for route 1,
69.2% for route 2, 40% for route 3, and 7% for route 4, compared to the UKF response.
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Table 5. RMSE results of the UKF and fuzzy system (FPC).

Route UKF: RMSE (m) Fuzzy (FPC): RMSE (m)

1 1.989 × 10−4 1.490 × 10−4

2 7.539 × 10−4 2.289 × 10−4

3 4.865 × 10−4 2.926 × 10−4

4 2.698 × 10−4 2.510 × 10−4

Figure 11 shows the error (in meters) between the UKF output and the reference
(purple), as well as the output of the fuzzy systems and the reference (blue graph). This
graph shows that, for some sections of each trajectory, the error of the fuzzy systems is
smaller than that observed in the UKF, in others the opposite is true or they are similar. This
shows that the designed fuzzy systems have a consistent response and offer a competitive
alternative to the UKF.

It is important to mention that even if the response is similar in most of the cases,
the UKF performs a fusion of data from four inputs (angle of rotation of the front wheels,
vehicle speed, latitude, and longitude) to be able to deliver an estimate of the position of
the vehicle; while the FPC only needs two inputs, those of the GPS (latitude, longitude), to
deliver a better estimate.
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Also, the UKF filter needs parameters tuning to obtain the optimal R and Q covariance
values for a more accurate estimate, in addition to the behavior of the random variables
processed by this algorithm setting the values of κ, β, and α. In contrast, the proposed FPC
system is not dependent on any parameters since it only needs the latitude and longitude
data given by the GPS to operate. Table 6 reports the statistical tests of media and variance
that serve as a comparison of the performance of the UKF and the proposed fuzzy FPC
system. For this calculation, the equation 1 of the haversines is used to find the distance of
each point of the output of the fuzzy system FPC and the UKF respect to the reference in
each route.

Table 6. Statistical performance tests (mean and variance).

UKF

Route Mean (m) Variance
(
m2 )

1 1.366 × 10−2 4.764 × 10−5

2 5.744 × 10−2 1.297 × 10−3

3 3.755 × 10−2 1.039 × 10−4

4 1.736 × 10−2 1.233 × 10−4

FPC (Fuzzy system)

Route Mean (m) Variance
(
m2 )

1 1.300 × 10−2 4.983 × 10−5

2 5.829 × 10−2 1.315 × 10−3

3 3.766 × 10−2 9.634 × 10−5

4 1.852 × 10−2 1.114 × 10−4

The variance represents the degree of dispersion of the data of a variable with respect
to its mean (in the case of a Gaussian distribution). From Table 6, it is observed that in the
variance calculation test the error variable of the FPC fuzzy system is slightly greater for
the first two routes respect to the variance of the UKF. From this result, it can be inferred
that—as expected—the UKF has more advantage to correct certain data than the fuzzy
system and vice versa.
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3.2. Analysis of Results with Public Dataset

In order to validate the robustness of our method, the public GPS trajectories data
set [28,29] containing about 163 routes or trajectories travelled by car on the streets of
Brazil and recorded with the Android application “Go! Track” was used. This database
is perfectly adapted to the design needs of the proposed fuzzy systems and gives the
possibility to test its performance with data that were not taken by the acquisition system
shown in Section 2.1 and under poorly controlled conditions.

For the test, two random paths were chosen from the dataset and one of them was
used to retrain the designed fuzzy systems (see Figure 12). This retraining is necessary
due to the fact that the coefficients of the Gaussian functions must fit the new data and the
fuzzy systems can perform their task.
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Subsequently, the second route (see Figure 13) was used to validate the performance
of the fuzzy systems under these new conditions. This data was not used in the training.
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Finally, in Figure 14 the response of the proposed fuzzy systems to the new data can be
seen. The green graph represents the reference of the route, the black dashed line contains
the input data coming from the sensor (in this case, the data collected by the Go!Track app),
the red dots are the data calculated with the strategy seen in Section 2.2 and finally the blue
dots contain the output of the fuzzy systems.
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Figure 14. Route 2: Fuzzy systems output.

The purpose of the fuzzy systems is to get the data represented by the dashed black
line as close as possible to the reference (green plot), in other words, the closer the blue are to
the red dots, the better their performance will be. The red boxes in Figure 14 highlight two
segments of the route where the correction made by the fuzzy systems is most noticeable.

Figure 15 shows the error (in meters), between the sensor measurements and the
reference (green graph); as well as the error between the output of the fuzzy systems and
the reference (in red). From this image, it can be seen that—for most of the data—there is a
reduction of the error when the proposed fuzzy systems are in action.

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 15. Error: reference vs. sensor (green) and reference vs. fuzzy systems response (red). 

Table 7 shows how the RMSE of the fuzzy system outputs is lower than the error of 
the sensors compared to the reference. 

Table 7. RMSE reference vs. sensor and fuzzy system (FPC) 

RMSE sensor vs. Ref (m) RMSE: Fuzzy (FPC) vs. Ref (m) .  .  

4. Discussion 
According to the results, the Kalman filter manages to reduce errors with decent per-

formance but needs—as input—data to the covariance matrix that implicitly contains in-
formation on noise parameters. On the other hand, the fuzzy system managed to reduce 
the error in a better way without knowing the type of noise of the system because it was 
trained in the data region, making it easier and cheaper to implement with respect to 
works found in the state of the art. The main disadvantage is that, in order to better exploit 
the performance of the systems, retraining needs to be deployed in order to adjust the 
parameters of the membership functions when they are tested in geographical areas that 
are far away from the original data. The main limitation of the proposed fuzzy systems is 
that: if the error in the GPS measurements is too large, the correction of the GPS measure-
ments will no longer be as effective. 

An own data set was collected to take advantage of the data acquisition system (im-
plemented and described in Section 2.1) since the characteristics of the sensors are known, 
such as the sampling period and the precision of each one, facilitating the post-processing 
calculations and the use of the information in different applications. Similarly, as the cen-
tral limit theorem states, the more data that can be collected on a phenomenon, the more 
the distribution function that describes it will approximate the normal function and most 
of the data will be clustered around the mean. As shown in Table 8, the RMSE of both data 
sets is similar, being lower for the eigendata. Comparing these values with the information 
in Table 6, it can be said that they are around the mean of the latitude and longitude var-
iables. 

Table 8. RMSE: reference vs. output fuzzy system (FPC) 

Dataset RMSE: Fuzzy (FPC) vs. Ref (m) 
Own 2.510x10  

Brazil [28,29] 5.250x10  

Figure 15. Error: reference vs. sensor (green) and reference vs. fuzzy systems response (red).

Table 7 shows how the RMSE of the fuzzy system outputs is lower than the error of
the sensors compared to the reference.
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Table 7. RMSE reference vs. sensor and fuzzy system (FPC).

RMSE Sensor vs. Ref (m) RMSE: Fuzzy (FPC) vs. Ref (m)

5.51 × 10−4 5.250 × 10−4

4. Discussion

According to the results, the Kalman filter manages to reduce errors with decent
performance but needs—as input—data to the covariance matrix that implicitly contains
information on noise parameters. On the other hand, the fuzzy system managed to reduce
the error in a better way without knowing the type of noise of the system because it was
trained in the data region, making it easier and cheaper to implement with respect to
works found in the state of the art. The main disadvantage is that, in order to better exploit
the performance of the systems, retraining needs to be deployed in order to adjust the
parameters of the membership functions when they are tested in geographical areas that are
far away from the original data. The main limitation of the proposed fuzzy systems is that:
if the error in the GPS measurements is too large, the correction of the GPS measurements
will no longer be as effective.

An own data set was collected to take advantage of the data acquisition system
(implemented and described in Section 2.1) since the characteristics of the sensors are
known, such as the sampling period and the precision of each one, facilitating the post-
processing calculations and the use of the information in different applications. Similarly,
as the central limit theorem states, the more data that can be collected on a phenomenon,
the more the distribution function that describes it will approximate the normal function
and most of the data will be clustered around the mean. As shown in Table 8, the RMSE
of both data sets is similar, being lower for the eigendata. Comparing these values with
the information in Table 6, it can be said that they are around the mean of the latitude and
longitude variables.

Table 8. RMSE: reference vs. output fuzzy system (FPC).

Dataset RMSE: Fuzzy (FPC) vs. Ref (m)

Own 2.510 × 10−4

Brazil [28,29] 5.250 × 10−4

In Table 9, a numerical comparison between the accuracy (concerning the Kalman
filter response) of the developed algorithm (FPC) and the reported in references [2,3,26] is
presented.

Table 9. Maximum accuracy comparison over Kalman filter.

Algorithm Maximum Accuracy over Kalman Filter (%)

FPC 69.2

AFUKHF [2] 56.14

FI-AKF [3] 58.48

Cons.T2FKF [26] 67.53

As shown in Table 9, the proposed algorithm has a maximum accuracy, concerning the
Kalman Filter, higher than that reported in the papers compared. Although, this accuracy
is reduced depending on the route being evaluated (as mentioned above).

5. Conclusions

The proposed FPC fuzzy system delivers competitive GPS data correction with the
UKF response which is less dependent on tuning parameters, making it as easy (in terms
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of processing cost) to use and implement on mobile platforms. The proposed fuzzy system
(FPC) emulates the way in which a human being describes the shape of a route through
lines, so the calculation of these lines is used to approximate the sensor data to the reference.

The response of the fuzzy systems developed in this article improves the accuracy
by up to 69.2% to determine the absolute position of a ground vehicle with respect to
the classical techniques in this subject such as the UKF. Being highly competitive with
techniques developed in the works presented in [2,3,26] (see Table 9). In addition, our
method is less dependent on parameters and sensors, since it only uses GPS data and the
reference for design.

Despite improving the response of the UKF, the proposed fuzzy system is limited
to the region of the GPS map for which it was trained; that is, if the inputs are extremely
different from the data the system was trained in, the FPC prediction will have a large
errors. To solve this, it is necessary to collect a greater amount of data covering a wider
region of the map to retrain the FPC system and expand its scope. Despite this, something
similar happens with the UKF because the covariances R and Q must be re-tuned when the
data changes dramatically.

The proposed fuzzy systems were tested on a public dataset [28,29], having a favorable
performance under poorly controlled conditions both in the way of acquiring the data and
in the geographical area where they were collected. As shown in Figure 14, Figure 15, and
Table 7.

One of the points of improvement (in future work) for the proposed fuzzy systems
is to achieve generalization of their response. This issue can be approached from two
different points of view. The first one can be the collection and processing of the largest
number of routes travelled with the GPS sensor to make a more complete training of the
systems; the second one is to implement fuzzy systems whose training is online, that is,
that the fuzzy systems are trained as the data from the GPS sensor arrives when a route
is travelled.

6. Recommendations

In order to successfully reproduce this work, the data must be compiled in a CSV
file whose first and second column must be the latitude and longitude data respectively
coming from the GPS sensor. In a third and fourth column should be the latitude and
longitude data corrected using the technique explained in Section 2.2. To achieve the data
correction seen in Section 2.2, it is necessary to plot each new route in Google maps to
extract the latitude and longitude points of each corner of the routes and obtain the line
equations between each pair of corners.

One of the limitations of the proposed systems is generalization, as re-training is
necessary when testing in geographical areas far away from the original data. This is
necessary to readjust the parameters of the membership functions to the new data. The
combination of MATLAB’s ANFIS and GENFIS tools facilitates the task of deploying
multiple training of fuzzy systems and accelerates the design process.
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