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Citation: Kostić, M.; Du, W.-S.;

Fedorov, V.E. Doss ρ-Almost Periodic

Type Functions in Rn . Mathematics

2021, 9, 2825. https://doi.org/

10.3390/math9212825

Academic Editor: Christopher

Goodrich

Received: 12 October 2021

Accepted: 5 November 2021

Published: 7 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, Serbia;
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Abstract: In this paper, we investigate various classes of multi-dimensional Doss ρ-almost periodic
type functions of the form F : Λ× X → Y, where n ∈ N, ∅ 6= Λ ⊆ Rn, X and Y are complex Banach
spaces, and ρ is a binary relation on Y. We work in the general setting of Lebesgue spaces with
variable exponents. The main structural properties of multi-dimensional Doss ρ-almost periodic type
functions, like the translation invariance, the convolution invariance and the invariance under the
actions of convolution products, are clarified. We examine connections of Doss ρ-almost periodic
type functions with (ω, c)-periodic functions and Weyl-ρ-almost periodic type functions in the multi-
dimensional setting. Certain applications of our results to the abstract Volterra integro-differential
equations and the partial differential equations are given.
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1. Introduction and Preliminaries

The notion of almost periodicity was introduced by H. Bohr around 1925 and later
generalized by many others (see the research monographs [1–10] for more details about the
subject). Suppose that F : Rn → X is a continuous function, where X is a complex Banach
space equipped with the norm ‖ · ‖. It is said that F(·) is almost periodic if and only if for
each ε > 0 there exists l > 0 such that for each t0 ∈ Rn there exists τ ∈ B(t0, l) ≡ {t ∈ Rn :
|t− t0| ≤ l} such that: ∥∥F(t + τ)− F(t)

∥∥ ≤ ε, t ∈ Rn;

here, | · − · | denotes the Euclidean distance in Rn. Any almost periodic function F : Rn → X
is bounded and uniformly continuous, any trigonometric polynomial in Rn is almost
periodic, and a continuous function F(·) is almost periodic if and only if there exists a
sequence of trigonometric polynomials in Rn, which converges uniformly to F(·); see the
monographs [7,9] for more details about multi-dimensional almost periodic functions.

Concerning Stepanov, Weyl and Besicovitch classes of almost periodic functions, we
will only recall a few well known definitions and results for the functions of one real
variable. Let 1 ≤ p < ∞, and let f , g ∈ Lp

loc(R : X). We define the Stepanov metric by:

DSp
[

f (·), g(·)
]

:= sup
x∈R

[∫ x+1

x

∥∥ f (t)− g(t)
∥∥p dt

]1/p

.
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It is said that a function f ∈ Lp
loc(R : X) is Stepanov p-bounded if and only if

‖ f ‖Sp := sup
t∈R

(∫ t+1

t
‖ f (s)‖p ds

)1/p

< ∞.

The space Lp
S(R : X) consisting of all Sp-bounded functions becomes a Banach space

equipped with the above norm. A function f ∈ Lp
S(R : X) is said to be Stepanov p-

almost periodic if and only if the Bochner transform f̂ : R → Lp([0, 1] : X), defined by
f̂ (t)(s) := f (t + s), t ∈ R, s ∈ [0, 1] is almost periodic. It is well known that if f (·) is
an almost periodic, then the function f (·) is Stepanov p-almost periodic for any finite
exponent p ∈ [1, ∞). The converse statement is false, however, but we know that any
uniformly continuous Stepanov p-almost periodic function f : R→ X is almost periodic
(p ∈ [1, ∞)). Further on, suppose that f ∈ Lp

loc(R : X). Then, we say that the function
f (·) is:

(i) equi-Weyl-p-almost periodic, if and only if for each ε > 0 we can find two real
numbers l > 0 and L > 0 such that any interval I ⊆ R of length L contains a point
τ ∈ I such that:

sup
x∈R

[
1
l

∫ x+l

x

∥∥ f (t + τ)− f (t)
∥∥p dt

]1/p

≤ ε.

(ii) Weyl-p-almost periodic, if and only if for each ε > 0 we can find a real number L > 0
such that any interval I ⊆ R of length L contains a point τ ∈ I such that:

lim
l→∞

sup
x∈R

[
1
l

∫ x+l

x

∥∥ f (t + τ)− f (t)
∥∥p dt

]1/p

≤ ε.

Let us recall that any Stepanov p-almost periodic function is equi-Weyl-p-almost
periodic, as well as that any equi-Weyl-p-almost periodic function is Weyl-p-almost periodic
(p ∈ [1, ∞)). The class of Besicovitch p-almost periodic functions can be also considered,
and we will only note here that any equi-Weyl-p-almost periodic function is Besicovitch
p-almost periodic as well as that there exists a Weyl-p-almost periodic function which is not
Besicovitch p-almost periodic (p ∈ [1, ∞)); see [7]. For further information in this direction,
we may also refer the reader to the excellent survey article [11] by J. Andres, A. M. Bersani
and R. F. Grande. Regarding multi-dimensional Stepanov, Weyl and Besicovitch classes of
almost periodic functions, the reader may consult the above-mentioned monographs [7,9]
and references cited therein.

On the other hand, the notion of c-almost periodicity was recently introduced by
M. T. Khalladi et al. in [12] and later extended to the multi-dimensional setting in [13].
A further generalization of the concept c-almost periodicity presents the concept ρ-almost
periodicity, which has recently been introduced and analyzed in [14]; here, ρ denotes a
general binary relation acting on a corresponding pivot space (see also M. Fečkan et. al [15]
for the first steps made in the investigation of general classes of ρ-almost periodic type
functions; the main assumption used in [15] is that ρ = T is a linear isomorphism). The
Stepanov and Weyl classes of multi-dimensional ρ-almost periodic functions have recently
been studied in [16]; it is also worth noting that multi-dimensional (S,D,B)-asymptotically
(ω, ρ)-periodic type functions, multi-dimensional quasi-asymptotically ρ-almost periodic
type functions and multi-dimensional ρ-slowly oscillating type functions have recently
been analyzed in [17].

The main aim of this paper is to analyze various classes of multi-dimensional Doss
ρ-almost periodic functions in the Lebesgue spaces with variable exponent (concerning
one-dimensional classes of Doss uniformly recurrent functions and Doss almost periodic
functions, we may refer to our recent research study [18]). To the best knowledge of the
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authors, this is the first research study of multi-dimensional Doss almost periodic type
functions of any type (this was a strong motivational factor for the genesis of paper);
more to the point, the notion of Doss ρ-almost periodicity and the notion of Doss c-almost
periodicity seem to be new even in the one-dimensional setting (c ∈ C). We wish here,
in fact, to present a rather general concept which extends the concepts Stepanov and
Weyl ρ-almost periodicity in the multi-dimensional setting as well as the usual concept
of Besicovitch almost periodicity in the multi-dimensional setting (it is worth noting that
the classes of Besicovitch c-almost periodic functions and Besicovitch ρ-almost periodic
functions have not been analyzed so far, even for the functions depending on one real
variable; this could be a very interesting topic of ongoing investigations). The introduced
class of functions retains, in a certain sense, many important structural properties of the
corresponding classes of Stepanov, Weyl and Besicovitch almost periodic functions.

We continue, in such a way, our previous research studies [14,17–20] and revisit
some known structural characterizations of one-dimensional Doss almost periodic func-
tions [6]. We introduce several new classes of multi-dimensional Doss almost periodic
functions following a combination of methods already established in [14,18,19]; basically,
multi-dimensional Doss almost periodic functions retain almost all structural properties of
one-dimensional Doss almost periodic functions. However, some important peculiarities
appear in the multi-dimensional setting: in our definitions we require, for example, that
the Doss ε-periods of functions under our consideration belong to a non-empty subset
Λ′ of Rn, roughly speaking. This can be also required in the one-dimensional setting
but the real beauty and importance of such notion is clearly manifested in the (still very
unexplored) multi-dimensional setting, when the set Λ′ can possess various geometrical
features. We investigate the main structural properties of Doss ρ-almost periodic func-
tions; in particular, we analyze the convolution invariance of Doss ρ-almost periodicity,
the invariance of Doss ρ-almost periodicity under the actions of convolution products,
and provide certain applications to the abstract Volterra integro-differential equations and
the partial differential equations (unfortunately, it would be really difficult and almost
impossible to fully compare here the results and similarities/differences of this work
with the results of papers mentioned in the former three paragraphs). It is also worth
noting that some similar classes of almost periodic functions have been introduced and
analyzed by D. M. Umbetzhanov [21], M. Akhmet, M. O. Fen [22] and M. Akhmet [23].
In [21], the author has investigated the class of Stepanov almost periodic functions with
the Bessel-Mackdonald kernels and provided some applications to the higher-order elliptic
equations, while the authors of [22] have introduced the class of unpredictable functions
and provided some applications in the chaos theory and the theory of neural networks.
In this research, we have provided some different applications of Doss ρ-almost periodic
functions; for example, we have considered the fractional Poisson heat equations, a class
of abstract fractional semilinear Cauchy inclusions, and revisit the famous d’Alembert
formula, the Poisson formula and the Kirchhoff formula in our context. We have also
described how the considered classes of Doss ρ-almost periodic functions can be further
generalized and applied in the study of second-order partial differential equations whose
solutions are governed by the Newtonian potential. To the best knowledge of the authors,
these applications are completely new in the subject area.

The organization and main ideas of this paper can be briefly described as follows.
Section 1 recalls the basic definitions and results about the Lebesgue spaces with variable ex-
ponents Lp(x). In Section 2, we introduce and analyze various classes of multi-dimensional
Doss ρ-almost periodic type functions of the form F : Λ× X → Y, where Y is a Banach
space equipped with the norm ‖ · ‖Y, ρ ⊆ Y × Y is a binary relation, Λ is a general non-
empty subset of Rn, and p ∈ P(Λ); see Section 1 for the notion. In Definition 1, we
introduce the notions of Besicovitch-(p, φ, F,B)-boundedness, Besicovitch-(p, φ, F,B, Λ′, ρ)-
continuity, Doss-(p, φ, F,B, Λ′, ρ)-almost periodicity, and Doss-(p, φ, F,B, Λ′, ρ)-uniform
recurrence. After that, we clarify the main structural characterizations of the introduced
function spaces (see e.g., Propositions 1, 2–4, 6 and 7 below), providing also some illus-
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trations in Examples 1, 3, 5 and 6. Of particular importance is to stress that the class of
multi-dimensional Weyl-p-almost periodic functions, taken in the generalized approach
of A. S. Kovanko [24], is contained in the class of multi-dimensional Doss-p-almost peri-
odic functions for any finite exponent p ≥ 1 (see Section 2.1 for more details; especially,
Proposition 8 and Example 7, where we propose some open problems and issues for fur-
ther analyses). In Section 2.2, we investigate the invariance of Doss ρ-almost periodicity
under the actions of convolution products; see also [6] for the first results in this direc-
tion. The main aim of Section 3 is to provide certain applications of our results to the
abstract Volterra integro-differential equations and the partial differential equations. In the
final section of paper, we present some conclusions, remarks and proposals for further
research studies.

Notation and terminology. Suppose that X and Y are given non-empty sets. Let us
recall that a binary relation between X into Y is any subset ρ ⊆ X × Y. The domain and
range of ρ are defined by D(ρ) := {x ∈ X : ∃y ∈ Y such that (x, y) ∈ X×Y} and R(ρ) :=
{y ∈ Y : ∃x ∈ X such that (x, y) ∈ X × Y}, respectively; ρ(x) := {y ∈ Y : (x, y) ∈ ρ}
(x ∈ X), x ρ y⇔ (x, y) ∈ ρ. Define ρ(X′) := {y : y ∈ ρ(x) for some x ∈ X′} (X′ ⊆ X).

We assume henceforth that (X, ‖ · ‖), (Y, ‖ · ‖Y) and (Z, ‖ · ‖Z) are three complex
Banach spaces, n ∈ N, as well as that B is a certain collection of subsets of X satisfying
that for each x ∈ X there exists B ∈ B such that x ∈ B. By L(X, Y) we denote the Banach
space of all linear continuous functions from X into Y; L(X) ≡ L(X, X). If t0 ∈ Rn and
ε > 0, then we set B(t0, ε) := {t ∈ Rn : |t− t0| ≤ ε}, where | · | denotes the Euclidean
norm in Rn. Define ΛM := {t ∈ Λ : |t| ≤ M}; diam(Λ) denotes the diameter of set Λ and
m(Λ) denotes its Lebesgue measure (Λ ⊆ Rn; M > 0). The symbol χA(·) stands for the
characteristic function of a set A; bsc := sup{k ∈ Z : k ≤ s} (s ∈ R). By Dγ

t,+ we denote the
Weyl-Liouville fractional derivative of order γ > 0 ([6]); I stands for the identity operator
on Y. Define S1 ≡ {z ∈ C : |z| = 1}.

Lebesgue Spaces with Variable Exponents Lp(x)

Let ∅ 6= Ω ⊆ Rn be a nonempty Lebesgue measurable subset and let M(Ω : X)
denote the collection of all measurable functions f : Ω → X; M(Ω) := M(Ω : R).
Further on, by P(Ω) we denote the vector space of all Lebesgue measurable functions
p : Ω→ [1, ∞]. For any p ∈ P(Ω) and f ∈ M(Ω : X), we set

ϕp(x)(t) :=


tp(x), t ≥ 0, 1 ≤ p(x) < ∞,

0, 0 ≤ t ≤ 1, p(x) = ∞,

∞, t > 1, p(x) = ∞

and
ρ( f ) :=

∫
Ω

ϕp(x)(‖ f (x)‖) dx.

We define the Lebesgue space Lp(x)(Ω : X) with variable exponent by

Lp(x)(Ω : X) :=
{

f ∈ M(Ω : X) : lim
λ→0+

ρ(λ f ) = 0
}

.

It is well known that

Lp(x)(Ω : X) =
{

f ∈ M(Ω : X) : there exists λ > 0 such that ρ(λ f ) < ∞
}

;

see, for example, [25] (p. 73). For every u ∈ Lp(x)(Ω : X), we introduce the Luxemburg
norm of u(·) by

‖u‖p(x) := ‖u‖Lp(x)(Ω:X) := inf
{

λ > 0 : ρ(u/λ) ≤ 1
}

.
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Equipped with this norm, Lp(x)(Ω : X) becomes a Banach space (see e.g., [25]
(Theorem 3.2.7) for the scalar-valued case), coinciding with the usual Lebesgue space
Lp(Ω : X) in the case that p(x) = p ≥ 1 is a constant function. Further on, for any
p ∈ M(Ω), we define

p− := essinfx∈Ω p(x) and p+ := esssupx∈Ω p(x).

Set

D+(Ω) :=
{

p ∈ M(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ < ∞ for a.e. x ∈ Ω
}

.

If p ∈ D+(Ω), then we know

Lp(x)(Ω : X) =
{

f ∈ M(Ω : X) ; for all λ > 0 we have ρ(λ f ) < ∞
}

.

We will use the following lemma (cf. [25] for the scalar-valued case):

Lemma 1. (i) (The Hölder inequality) Let p, q, r ∈ P(Ω) such that

1
q(x)

=
1

p(x)
+

1
r(x)

, x ∈ Ω.

Then, for every u ∈ Lp(x)(Ω : X) and v ∈ Lr(x)(Ω), we have uv ∈ Lq(x)(Ω : X) and

‖uv‖q(x) ≤ 2‖u‖p(x)‖v‖r(x).

(ii) Let Ω be of a finite Lebesgue’s measure and let p, q ∈ P(Ω) such q ≤ p a.e. on Ω. Then
Lp(x)(Ω : X) is continuously embedded in Lq(x)(Ω : X), and the constant of embedding is
less than or equal to 2(1 + m(Ω)).

(iii) Let f ∈ Lp(x)(Ω : X), g ∈ M(Ω : X) and 0 ≤ ‖g‖ ≤ ‖ f ‖ a.e. on Ω. Then g ∈ Lp(x)(Ω :
X) and ‖g‖p(x) ≤ ‖ f ‖p(x).

For further information concerning the Lebesgue spaces with variable exponents
Lp(x), we refer the reader to the monograph [25] by L. Diening, P. Harjulehto, P. Hästüso,
M. Ruzicka and the lists of references quoted in this monograph and the forthcoming
monograph [7].

2. Multi-Dimensional Doss ρ-Almost Periodic Type Functions

In this paper, we will always assume that ρ ⊆ Y×Y is a binary relation, Λ is a general
non-empty subset of Rn as well as that p ∈ P(Λ) and the following condition holds:

φ : [0, ∞)→ [0, ∞) is measurable, F : (0, ∞)→ (0, ∞) and p ∈ P(Λ).

Set
Λ′′ :=

{
τ ∈ Rn : τ + Λ ⊆ Λ

}
.

In the remainder of paper, we will always assume that ∅ 6= Λ′ ⊆ Λ′′ so that
Λ + Λ′ ⊆ Λ.

In the following definition, we will extend the notion introduced in [6] (Defini-
tion 2.13.2(i)-(iii)) and [18] (Definition 7) (we can similarly extend the notion considered
in [18] (Definition 8; Definition 9); we will skip all details concerning such classes of Doss
almost periodic type functions for brevity):

Definition 1. (i) Suppose that the function F : Λ × X → Y satisfies that φ(‖F(·; x)‖) ∈
Lp(·)(Λt) for all t > 0 and x ∈ X. Then we say that the function F(·; ·) is Besicovitch-
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(p, φ, F,B)-bounded if and only if, for every B ∈ B, there exists a finite real number MB > 0
such that

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(
‖F(·; x)‖Y

)]
Lp(·)(Λt)

≤ MB.

(ii) Suppose that the function F : Λ× X → Y satisfies that φ(‖F(·+ τ; x)− y·;x‖) ∈ Lp(·)(Λt)
for all t > 0, x ∈ X, τ ∈ Λ′ and y·;x ∈ ρ(F(·; x)).

(a) We say that the function F : Λ× X → Y is Besicovitch-(p, φ, F,B, Λ′, ρ)-continuous if
and only if, for every B ∈ B as well as for every t > 0, x ∈ B and · ∈ Λt, we have the
existence of an element y·;x ∈ ρ(F(·; x)) such that

lim
τ→0,τ∈Λ′

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(
‖F(·+ τ; x)− y·;x‖Y

)]
Lp(·)(Λt)

= 0.

(b) We say that the function F(·; ·) is Doss-(p, φ, F,B, Λ′, ρ)-almost periodic if and only if,
for every B ∈ B and ε > 0, there exists l > 0 such that for each t0 ∈ Λ′ there exists
a point τ ∈ B(t0, l) ∩ Λ′ such that, for every t > 0, x ∈ B and · ∈ Λt, we have the
existence of an element y·;x ∈ ρ(F(·; x)) such that

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(
‖F(·+ τ; x)− y·;x‖Y

)]
Lp(·)(Λt)

< ε. (1)

(c) We say that the function F(·; ·) is Doss-(p, φ, F,B, Λ′, ρ)-uniformly recurrent if and
only if, for every B ∈ B, there exists a sequence (τk) ∈ Λ′ such that, for every t > 0,
x ∈ B and · ∈ Λt, we have the existence of an element y·;x ∈ ρ(F(·; x)) such that

lim
k→+∞

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(
‖F(·+ τk; x)− y·;x‖Y

)]
Lp(·)(Λt)

= 0.

If F : Λ→ Y, then we omit the term “B” from the notation. Further on, if ρ = cI for
some c ∈ C, then we also write “c” in place of “ρ”; we omit “c” from the notation if c = 1.
We also omit the term “Λ′” from the notation if Λ′ = Λ.

Let F : Λ → Y. We would like to note that the notion introduced in Definition 1 is
rather general as well as that the classical concept of Doss-p-almost periodicity (Doss-
p-uniform recurrence) of function F(·) is obtained by plugging ρ = I, Λ′ = Λ = Rn

or [0, ∞)n, φ(x) ≡ x, x ≥ 0, p(·) ≡ p ∈ [1, ∞) and F(t) ≡ t−(n/p), t > 0. The classical
concept of Besicovitch-p-boundedess of function F(·) is obtained by plugging the same
values of p, φ, Λ, F; a function F(·) is said to be Besicovitch bounded if and only if F(·) is
Besicovitch-1-bounded.

Remark 1. Let 1 ≤ p < ∞. The class of Besicovitch-p-almost periodic functions (see e.g., [1,6] for
the notion) has been analyzed by numerous mathematicians by now. It is worth noticing that R. Doss
has clarified, in [26,27], some equivalent conditions for a locally integrable function f : R→ C to
be Besicovitch-p-almost periodic. In the one-dimensional setting, with the same values of parameters
p, φ and F as above, he employed conditions (a)–(c) from Definition 1, and the following non-trivial
conditions (Λ′ = Λ = R):

(A) ([26]) For every real number a ∈ R, there exists a p-locally integrable function f (a) : R→ C
of period a such that

lim
k→+∞

lim sup
t→+∞

1
t

∫ t

−t

∣∣∣∣∣k−1
k−1

∑
l=0

f (x + la)− f (a)(x)

∣∣∣∣∣
p

dx = 0.
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(B) ([27]; p = 1) For every λ ∈ R, we have:

lim
l→+∞

lim sup
t→+∞

1
l

[
1
2t

∫ t

−t

∣∣∣∣∣
(∫ x+l

x
−
∫ l

0

)
eiλs f (s) ds

∣∣∣∣∣ dx

]
= 0.

As emphasized in [6], the results established in [26,27] cannot be so simply extended to the
vector-valued functions.

We continue by providing the following illustrative example:

Example 1 (J. de Vries [28] (point 6., p. 208), [7]). Let (pi)i∈N be a strictly increasing sequence in
N satisfying that pi|pi+1, i ∈ N and limi→∞(pi/pi+1) = 0. Define the function fi : [−pi, pi]→
[0, 1] by fi(t) := |t|/pi, t ∈ [−pi, pi] and extend the function fi(·) periodically to the whole real
axis; the obtained function, denoted likewise by fi(·), is of period 2pi (i ∈ N). Define now

f (t) := sup
{

fi(t) : i ∈ N
}

, t ∈ R.

Then we know that (see e.g., [7]):

lim sup
t→+∞

1
t

∫ t

−t
| f (x)− 1| dx ≥ 1

4
.

The last estimate simply implies that, for every real number τ ∈ R, we have:

lim sup
t→+∞

1
t

∫ t

−t
| f (x + τ)− 1| dx ≥ 1

4
.

Therefore, there does not exist a non-empty subset Λ′ of R such that the function f (·) is
Doss-(1, x, t−(1/p), Λ′, ρ)-uniformly recurrent with ρ(z) := 1 (z ∈ C) and the meaning clear.

Before proceeding any further, we would like to emphasize that the notion introduced
in Definition 1 has not been considered elsewhere if ρ = cI for some c ∈ C \ {1}, even in
the one-dimensional setting with Λ = Λ′ = R or [0, ∞), φ(x) ≡ x, x ≥ 0, p(·) ≡ p ∈ [1, ∞)
and F(t) ≡ t−(1/p), t > 0; if this is the case, then we simply say that the function F(·) is
Doss-(p, c)-almost periodic (Doss-(p, c)-uniformly recurrent). We accept the same notation
if p(·) ∈ P(Λ) has not a constant value. Although we formulate almost all structural
results of ours with the general function φ(·), the dominant case in our analysis is that
one in which we have φ(x) ≡ x, x ≥ 0; observe also that any Doss-(p, c)-almost periodic
(Doss-(p, c)-uniformly recurrent) function is automatically Doss-(1, xp, t−1, Λ, c)-almost
periodic (Doss-(1, xp, t−1, Λ, c)-uniformly recurrent), with the meaning clear.

It is worth noting that [19] (Example 2.13, Example 2.15) can be formulated for multi-
dimensional Doss almost periodic type functions. In particular, Ref. [19] (Example 2.15(ii))
shows that the assumption in which Λ′ 6= Λ can occur (cf. also [7] (Example 6.1.15)):

Example 2. Suppose that 1 ≤ p < ∞, as well as that the mapping

t 7→
(∫ t

0
f1(s) ds, . . . ,

∫ t

0
fn(s) ds

)
∈ Xn, t ∈ R,

is bounded and Doss-p-almost periodic, resp. bounded and Doss-p-uniformly recurrent, as well
as that the strongly continuous operator families (Tj(t))t∈R ⊆ L(X, Y) are uniformly bounded
(1 ≤ j ≤ n). Define

F
(
t1, · · ·, t2n

)
:=

n

∑
j=1

Tj(tj − tj+n)
∫ tj+n

tj

f j(s) ds for all tj ∈ R, 1 ≤ j ≤ 2n.
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Then, for every ti, τi ∈ R (1 ≤ j ≤ 2n) with τj = τj+n (1 ≤ j ≤ n), we have:∥∥F
(
t1 + τ1, · · ·, t2n + τ2n

)
− F

(
t1, · · ·, t2n

)∥∥
Y

≤ M
n

∑
j=1

{∥∥∥∥∥
∫ tj+τj

0
f j(s) ds−

∫ tj

0
f j(s) ds

∥∥∥∥∥+
∥∥∥∥∥
∫ tj+n+τj

0
f j(s) ds−

∫ tj+n

0
f j(s) ds

∥∥∥∥∥
}

,

where M = sup1≤j≤n supt∈R ‖Tj(t)‖. This simply implies that the mapping F : R2n → Y is
Doss-(p, Λ′)-almost periodic, resp. Doss-(p, Λ′)-uniformly recurrent, with the meaning clear,
where Λ′ = {(τ, τ) : τ ∈ Rn}.

In the following result, we continue our analysis from [14] (Proposition 2.2):

Proposition 1. Suppose that p(·) ≡ p ∈ [1, ∞), φ(·) is monotonically increasing and there exists
a finite real constant d > 0 such that

φ(x + y) ≤ d[φ(x) + φ(y)], x, y ≥ 0. (2)

Suppose, further, that ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn, Λ ± Λ′ ⊆ Λ, and the function
F : Λ × X → Y is Doss-(p, φ, F,B, Λ′, ρ)-almost periodic (Doss-(p, φ, F,B, Λ′, ρ)-uniformly
recurrent), where ρ is a binary relation on Y satisfying R(F) ⊆ D(ρ) and ρ(y) is a singleton
for any y ∈ R(F). If for each τ ∈ Λ′ we have τ + Λ = Λ, then Λ + (Λ′ − Λ′) ⊆ Λ and
for each b ∈ (0, 1) the function F(·; ·) is Doss-(p, φ, Fb,B, Λ′ − Λ′, I)-almost periodic (Doss-
(p, φ, Fb,B, Λ′ −Λ′, I)-uniformly recurrent), where Fb(t) := F(bt), t > 0.

Proof. The inclusion Λ + (Λ′ − Λ′) ⊆ Λ can be deduced as in the proof of the above-
mentioned proposition. Let ε > 0 and B ∈ B be given. If τ1, τ2 ∈ Λ′ satisfy (1), then there
exists a sufficiently large real number t0(ε, τ1, τ2) > 0 such that

F(t) sup
x∈B

[
φ
(
‖F(·+ τ1; x)− ρ(F(·; x))‖Y

)]
Lp(·)(Λt)

< ε/2d, t ≥ t0(ε, τ1, τ2)

and

F(t) sup
x∈B

[
φ
(
‖F(·+ τ2; x)− ρ(F(·; x))‖Y

)]
Lp(·)(Λt)

< ε/2d, t ≥ t0(ε, τ1, τ2).

Since φ(·) is monotonically increasing and there exists a finite real number d > 0 such
that (2) holds, the last three estimates in combination with Lemma 1(iii) simply imply that:[

φ
(
‖F(·+ τ1; x)− F(·+ τ2; x)‖Y

)]
Lp(Λt)

≤
[
φ
(
‖F(·+ τ1; x)− ρ(F(·; x))‖Y + ‖F(·+ τ2; x)− ρ(F(·; x))‖Y

)]
Lp(Λt)

≤ d

{[
φ
(
‖F(·+ τ1; x)− ρ(F(·; x))‖Y

)]
Lp(Λt)

+
[
φ
(
‖F(·+ τ2; x)− ρ(F(·; x))‖Y

)]
Lp(Λt)

}
≤ ε/F(t), t ≥ t0(ε, τ1, τ2), x ∈ B.

Let a number b ∈ (0, 1) be fixed. Since we have assumed that Λ − Λ′ ⊆ Λ, it is
clear that there exists a sufficiently large number t1(ε, τ1, τ2) ≥ t0(ε, τ1, τ2) such that Λbt ⊆
τ2 + Λt for all t ≥ t1(ε, τ1, τ2). The last estimate in the above computation therefore yields[

φ
(
‖F
(
·+ [τ2 − τ1]; x

)
− F(·; x)‖Y

)]
Lp(Λt+τ2)

≤ ε/F(t), t ≥ t0(ε, τ1, τ2), x ∈ B,
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and the final conclusion simply follows from the estimate[
φ
(
‖F
(
·+
[
τ2 − τ1

]
; x
)
− F(·; x)‖Y

)]
Lp(Λt+τ2)

≥
[
φ
(
‖F
(
·+ [τ2 − τ1]; x

)
− F(·; x)‖Y

)]
Lp(Λbt)

, t ≥ t1(ε, τ1, τ2), x ∈ B,

and the substitution bt 7→ t, t > 0.

Corollary 1. Suppose that p(·) ≡ p ∈ [1, ∞), φ(·) is monotonically increasing and there exists a
finite real constant d > 0 such that (2) holds. Suppose, further, that ∅ 6= Λ′ ⊆ Rn, and the function
F : Rn × X → Y is Doss-(p, φ, F,B, Λ′, ρ)-almost periodic (Doss-(p, φ, F,B, Λ′, ρ)-uniformly
recurrent), where ρ is a binary relation on Y satisfying R(F) ⊆ D(ρ) and ρ(y) is a singleton for
any y ∈ R(F). Then for each b ∈ (0, 1) the function F(·; ·) is Doss-(p, φ, Fb,B, Λ′ −Λ′, I)-almost
periodic (Doss-(p, φ, Fb,B, Λ′ −Λ′, I)-uniformly recurrent), where Fb(t) := F(bt), t > 0.

Keeping in mind Lemma 1, we can simply reformulate the conclusions established
in [18] (Remark 1, Proposition 5(i)) in our new framework. Concerning [18] (Example 5),
we would like to emphasize the following:

Example 3. Let p ∈ [1, ∞) and φ(x) ≡ x, x ≥ 0.

(i) Suppose that Λ = R and F(t) := χ[0,1/2](t), t ∈ R. Then F(·) is Doss-(p, φ, t−σ, c)-almost
periodic for every σ > 0 and c ∈ C. This simply follows from the estimate∫ t

−t

∣∣F(x + τ)− cF(x)
∣∣p dx ≤ 1

2
(
1 + |c|

)p
+ 2

∫ ∞

−∞

∣∣F(x)
∣∣p dx, t ≥ 0, τ ∈ R, c ∈ C.

(ii) Suppose now that Λ = Λ′ = Rn and F(t) := χK(t), t ∈ Rn, where K is a compact
subset of Rn. Arguing as above (cf. also [7] (Example 6.3.8)), we may conclude that F(·) is
Doss-(p, φ, t−σ, c)-almost periodic for every σ > 0 and c ∈ C.

(iii) Suppose that 0 < σ ≤ 1/p and F(t) := χ[0,∞)(t), t ∈ R. Then F(·) cannot be Doss-
(p, φ, t−σ, c)-almost periodic if c ∈ C \ {1}. This simply follows from the estimate∫ t

−t

∣∣F(x + τ)− cF(x)
∣∣p dx

≥
∫ t

0

∣∣F(x + τ)− cF(x)
∣∣p dx =

∣∣1− c
∣∣pt, τ > 0, t ≥ 0, c ∈ C.

(iv) Suppose now that Λ = Λ′ = Rn and F(t) := χ[0,∞)n(t), t ∈ Rn. In the analysis carried out
in [7] (Example 6.3.9), we have proved that for each τ ∈ Rn and t ∈ (|τ|,+∞) we have∫

Λt

∣∣F(t + τ)− F(t)
∣∣p dt ≤ 2ntn−1|τ|.

This simply implies that the function F(·) is Doss-(p, φ, t−σ)-almost periodic for every σ >
(n− 1)/p; this is also the optimal result we can obtain here, as easily approved. On the other
hand, arguing as in part (iii) it follows that for each 0 < σ ≤ n/p the function F(·) cannot be
Doss-(p, φ, t−σ, c)-almost periodic if c ∈ C \ {1}.

Concerning the pointwise products of multi-dimensional Doss almost periodic type
functions, we will present the following illustrative example, only:

Example 4. Suppose that p, q, r ∈ [1, ∞) and 1/p + 1/r = 1/q, there exists a sequence
(τk) ∈ Rn such that limk→+∞ |τk| = ∞ as well as that a scalar-valued function f (·) is Doss-
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(p, x, F1, Λ′, I)-uniformly recurrent, a Y-valued function F(·) is Doss-(r, x, F2, Λ′, I)-uniformly
recurrent with Λ′ := {τk : k ∈ N},

lim
k→+∞

lim sup
t→+∞

F1(t)
∥∥ f (·+ τk)− f (·)

∥∥
Lp(Λt)

= 0

and

lim
k→+∞

lim sup
t→+∞

F2(t)
∥∥F(·+ τk)− F(·)

∥∥
Lr(Λt :Y)

= 0. (3)

Suppose, further, that there exist a positive integer k ∈ N and two positive real numbers
t0 > 0 and M > 0 such that

F(t)
F2(t)

(∫
Λt

∣∣ f (s + τk)
∣∣p ds

)1/p

+
F(t)
F1(t)

(∫
Λt

∥∥F(s)
∥∥r

Y ds

)1/r

≤ M, t ≥ t0, k ≥ k0. (4)

Then the function [ f F](·) is Doss-(q, x, F, Λ′, I)-uniformly recurrent and (3) holds with the
functions F2(·) and F(·) replaced therein with the functions F(·) and [ f F](·), respectively. This
simply follows from the decomposition∥∥ f (s + τ)F(s + τ)− f (s)F(s)

∥∥
Y

≤ | f (s + τ)| ·
∥∥F(s + τ)− F(s)

∥∥
Y + | f (s + τ)− f (s)| · ‖F(s)

∥∥
Y, s ∈ Λ, τ ∈ Λ′,

an application of the Hölder inequality (see Lemma 1(i)) and the imposed condition (4). This
enables one to simply construct many examples of multi-dimensional Doss-(q, x, F, Λ′, I)-uniformly
recurrent functions of the form F(t1, · · ·, tn) = f1(t1) · · · fn(tn); see [7] for more details.

The following results are motivated by some observations made in [18] (Example 3):

Proposition 2. Suppose that ω ∈ Rn \ {0}, c ∈ C \ {0}, |c| = 1, ω + Λ ⊆ Λ and F : Λ→ Y
is a continuous function. Suppose that F(·) is (ω, c)-periodic, that is, F(t + ω) = cF(t) for all
t ∈ Λ; set Λ′ := {kω : k ∈ N}. Suppose, further, that φ(·) is monotonically increasing, F(·) is
essentially bounded as well as that for each ε > 0 there exists a finite real number tε > 0 such that

F(t)
[
φ
(
ε‖F‖∞

)]
Lp(·)(Λt)

< ε, t ≥ tε. (5)

Then the function F(·) is Doss-(p, φ, F, Λ′, c′)-almost periodic for each c′ ∈ {ck : k ∈ N},
provided that c = eiπϕ for some rational number ϕ ∈ (−π, π], resp. for each c′ ∈ S1, provided
that c = eiπϕ for some irrational number ϕ ∈ (−π, π].

Proof. We will consider the case in which c = eiπϕ for some irrational number ϕ ∈ (−π, π],
only. Let c′ ∈ S1 be arbitrary, and let ε > 0 be given. Then there exists a strictly increasing
sequence (nk) of positive integers such that |cnk − c′| < ε for all k ∈ N and supk∈N(nk+1 −
nk) < +∞; see for example [7]. Inductively one easily proves that Λ′ ⊆ Λ′′ as well as that
F(t + nkω) = cnk F(t) for all t ∈ Λ and k ∈ N. Since φ(·) is monotonically increasing and (5)
holds, we get

lim sup
t→+∞

F(t)
[
φ
(
‖F(·+ nkω

)
− c′F(·)‖Y

)]
Lp(·)(Λt)

≤ lim sup
t→+∞

F(t)
[
φ
(
|cnk − c′| · ‖F‖∞

)]
Lp(·)(Λt)

≤ lim sup
t→+∞

F(t)
[
φ
(
ε‖F‖∞

)]
Lp(·)(Λt)

< ε,

which simply implies the required.
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Proposition 3. Suppose that F : Λ× X → Y is a continuous function, c ∈ C \ {0} and F(·; ·) is
Bohr (B, Λ′, c)-almost periodic, that is, for every B ∈ B and ε > 0, there exists l > 0 such that for
each t0 ∈ Λ′ there exists τ ∈ B(t0, l) ∩Λ′ such that∥∥F(t + τ; x)− cF(t; x)

∥∥
Y ≤ ε, t ∈ Λ, x ∈ B.

Then the function F(·; ·) is Doss-(p, φ, F, Λ′, c)-almost periodic provided that for each ε > 0 there
exists a finite real number tε > 0 such that

F(t)
[
φ(ε)

]
Lp(·)(Λt)

< ε, t ≥ tε.

Proof. The proof is very similar to the proof of Proposition 2 and therefore omitted.

Now we would like to provide some illustrative applications of Propositions 2 and 3:

Example 5. (i) Suppose that Λ = [0, ∞) and a continuous function F : [0, ∞) → Y is Bloch
(ω, k)-periodic, that is, F(t + ω) = eiωkF(t) for all t ≥ 0 (ω > 0, k ∈ R). Let ωk/π be an
irrational number. Applying Proposition 2, we get that, for every number c′ ∈ S1, the function
F(·) is Doss-(p, φ, F, c′)-almost periodic with φ(x) ≡ x, x ≥ 0, p(·) ≡ p ∈ [1, ∞) and
F(t) ≡ t−(1/p), t > 0. We can extend the established conclusions for the Bloch (ω, k)-periodic
functions defined on the whole real line, because then we can take Λ′ = {kω : k ∈ Z}.

(ii) The question whether a trigonometric polynomial is Doss-(p(·), c)-almost periodic, where
p ∈ D+(Λ) and c ∈ C are given in advance, is not simple. For example, using Proposition 3
and our conclusions from [12] (Example 2.15), we can simply prove that the function
fϕ(t) := eitϕ, t ∈ R is Doss-(p(·), c)-almost periodic if and only if:

(a) c ∈ S1, provided that ϕ ∈ (−π, π] \ {0};
(b) c = 1, provided that ϕ = 0,

as well as that the function f (t) := cos t, t ∈ R is Doss-(p(·), c)-almost periodic if c = ±1.
Let us show that f (·) is not Doss-(p(·), c)-almost periodic if c ∈ C \ {−1, 1}. This is clear
for c = 0; for the remainder, it suffices to show that f (·) is not Doss-(1, c)-almost periodic if
c ∈ C \ {−1, 0, 1}. Suppose that c = reiϕ for some r > 0 and ϕ ∈ (−π, π]. Suppose further
that cos ϕ = ±1; then r 6= 1 and sin ϕ = 0 so that∫ t

−t

∣∣cos(s + τ)− c cos s
∣∣p ds =

∫ t

−t

∣∣cos(s + τ)− r cos s
∣∣p ds,

for any τ ∈ R. Since the function s 7→ | cos(s + τ)− r cos s|, s ∈ R is periodic and not
identically equal to zero, the last estimate yields the existence of a finite real number cτ > 0
such that (τ ∈ R is given in advance):∫ t

−t

∣∣cos(s + τ)− c cos s
∣∣p ds ≥ cτb(t/2π)c, t > 0,

which simply yields a contradiction. Therefore, cos ϕ 6= ±1 and there exists a constant
d ∈ (0, 1) such that, for every τ ∈ R, we have:∫ t

−t

∣∣cos(s + τ)− c cos s
∣∣p ds

=
∫ t

−t

√
cos2(s + τ)− 2r cos ϕ cos s · cos(s + τ) + r2 cos2 s

p
ds

≥ (dr)1/p
∫ t

−t

∣∣cos s · cos(s + τ)
∣∣p ds.

Since the function s 7→ | cos s · cos(s + τ)|, s ∈ R is periodic and not identically equal to
zero, the last estimate yields the existence of a finite real number dτ > 0 such that (τ ∈ R is
given in advance):
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∫ t

−t

∣∣cos(s + τ)− c cos s
∣∣p ds ≥ dτ(cr)1/pb(t/2π)c, t > 0,

which implies the required.

Example 6 (cf. also [12] (Example 2.22), and [12] (Example 2.23) for the pointwise products
of c-almost periodic functions). Suppose that c ∈ S1 and p(·) ∈ D+(R). Then we have
the following:

(i) Suppose that c = 1. Then the space consisting of all Doss-p(·)-uniformly recurrent functions
is not a vector space with the usual operations as easily shown. Now we will prove that the
space of Doss-1-almost periodic functions is also not a vector space with the usual operations.
Define f : R → R by f (x) := 0 for x ≤ 0, f (x) :=

√
n/2 if x ∈ (n− 2, n− 1] for some

n ∈ 2N and f (x) := −
√

n/2 if x ∈ (n− 1, n] for some n ∈ 2N. Then we know that the
function f (·) is Weyl-1-almost periodic as well as that for each n ∈ 2N we have

lim
l→+∞

1
2l

sup
t∈R

∫ l

−l

∣∣ f (t + n + x)− f (t + x)
∣∣ dx = 0, (6)

and that for each real number ω /∈ 2Z we have

lim
l→+∞

1
2l

∫ l

0

∣∣ f (x + ω)− f (x)
∣∣ dx = +∞; (7)

see J. Stryja [29] (pp. 42–47), [11] (Example 4.28) and [7] (Example 8.3.20). Define g : R→ R
by g(t) := cos t, t ∈ R. Hence, the functions f (·) and g(·) are Doss-1-almost periodic (cf.
also Section 2.1 below); but, its sum is not Doss-1-almost periodic. In actual fact, if ω /∈ 2Z,
then the consideration from the above example along with the equation (7) indicates that there
exists a finite real number d > 0 such that

1
l

∫ l

0
| f (x + ω) + cos(x + ω)− f (x)− cos x| dx

≥ 1
l

∫ l

0
| f (x + ω)− f (x)| dx− 1

l

∫ l

0
| cos(x + ω)− cos x| dx

=
1
l

∫ l

0
| f (x + ω)− f (x)| dx− | sin(ω/2)|

l

∫ l

0
| sin(x + (ω/2))| dx

≥ 1
l

∫ l

0
| f (x + ω)− f (x)| dx− d→ +∞, l → +∞.

If ω ∈ 2Z, then the Equation (6) yields that there exist two finite real numbers d > 0 and
l0 > 0 such that

1
l

∫ l

0
| f (x + ω) + cos(x + ω)− f (x)− cos x| dx

≥ 1
l

∫ l

0
| cos(x + ω)− cos x| dx− 1

l

∫ l

0
| f (x + ω)− f (x)| dx

≥ 1
2l
| sin(ω/2)|

∫ l

0
| sin(x + (ω/2))| dx− 1

l

∫ l

0
| f (x + ω)− f (x)| dx

≥ d− 1
l

∫ l

0
| f (x + ω)− f (x)| dx ≥ d/2, l ≥ l0.

This implies the required statement; observe also that the above analysis implies that the
collection of all Weyl-1-almost periodic functions has not a linear vector structure with
the usual operations. We deeply believe that the collection of all Doss-p(·)-almost periodic
functions and the collection of all Weyl-p(·)-almost periodic functions are not vector spaces
with the usual operations, as well.
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(ii) Suppose that c = −1. Then the space consisting of all Doss-(p(·), c)-almost periodic functions
is not a vector space with the usual operations since the functions 2−1 cos(4·) and 2 cos(2·)
are Doss-(p(·), c)-almost periodic (cf. Example 5(ii)) but its sum is not. To prove the last
statement, we argue as follows. For every τ ∈ R, we have (cf. also [6] (Example 2.16.5(ii))):∫ t

−t
2p
∣∣∣2−1 cos(4(s + τ)) + 2 cos(2(s + τ)) + 2−1 cos(4s) + 2 cos(2s)

∣∣∣p ds

=
∫ t

−t

∣∣∣8 cos4(s + τ) + 8 cos4 s− 6
∣∣∣p ds

≥
∫ t

0

∣∣∣8 cos4(s + τ) + 8 cos4 s− 6
∣∣∣p ds

≥
∫ arccos(4/5)

0

[
8(4/5)4 − 6

]
ds +

∫ 2π+arccos(4/5)

arccos(4/5)

[
8(4/5)4 − 6

]
ds + · · ·

≥ 2−1bt/(2π)c arccos(4/5)
[
8(4/5)4 − 6

]
,

which simply implies the required.
(iii) Suppose that c 6= ±1. Then the space consisting of all Doss-(p(·), c)-almost periodic functions

is not a vector space with the usual operations since the functions fϕ(·) and f−ϕ(·) are Doss-
(p(·), c)-almost periodic and its sum 2 f0(·) ≡ cos · is not Doss-(p(·), c)-almost periodic
(ϕ ∈ (−π, π] \ {0}). The conclusions in this issue and the issue (ii) remain true for Doss-
(p(·), c)-uniformly recurrent functions.

It is worth noting that it is not clear whether we can formulate an analogue of [12]
(Proposition 2.11(i)) (cf. also [13] ([Proposition 2.16)) for Doss almost periodic type func-
tions. Further on, let us note that Proposition 3 can be reformulated for the general classes of
(B, Λ′, ρ)-almost periodic functions and (B, Λ′, ρ)-uniformly recurrent functions (see [14]
for more details). For example, the first example of a uniformly anti-recurrent function
F : R→ R has recently been constructed in [12] (Example 2.20) as follows

F(t) := (sin t) ·
∞

∑
n=1

1
n

sin2
( t

3n

)
, t ∈ R.

Let p ∈ [1, ∞) be fixed; arguing similarly as in the proof of Proposition 3, we get that
the function F(·) is Doss-(p, c)-uniformly recurrent if and only if c = ±1.

The main structural properties of multi-dimensional ρ-almost periodic type functions
have been clarified in [14] (Theorem 2.11(i)–(iv)); all these results admit very simple
reformulations for multi-dimensional Doss almost periodic type functions introduced in
Definition 1 (cf. also [18] (Theorem 2) for the property of translation invariance, where
some difficulties obviously occur). Details can be left to the interested readers.

Concerning the statement of [14] (Theorem 2.11(v)), we will state the following result:

Proposition 4. Suppose that Fk : Λ × X → Y and F : Λ × X → Y (k ∈ N) as well as that
limk→+∞ supt∈Λ;x∈B ‖Fk(t; x) − F(t; x)‖Y = 0 for every B ∈ B. Let φ : [0, ∞) → [0, ∞)
be monotonically increasing, continuous, and let there exist a finite real constant d > 0 such
that (2) holds. Let D(ρ) be a closed subset of Y, and let ρ be single-valued and continuous in the
following sense:

(Cρ) For each ε > 0 there exists δ > 0 such that, for every y1, y2 ∈ Y with ‖y1 − y2‖Y < δ, we
have ‖z1 − z2‖Y < ε/3 with z1 = ρ(y1) and z2 = ρ(y2).

Assume, further, that there exist two finite real numbers t0 > 0 and M > 0 such that

F(t)
[
1
]

Lp(·)(Λt)
≤ M, t ≥ t0. (8)

Then we have the following:
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(i) Suppose that the function Fk(·; ·) is Besicovitch-(p, φ, F,B)-bounded for all k ∈ N. Then the
function F(·; ·) is likewise Besicovitch-(p, φ, F,B)-bounded.

(ii) Suppose that the function Fk(·; ·) is Besicovitch-(p, φ, F,B, Λ′, ρ)-continuous for all k ∈ N.
Then the function F(·; ·) is likewise Besicovitch-(p, φ, F,B, Λ′, ρ)-continuous.

(iii) Suppose that the function Fk(·; ·) is Doss-(p, φ, F,B, Λ′, ρ)-almost periodic for all k ∈ N.
Then the function F(·; ·) is likewise Doss-(p, φ, F,B, Λ′, ρ)-almost periodic.

(iv) Suppose that the function Fk(·; ·) is Doss-(p, φ, F,B, Λ′, ρ)-uniformly recurrent for all k ∈ N.
Then the function F(·; ·) is likewise Doss-(p, φ, F,B, Λ′, ρ)-uniformly recurrent.

Proof. We will prove the issue (iii) only, because the issues (i), (ii) and (iv) can be deduced
similarly. It is clear that (2) implies the existence of a finite real constant d′ > 0 such that

φ(x + y + z) ≤ d′[φ(x) + φ(y) + φ(z)], x, y, z ≥ 0. (9)

Let B ∈ B and ε > 0 be fixed. Since D(ρ) is a closed subset of Y and the sequence
(Fk(·; ·)) converges uniformly to a function F(·; ·) on the set B, we have that F(t; x) ∈ D(ρ)
for all t ∈ Λ and x ∈ X. Suppose that a real number δ > 0 is chosen in accordance with
the continuity of relation ρ and function φ (at the point t = 0). Set ε0 ≡ min(ε/3, δ). Then
we can find a positive integer k ∈ N such that supt∈Λ;x∈B ‖Fk(t; x)− F(t; x)‖Y < ε0, and a
positive real number l > 0 such that for each t0 ∈ Λ′ there exists a point τ ∈ B(t0, l) ∩Λ′

such that, for every t > 0, x ∈ B and · ∈ Λt, we have the existence of an element
yk
·;x ∈ ρ(Fk(·; x)) such that (1) holds with the number ε, the function F(·; ·) and the element

y·;x replaced respectively with the number ε0, the function Fk(·; ·) and the element yk
·;x. Fix

now a number t > 0 and an element x ∈ B. Let yt;x = ρ(F(t; x)). Then we have (a point
τ ∈ Λ′ satisfies the requirements in Definition 1 for the function Fk(·; ·)):∥∥F(·+ τ; x)− y·;x

∥∥
Y ≤

∥∥F(·+ τ; x)− Fk(·+ τ; x)
∥∥

Y +
∥∥Fk(·+ τ; x)− yk

·;x
∥∥

Y

+
∥∥y·;x − yk

·;x
∥∥

Y, · ∈ Λt. (10)

It is clear that F(·+ τ; x)− y·;x = limk→+∞[Fk(·+ τ; x)− yk
·;x] so that the mapping

φ(‖F(·+ τ; x)− y·;x‖Y) is measurable due to the continuity of function φ(·). Furthermore,
(9) and (10) together imply[

φ
(
‖F(·+ τ; x)− y·;x‖Y

)]
Lp(·)(Λt)

≤ d′
[
φ
(
‖F(·+ τ; x)− Fk(·+ τ; x)‖Y

)
+ φ

(
‖Fk(·+ τ; x)− yk

·;x‖Y
)
+ φ

(
‖yk
·;x − y·;x‖Y

)]
Lp(·)(Λt)

≤ d′3(ε/3)
[
1
]

Lp(·)(Λt)
, · ∈ Λt.

Then the final conclusion simply follows from (8) and the corresponding definition of
Doss-(p, φ, F,B, Λ′, ρ)-almost periodicity.

Now we would like to state the following analogue of [12] (Proposition 2.9) (cf.
also [14] (Example 2.8)):

Proposition 5. Suppose that l ∈ N, φ : [0, ∞)→ [0, ∞) is monotonically increasing, there exists
a finite real constant d > 0 such that (2) holds, and there exists a function ϕ : [0, ∞) → [0, ∞)
such that φ(xy) ≤ ϕ(x)φ(y) for all x, y ≥ 0. Let ρ = T ∈ L(Y), let p(·) ≡ p ∈ [1, ∞), and let
a function F : Λ× X → Y be Doss-(p, φ, F,B, Λ′, T)-almost periodic (Doss-(p, φ, F,B, Λ′, T)-
uniformly recurrent). Then the function F(·; ·) is Doss-(p, φ, F,B, lΛ′, Tl)-almost periodic (Doss-
(p, φ, F,B, lΛ′, Tl)-uniformly recurrent); in particular, F(·; ·) is Doss-(p, φ, F,B, lΛ′, I)-almost
periodic (Doss-(p, φ, F,B, lΛ′, I)-uniformly recurrent) if Tl = I.
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Proof. We will outline the main details of the proof for Doss-(p, φ, F,B, Λ′, T)-almost
periodic functions. Let τ be as in (1). It is clear that (2) implies the existence of a finite real
number dl > 0 such that

φ
(
x1 + · · ·+ xl

)
≤ dl

[
φ
(

x1
)
+ · · ·+ φ

(
xl
)]

,

for all positive real numbers x1 ≥ 0, · · ·, xl ≥ 0. Using this estimate, the decomposition

F
(
·+ lτ; x

)
− Tl F(·; x) =

l−1

∑
j=0

T j
[

F
(
·+ (l − j)τ; x

)
− TF

(
·+ (l − j− 1)τ; x

)]
and the existence of a function ϕ(·) with the prescribed properties, we easily get that for
each t > 0 and x ∈ X we have:[

φ
(
‖F(·+ lτ; x)− Tl F(·; x)‖Y

)]
Lp(Λt)

≤ dl

l−1

∑
j=0

ϕ
(
‖T‖j)[φ(‖F(·+ (l − j)τ; x)− TF(·+ (l − j− 1)τ; x)‖Y

)]
Lp(Λt)

. (11)

Basically, the required conclusion follows from this estimate and the fact that we can
use the substitution · 7→ · + (l − j − 1)τ here since p(·) has a constant value; in actual
fact, (11) implies for each t > 0 and x ∈ X one has:[

φ
(
‖F(·+ lτ; x)− Tl F(·; x)‖Y

)]
Lp(Λt)

≤ dl

l−1

∑
j=0

ϕ
(
‖T‖j)[φ(‖F(·+ τ; x)− TF(·; x)‖Y

)]
Lp(Λt+(l−j−1)|τ|)

,

and we only need to follow the corresponding definitions.

Concerning the convolution invariance of multi-dimensional Doss ρ-almost periodic-
ity, we will clarify the following extension of [18] (Proposition 6):

Proposition 6. Suppose that h ∈ L1(Rn), supp(h) ⊆ K for some compact subset K of Rn,
and F : Rn × X → Y is a measurable function satisfying that for each B ∈ B we have
supt∈Rn ,x∈B ‖F(t; x)‖Y < +∞. Suppose, further, that ρ = A is a closed linear operator on
Y satisfying that:

(B) For each t ∈ Rn and x ∈ B, the function s 7→ AF(t− s; x), s ∈ Rn is Bochner integrable.

Then the function

(h ∗ F)(t; x) :=
∫
Rn

h(σ)F(t− σ; x) dσ, t ∈ Rn, x ∈ X (12)

is well defined and for each B ∈ B we have supt∈Rn ,x∈B ‖(h ∗ F)(t; x)‖Y < +∞.
Suppose, further, that ∅ 6= Λ′ ⊆ Rn, ϕ : [0, ∞)→ [0, ∞), φ : [0, ∞)→ [0, ∞) is a convex,

monotonically increasing function satisfying φ(xy) ≤ ϕ(x)φ(y) for all x, y ≥ 0, p, q ∈ P(Rn)
and 1/p(x) + 1/q(x) = 1. Suppose, further, that the function F(·; ·) is Doss-(p, φ, F,B, Λ′, A)-
almost periodic, resp. Doss-(p, φ, F,B, Λ′, A)-uniformly recurrent, as well as that p1 ∈ P(Rn),
F1 : (0, ∞)→ (0, ∞) and, for every ε > 0, there exists a positive real number t1(ε) > 0 such that

∫ t

−t
ϕp1(u)

(
2F1(t)ϕ(m(K))[m(K)]−1

∥∥ϕ
(
|h(u− v)|

)∥∥
Lq(v)(u−K)

F(t + diam(K))

)
du ≤ 1, (13)

for any t ≥ t1(ε). Then the function (h ∗ F)(·; ·) is Doss-(p1, φ, F1,B, Λ′, A)-almost periodic,
resp. Doss-(p1, φ, F1,B, Λ′, A)-uniformly recurrent.
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Proof. We will consider only Doss-(p, φ, F,B, Λ′, A)-almost periodic functions. It is clear
that the function (h ∗ F)(·; ·) is well defined and supt∈Rn ,x∈B ‖(h ∗ F)(t; x)‖Y < +∞ for all
B ∈ B. Let ε > 0 and B ∈ B be given. Then there exists l > 0 such that for each t0 ∈ Λ′

there exists a point τ ∈ B(t0, l)∩Λ′ such that, for every t > 0, x ∈ B and · ∈ Λt, the element
y·;x = A(F(·; x)) satisfies (1). Since A is a closed linear operator and condition (B) holds,
for every t ∈ Rn and x ∈ B, we have zt,x := A((h ∗ F)(t; x)) =

∫
Rn h(s)A(F(t− s; x)) ds.

Let t > 0 and x ∈ B be fixed. The prescribed assumptions together with the well-known
Jensen integral inequality and the Hölder inequality (see e.g., [7] and Lemma 1(i)) imply:∥∥∥φ

(
‖(h ∗ F)(·+ τ; x)− z·,x‖Y

)∥∥∥
≤ φ

(
m(K)[m(K)]−1

∫
K
|h(σ)| · ‖F(·+ τ − σ; x)− AF(· − σ; x)‖Y dσ

)

≤ ϕ(m(K))[m(K)]−1
∫

K
φ
(
|h(σ)| · ‖F(·+ τ − σ; x)− AF(· − σ; x)‖Y

)
dσ

≤ ϕ(m(K))[m(K)]−1
∫

K
ϕ(|h(σ)|)φ

(
‖F(·+ τ − σ; x)− AF(· − σ; x)‖Y

)
dσ

= ϕ(m(K))[m(K)]−1
∫
·−K

ϕ(|h(· − v)|)φ
(
‖F(v + τ; x)− AF(v; x)‖Y

)
dv

≤ 2ϕ(m(K))[m(K)]−1∥∥ϕ
(
|h(· − v)|

)∥∥
Lq(v)(·−K)

×
∥∥∥φ
(
‖F(v + τ; x)− AF(v; x)‖Y

)∥∥∥
Lp(v)(·−K)

,

for any · ∈ (Rn)t. Now the final conclusion simply follows as in the proof of [18] (Proposi-
tion 6) using the corresponding definition of Doss-(p1, φ, F1,B, Λ′, A)-almost periodicity
and the definition of Luxemburg norm.

Unfortunately, the assumption supp(h) ⊆ K for some compact subset K of Rn is
almost inevitable here, so that we cannot so easily apply Theorem 6 in the qualitative
analysis of solutions of the abstract inhomogeneous heat equation in Rn; see [19] for more
details. The statements of [14] (Proposition 2.5, Proposition 2.20) and the conclusions
from [14] (Example 2.5), showing that the assumption Λ′ ⊆ Λ is redundant, can be simply
formulated in our new context.

Concerning the extensions of Doss ρ-almost periodic type functions (see [7,13,14] for
some results established for various classes of multi-dimensional ρ-almost periodic type
functions), we first observe that any Doss-(p, c)-almost periodic function F : [0, ∞)→ Y,
where p ∈ [1, ∞) and c ∈ C, can be extended to a Doss-(p, c)-almost periodic function
F̃ : R → Y defined by F̃(t) := 0, t < 0 (and, obviously, F̃(t) := F(t) for all t ≥ 0). With-
out going into full details, we will only note that a similar type of extension can be achieved
in a much more general situation; for example, a very simple argumentation shows that
any Doss-(p, φ, F,B, Λ′, ρ)-almost periodic function F : Λ× X → Y can be extended to a
Doss-(p, φ, F,B, Λ′, ρ1)-almost periodic function F̃ : Rn × X → Y, defined by F̃(t) := 0,
t /∈ Λ, F̃(t) := F(t), t ∈ Λ, with ρ1 := ρ ∪ {(0, 0)}, if the following conditions hold:

(i) φ(·) is locally bounded;
(ii) The Lebesgue measure of ∂Λ is equal to zero;
(iii) For each set B ∈ B we have supt∈Λ;x∈B ‖F(t; x)‖Y < +∞, or there exists t0 > 0 such

that, for every t ≥ 0, B ∈ B and τ ∈ Λ′, there exists a compact set Kτ ⊆ Rn such that
(Rn \Λ) ∪ (Λ− τ) ⊆ Kτ and

sup
x∈B

[
φ(‖F(·+ τ; x)‖Y)

]
Lp(·)(Kτ)

< +∞;

(iv) limt→+∞ F(t) = 0.
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We will state only one composition principle for Doss ρ-almost periodic type functions.
The following result for one-dimensional Doss (p, c)-almost periodic type functions can be
deduced following the lines of the proof of [12] (Theorem 2.28):

Proposition 7. Suppose that 1 ≤ p < ∞, c ∈ C and F : Λ× X → Y satisfies that there exists a
finite real number L > 0 such that

‖F(t; x)− F(t; y)‖Y ≤ L‖x− y‖, t ∈ Λ, x, y ∈ X. (14)

(i) Suppose that f : Λ→ X is Doss (p, Λ′, c)-uniformly recurrent, where Λ′ := {αk : k ∈ N}
for some strictly increasing sequence (αk) of positive reals tending to plus infinity. If

lim
k→+∞

lim sup
t→+∞

1
t

∫
[−t,t]∩Λ

∥∥∥F
(

s + αk; c f (s)
)
− cF(s; f (s))

∥∥∥p
ds = 0, (15)

then the mapping F (t) := F(t; f (t)), t ∈ Λ is Doss (p, Λ′, c)-uniformly recurrent.
(ii) Suppose that f : Λ → X is Doss (p, Λ′, c)-almost periodic. If for each ε > 0 the set of all

positive real numbers τ > 0 such that

lim sup
t→+∞

1
t

∫
[−t,t]∩Λ

∥∥ f (s + τ)− c f (s)
∥∥p ds < ε

and

lim sup
t→+∞

1
t

∫
[−t,t]∩Λ

∥∥∥F
(

s + τ; c f (s)
)
− cF(s; f (s))

∥∥∥p
ds < ε,

is relatively dense in [0, ∞), then the mapping F (t) := F(t; f (t)), t ∈ Λ is Doss (p, Λ′, c)-
almost periodic.

We can similarly analyze the composition principles for multi-dimensional Doss c-
almost periodic functions (see also [14] for related results concerning the general class of
multi-dimensional ρ-almost periodic functions). In combination with Proposition 6, this
enables one to analyze the existence and uniqueness of bounded, continuous, Doss-(p, c)-
almost periodic solutions of the following Hammerstein integral equation of convolution
type on Rn :

y(t) =
∫
Rn

k(t− s)F(s; y(s)) ds, t ∈ Rn,

where the kernel k(·) has compact support; see also the issue [19] (4., Section 3).

2.1. Relationship between Weyl Almost Periodicity and Doss Almost Periodicity

It is worth noting that Proposition 3 can be formulated for multi-dimensional ρ-almost
periodic functions and their Stepanov generalizations considered recently in [16]. This is
very predictable and details can be left to the interested readers.

In this subsection, we would like to point out the following much more important
fact with regards to Proposition 3: It is well known that, in the one-dimensional setting,
the class of Doss-p-almost periodic functions provides a proper extension of the class
of Besicovitch-p-almost periodic functions; see [6] for more details. On the other hand,
the class of Weyl-p-almost periodic functions taken in the generalized approach of A.
S. Kovanko [24] is not contained in the class of Besicovitch-p-almost periodic functions,
as clearly marked in [7]. A very simple observation shows that the class of Doss-p-almost
periodic functions extends the class of Weyl-p-almost periodic functions, as well, which is
defined as follows (1 ≤ p < ∞): Let Λ = R or Λ = [0, ∞), and let f ∈ Lp

loc(Λ : Y). Then
we say that the function f (·) is Weyl-p-almost periodic if and only if for each ε > 0 we
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can find a real number L > 0 such that any interval Λ0 ⊆ Λ of length L contains a point
τ ∈ Λ0 such that

lim
l→∞

sup
x∈Λ

[
1
l

∫ x+l

x

∥∥ f (t + τ)− f (t)
∥∥p dt

]1/p

≤ ε. (16)

So, let Λ = R, let f (·) be Weyl-p-almost periodic, and let a number ε > 0 be given.
Then there exists a finite real number L > 0 such that such that any interval Λ0 ⊆ Λ
of length L contains a point τ ∈ Λ0 such that (16) holds; hence, there exists a finite real
number l0(ε, τ) > 0 such that, for every l ≥ l0(ε, τ) and x ∈ R, we have

∫ x+l

x

∥∥ f (t + τ)− f (t)
∥∥p dt ≤ lεp.

Plugging x = 0 and x = −l here, we easily get that, for each real number l ≥ l0(ε, τ),
we have: ∫ l

−l

∥∥ f (s + τ)− f (s)
∥∥p ds ≤ 2lεp,

which simply implies that f (·) is Doss-p-almost periodic.
In [7] (Theorem 8.3.8), we have particularly proved the following: Suppose that

σ ∈ (0, 1), p ∈ [1, ∞), (1− σ)p < 1 and a > 1− (1− σ)p. Define f (x) := |x|σ, x ∈ R.
Then the function f (·) is Weyl-p-almost periodic, Besicovitch p-unbounded and has no
mean value (see [7] for the notion). As a consequence, we have that a Weyl-p-almost
periodic function (Doss-p-almost periodic function) is not necessarily Besicovitch-p-almost
periodic; also, a Doss-p-almost periodic function f : R→ R has no mean value and can be
Besicovitch p-unbounded in general (1 ≤ p < ∞).

The above consideration can be simply extended to the multi-dimensional setting.
In order to do that, we will first recall the following definition from [16]:

Definition 2. Assume that the following condition holds:

(WM): ∅ 6= Λ ⊆ Rn, ∅ 6= Λ′ ⊆ Rn and ∅ 6= Ω ⊆ Rn is a Lebesgue measurable set
such that m(Ω) > 0, p ∈ P(Λ), Λ′ + Λ + lΩ ⊆ Λ and Λ + lΩ ⊆ Λ for all l > 0,
φ : [0, ∞)→ [0, ∞) and F : (0, ∞)×Λ→ (0, ∞).

By W(p(u),φ,F),ρ
Ω,Λ′ ,B (Λ× X : Y), we denote the set consisting of all functions F : Λ× X → Y

such that, for every ε > 0 and B ∈ B, there exists a finite real number L > 0 such that for each
t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩Λ′ such that, for every x ∈ B, the mapping u 7→ ρ(F(u; x)),
u ∈ Ω is well defined, and

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

F(l, t)φ
(∥∥F(τ + u; x)− ρ(F(u; x))

∥∥
Y

)
Lp(u)(t+lΩ)

< ε.

The usual concept of multi-dimensional Weyl-p-almost periodicity is obtained by
plugging p(·) ≡ p ∈ [1, ∞), φ(x) ≡ x, x ≥ 0, F(l, t) ≡ l−n/p, l > 0, t ∈ Λ, Ω = [0, 1]n,
Λ′ = Λ = [0, ∞)n or Rn and ρ = I. The proof of following proposition is quite simple and
therefore omitted (we employ almost all of the above-mentioned conditions but we allow
the situation in which Λ′ 6= Λ and φ(x) is not identically equal to x for all x ≥ 0):

Proposition 8. Suppose that (WM) holds with Λ = [0, ∞)n or Rn, p(·) ≡ p ∈ [1, ∞), F(l, t) ≡
F(l), l > 0, t ∈ Λ, Ω = [0, 1]n, and ρ is single-valued on R(F). Suppose that for each l0 > 0 there
exists a finite real number t0 ≥ l0 such that(

t/l0
)n/p ≤ F

(
l0)/F(t), t ≥ t0. (17)
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If F ∈W(p,φ,F),ρ
Ω,Λ′ ,B (Λ× X : Y), then F(·; ·) is Doss-(p, φ, F,B, Λ′, ρ)-almost periodic.

It is worth noting that condition (17) holds in the classical situation F
(
l, t) ≡ l−n/p

and F(t) ≡ t−n/p (l, t > 0; t ∈ Λ).
We continue with the following instructive example, which has not been published in

any research article by now and which will be published soon as [7] (Example 3.2.14):

Example 7. Let ζ ≥ 1 and 0ζ := 0. Define the complex-valued function:

fζ(t) :=
∞

∑
l=1

1
l

sinζ
( t

2l

)
, t ∈ R.

Then the function fζ(·) is Lipschitz continuous and uniformly recurrent. To prove the
Lipschitz continuity of function fζ(·), it suffices to observe that the function t 7→ sinζ(t), t ∈ R is
continuous and ∣∣∣sinζ x− sinζ y

∣∣∣ ≤ ζ|x− y|, x, y ∈ R. (18)

To see that the function fζ(·) is uniformly recurrent (cf. [7] for the notion), it suffices to see
that for each integer k ∈ N \ {1} we have

∣∣∣ fζ

(
t + 2kπ

)
− fζ(t)

∣∣∣ = ∣∣∣∣∣ ∞

∑
l=1

1
l

[
sinζ

( t + 2kπ

2l

)
− sinζ

( t
2l

)]∣∣∣∣∣
=

∣∣∣∣∣k−1

∑
l=1

1
l

[
sinζ

( t + 2kπ

2l

)
− sinζ

( t
2l

)]∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
l=k

1
l

[
sinζ

( t + 2kπ

2l

)
− sinζ

( t
2l

)]∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
l=k

1
l

[
sinζ

( t + 2kπ

2l

)
− sinζ

( t
2l

)]∣∣∣∣∣ ≤ ∞

∑
l=k

1
l

∣∣∣∣∣sinζ
( t + 2kπ

2l

)
− sinζ

( t
2l

)∣∣∣∣∣
≤

∞

∑
l=k

ζ

l
2k−lπ =

2πζ

k
, t ∈ R,

where we have applied (18) in the last line of computation. In the case that ζ = 2v for some integer
v ∈ N, we have that the function fζ(·) is Besicovitch unbounded. This can be inspected as in the
proof of [30] (Theorem 1.1), with the additional observation that:

∫ 2k−lπ

0
sin2v t dt =

2
3
(2v− 1)!!
(2v)!!

∫ 2k−lπ

0
sin2 t dt (k ∈ N \ {1}, 1 ≤ l ≤ k);

here, we have used the well known recurrent formula:

∫ 2k−l π

0
sin2v t dt =

2v− 1
2v

∫ 2k−lπ

0
sin2v−2 t dt,

which can be deduced with the help of the partial integration. We would like to ask whether the
function fζ(·) is Besicovitch unbounded in general case and for which functions p ∈ D+(R) we
have that f (·) is Doss-p(·)-almost periodic, that is, Doss-(p(·), 1)-almost periodic?

We continue by observing that the functions of the form:

f (t) :=
∞

∑
l=1

al sinζl
( t

bl

)
, t ∈ R,

where ζl ≥ 0 for all l ∈ N, and (al) and (bl) are real sequences such that the above series is
absolutely convergent, are still very unexplored within the theory of almost periodic functions.
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For example, we know that the sequence of partial sums of the series (therefore, the sequence of
trigonometric polynomials):

x 7→ f (x) :=
∞

∑
l=1

1
l

sin
x
l

, x ∈ R

is a Cauchy sequence with respect to the Weyl metric W2 but its sum, which is clearly an essentially
bounded function, is not equi-Weyl-2-almost periodic; see for example [8] (p. 247) and [6] for the
notion. On the other hand, using the identity

sin
x + τ

l
− sin

x
l
= 2

[
cos

x
l

cos
τ

2l
− sin

x
l

sin
τ

2l

]
sin

τ

2l
, x ∈ R, l ∈ N, τ ∈ R,

we can simply prove that for each τ ∈ R and p ≥ 1 we have

lim
t→+∞

1
t

∫ t

−t

∣∣ f (x + τ)− f (x)
∣∣p dx = 0.

In particular, the function f (·) is Doss-p-almost periodic for any finite exponent p ≥ 1.
We would like to ask whether the function f (·) is equi-Weyl-p-almost periodic for some exponent
p ∈ [1, 2) or Weyl-p-almost periodic for some finite exponent p ≥ 1?

We close this subsection with the observation that, for every finite exponent p ≥ 1,
there exists a (Besicovitch-)Doss-p-almost periodic function f : R → R which is not
Weyl-p-almost periodic; see for example [11] (Example 6.24).

2.2. Invariance of Doss ρ-Almost Periodicity under the Actions of Convolution Products

This subsection investigates the invariance of Doss ρ-almost periodicity under the
actions of infinite convolution products (for simplicity, we will not consider here the
finite convolution products). From the application point of view, the one-dimensional
framework is the most important and here we will only note that the established results
admit straightforward extensions for the infinite convolution product

t 7→
∫ t1

−∞

∫ t2

−∞
· · ·

∫ tn

−∞
R(t− s) f (s) ds, t ∈ Rn,

and the finite convolution product

t 7→
∫ t1

α1

∫ t2

α2

· · ·
∫ tn

αn
R(t− s) f (s) ds, t ∈ [0, ∞)n;

see [7,19] for more details.
We start by stating the following extension of [18] (Theorem 3):

Theorem 1. Suppose that ψ : (0, ∞) → (0, ∞), ϕ : [0, ∞) → [0, ∞), φ : [0, ∞) → [0, ∞)
is a convex monotonically increasing function satisfying φ(xy) ≤ ϕ(x)φ(y) for all x, y ≥ 0
and p ∈ P(R). Suppose, further, ∅ 6= Λ′ ⊆ R, A is a closed linear operator commuting
with R(·), f̌ : R → X is Doss-(p, φ, F, Λ′, A)-almost periodic, resp. Doss-(p, φ, F, Λ′, A)-
uniformly recurrent, and measurable, F1 : (0, ∞) → (0, ∞), q ∈ P(R), 1/p(x) + 1/q(x) = 1,
(R(t))t>0 ⊆ L(X) is a strongly continuous operator family and for every real number x ∈ R
we have ∫ ∞

−x
‖R(v + x)‖‖ f̌ (v)‖ dv < ∞ (19)

and ∫ ∞

−x
‖R(v + x)‖‖A f̌ (v)‖ dv < ∞. (20)
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Suppose, further, that for each ε > 0 there exists an increasing sequence (am) of positive real
numbers tending to plus infinity and a number t0(ε) > 0 satisfying that, for every t ≥ t0(ε),
we have:∫ t

−t
ϕp(x)

(
2ϕ(am)a−1

m F1
(
t
)

lim sup
m→+∞

[[
ϕ(‖R(·+ x)‖)

]
Lq(·) [−x,−x+am ]

F
(
t + am

)−1
])

dx ≤ 1.

Then the function F : R→ X, given by:

F(t) :=
∫ t

−∞
R(t− s) f (s) ds, t ∈ R, (21)

is well-defined and Doss-(p, φ, F1, Λ′, A)-almost periodic, resp. Doss-(p, φ, F1, Λ′, A)-uniformly
recurrent.

Proof. It is clear that F(x) =
∫ ∞
−x R(v + x) f̌ (v) dv, x ∈ R; hence, (19) implies that the

function F(·) is well-defined as well as that the integrals in the definitions of F(x) and
F(x + τ) − F(x) converge absolutely (x ∈ R). Furthermore, since A is a closed linear
operator commuting with R(·), and since we have assumed (20), we have AF(x) =∫ ∞
−x R(v + x)A f̌ (v) dv, x ∈ R. The remainder of proof is almost the same as the proof

of the corresponding part of [18] (Theorem 3), with the distance f̌ (v + τ)− f̌ (v) replaced
therein with the distance f̌ (v + τ)− A f̌ (v).

Using a similar argumentation and inspecting carefully the proof of [6] (Theorem 2.13.10),
we may conclude that the following result holds true:

Theorem 2. Let ∅ 6= Λ′ ⊆ R, 1/p + 1/q = 1 and (R(t))t>0 ⊆ L(X) satisfy:

‖R(t)‖ ≤ Mtβ−1

1 + tγ
, t > 0 for some finite constants γ > 1, β ∈ (0, 1], M > 0.

Let A be a closed linear operator commuting with R(·), let a function g : R → X be Doss-
(p, Λ′, A)-almost periodic, resp. Doss-(p, Λ′, A)-uniformly recurrent, and Stepanov p-bounded,
and let q(β− 1) > −1 provided that p > 1, resp. β = 1, provided that p = 1. Assume that
the function t 7→ Ag(t), t ∈ R is Stepanov p-bounded. Then the function G : R → X, defined
through (21) with f = g therein, is bounded, continuous and Doss-(p, Λ′, A)-almost periodic,
resp. Doss-(p, Λ′, A)-uniformly recurrent. Furthermore, if g(·) is Bp-continuous, then G(·) is
Bp-continuous, as well.

Remark 2. If A = cI for some c ∈ C, then we can consider two different pivot spaces X and Y in
Theorems 1 and 2. See also [6] (Theorem 2.13.7), where we have used the estimate∫ +∞

0
(1 + t)‖R(t)‖ dt < +∞,

which cannot be satisfied for fractional solution operator families.

3. Applications to Abstract Volterra Integro-Differential Equations and Partial
Differential Equations

In this section, we aim to present some applications of our abstract results to the
abstract Volterra integro-differential equations and the partial differential Equations.

1. We start by observing that our results about the invariance of Doss ρ-almost
periodicity under the actions of convolution products, established in Section 2.2, can be
applied in the analysis of the existence and uniqueness of Doss-(p, A)-almost periodic
solutions in the time variable for various kinds of the abstract (degenerate) Volterra integro-
differential equations (see e.g., [6] for more details). For example, we can apply Theorem 2
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in the analysis of the existence and uniqueness of Doss (p, c)-almost periodic solutions of
the following fractional Poisson heat equation with Weyl-Liouville fractional derivatives:

Dγ
t,+[m(x)v(t, x)] = (∆− b)v(t, x) + f (t, x), t ∈ R, x ∈ Ω,

where γ ∈ (0, 1), 1 ≤ p < ∞ and c ∈ C; possible applications can be also given to the
higher-order differential operators in Hölder spaces. All this has been seen many times
and details can be omitted.

2. It is worth noting that Proposition 4, Proposition 7 and Theorem 2 can be im-
plemented in the analysis of the existence and uniqueness of Doss-(p, Λ′, c)-uniformly
recurrent solutions for various classes of abstract fractional semilinear Cauchy inclusions
and equations. Suppose, for instance, that γ ∈ (0, 1), a closed multivalued linear op-
erator A on X satisfies all requirements from [6] (Subsection 2.9.2) and the solution
family Pγ(·) is defined as therein. Define Rγ(t) := tγ−1Pγ(t), t > 0. Then we know
that ‖Rγ(t)‖ = O(tγ−1/(1 + t2γ)), t > 0. Let p ∈ (1, ∞), let 1/p + 1/q = 1, and let
q(γ− 1) > −1. Fix now a strictly increasing sequence (αk) of positive reals tending to plus
infinity, and define:

BCD(αk);c(R : X) :=
{

f : R→ X ; f (·) is bounded and

(p, Λ′, c)− uniformly recurrent,
}

,

where Λ′ := {αk : k ∈ N}. By Proposition 4(iv), the set BCD(αk);c(R : X) equipped with
the metric d(·, ·) := ‖ · − · ‖∞ is a complete metric space. Suppose now that a mapping
F : Λ× X → Y satisfies the estimate (15). We say that a continuous function u : R→ X is a
mild solution of the semilinear Cauchy inclusion

Dγ
t,+u(t) ∈ Au(t) + F(t; u(t)), t ∈ R, (22)

if and only if

u(t) =
∫ t

−∞
Rγ(t− s)F

(
s; u(s)

)
ds, t ∈ R.

Keeping in mind Proposition 7 and Theorem 2, we can simply prove the following analogue
of [12] (Theorem 3.1):

Theorem 3. Suppose that the above requirements hold as well as that the function F : R×X → X
satisfies that for each bounded subset B of X there exists a finite real constant MB > 0 such that
supt∈R supx∈B ‖F(t; x)‖ ≤ MB. If there exists a finite real number L > 0 such that: (14) holds,
and there exists an integer m ∈ N such that: Mm < 1, where

Mm :=Lm sup
t≥0

∫ t

−∞

∫ xm

−∞
· · ·

∫ x2

−∞

∥∥∥Rγ(t− xm)
∥∥∥

×
m

∏
i=2

∥∥∥Rγ(xi − xi−1)
∥∥∥ dx1 dx2 · · · dxm,

then the abstract semilinear fractional Cauchy inclusion (22) has a unique bounded Doss-(p, Λ′, c)-
uniformly recurrent solution which belongs to the space BCD(αk);c(R : X).

3. In this issue, we continue our analysis of the famous d’Alembert formula. Let
a > 0; then we know that the regular solution of the wave equation utt = a2uxx in domain
{(x, t) : x ∈ R, t > 0}, equipped with the initial conditions u(x, 0) = f (x) ∈ C2(R) and
ut(x, 0) = g(x) ∈ C1(R), is given by the d’Alembert formula
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u(x, t) =
1
2
[

f (x− at) + f (x + at)
]
+

1
2a

∫ x+at

x−at
g(s) ds, x ∈ R, t > 0.

Suppose now that the function x 7→ ( f (x), g[1](x)), x ∈ R is Doss-(p, c)-almost
periodic for some p ∈ [1, ∞) and c ∈ C, where: g[1](·) ≡

∫ ·
0 g(s) ds. Clearly, the solution

u(x, t) can be extended to the whole real line in the time variable; we will prove that
the solution u(x, t) is Doss-(p, c)-almost periodic in (x, t) ∈ R2. In actual fact, we have
(x, t, τ1, τ2 ∈ R):∣∣∣u(x + τ1, t + τ2

)
− cu(x, t)

∣∣∣
≤ 1

2

∣∣∣ f ((x− at) + (τ1 − aτ2)
)
− c f (x− at)

∣∣∣
+

1
2

∣∣∣ f ((x + at) + (τ1 + aτ2)
)
− c f ([x + at + (τ1 + aτ2)]− (τ1 + aτ2))

∣∣∣
+

1
2a

∣∣∣g[1]((x− at) + (τ1 − aτ2)
)
− cg[1](x− at)

∣∣∣
+

1
2a

∣∣∣g[1]((x + at)− (τ1 − aτ2)
)
− cg[1](x + at)

∣∣∣.

(23)

If τ1 − aτ2 satisfies that lim supl→+∞(1/l)
∫ l
−l | f (v + τ1 − aτ2)− f (v)|p dv ≤ εp, then

there exists a finite real number l0(ε, τ1, τ2) > 0 such that
∫ l
−l | f (v+ τ1− aτ2)− f (v)|p dv ≤

εpl, l ≥ l0(ε, τ1, τ2) and therefore:∫
|(x,t)|≤l

∣∣∣ f ((x− at) + (τ1 − aτ2)
)
− c f (x− at)

∣∣∣p dx dt

≤
∫ l

−l

∫ l

−l

∣∣∣ f ((x− at) + (τ1 − aτ2)
)
− c f (x− at)

∣∣∣p dx dt

=
∫ l

−l

[∫ l

−l

∣∣∣ f ((x− at) + (τ1 − aτ2)
)
− c f (x− at)

∣∣∣p dt

]
dx

=
1
a

∫ l

−l

[∫ x+al

x−al

∣∣∣ f (v + (τ1 − aτ2)
)
− c f (v)

∣∣∣p dv

]
dx

≤ 1
a

∫ l

−l

[∫ l(1+a)

−l(1+a)

∣∣∣ f (v + (τ1 − aτ2)
)
− c f (v)

∣∣∣p dv

]
dx

≤ 1
a

εpl(1 + a)
∫ l

−l
dx =

1
a

εpl2(1 + a), l ≥ (1 + a)−1l0(ε, τ1, τ2),

where we have applied the Fubini theorem in the third line of computation. The remaining
three addends in (23) can be estimated similarly, so that the final conclusion simply follows
as in the final part of [12] (Example 1.2).

4. In [7], we have recently the existence and uniqueness of c-almost periodic type
solutions of the wave equations in R3 :

utt(t, x) = d2∆xu(t, x), x ∈ R3, t > 0; u(0, x) = g(x), ut(0, x) = h(x), (24)

where d > 0, g ∈ C3(R3 : R) and h ∈ C2(R3 : R). Let us recall that the famous Kirchhoff
formula (see e.g., [31] (Theorem 5.4, pp. 277–278); we will use the same notion and notation)
says that the function:
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u(t, x) :=
∂

∂t

[
1

4πd2t

∫
∂Bdt(x)

g(σ) dσ

]
+

1
4πd2t

∫
∂Bdt(x)

g(σ) dσ

=
1

4π

∫
∂B1(0)

g(x + dtω) dω +
dt
4π

∫
∂B1(0)

∇g(x + dtω) ·ω dω

+
t

4π

∫
∂B1(0)

h(x + dtω) dω

:= u1(t, x) + u2(t, x) + u3(t, x), t ≥ 0, x ∈ R3,

is a unique solution of problem (24) which belongs to the class C2([0, ∞)×R3). Let us fix
now a number t0 > 0. Then the function x 7→ u(t0, x), x ∈ R3 is Doss-(1, x, F, Λ′, c)-almost
periodic (Doss-(1, x, F, Λ′, c)–uniformly recurrent) provided that the functions g(·), ∇g(·)
and h(·) are of the same type (∅ 6= Λ′ ⊆ R3; c ∈ C). This is a simple consequence of the
following computation, given here only for the function u3(t, ·) :∫

|x|≤l

∣∣u3(t, x + τ)− cu3(x, t)
∣∣ dx

≤ t
4π

∫
|x|≤l

∫
∂B1(0)

∣∣h(x + τ + dtω)− ch(x + dtω)
∣∣ dω dx

=
t

4π

∫
∂B1(0)

∫
|x|≤l

∣∣h(x + τ + dtω)− ch(x + dtω)
∣∣ dx dω

≤ tε
4πF(l)

∫
∂B1(0)

dω,

provided that l − dt ≥ l0(ε, τ), the last being determined from the Doss-(1, x, F, Λ′, c)-
almost periodicity of function h(·) with a number ε > 0 given in advance.

We can similarly analyze the existence and uniqueness of Doss-(1, x, F, Λ′, c)-almost
periodic (Doss-(1, x, F, Λ′, c)–uniformly recurrent) solutions of the wave equations in R2 :

utt(t, x) = d2∆xu(t, x), x ∈ R2, t > 0; u(0, x) = g(x), ut(0, x) = h(x), (25)

where d > 0, g ∈ C3(R2 : R) and h ∈ C2(R2 : R). Let us only recall that the famous Poisson
formula (see e.g., [31] (Theorem 5.5, pp. 280–281)) says that the function:

u(t, x) :=
∂

∂t

[
1

2πd

∫
∂Bdt(x)

g(σ)√
d2t2 − |x− y|2

dσ

]
+

1
2πd

∫
∂Bdt(x)

h(σ)√
d2t2 − |x− y|2

dσ

= d
∫

B1(0)

g(x + dtσ)√
1− |σ|2

dσ + d2t
∫

B1(0)

∇g(x + dtσ) · σ√
1− |σ|2

dσ

+ dt
∫

B1(0)

h(x + dtσ)√
1− |σ|2

dσ, t ≥ 0, x ∈ R2,

is a unique solution of problem (25) which belongs to the class C2([0, ∞)×R3).

4. Conclusions and Final Remarks

In this paper, we have analyzed the multi-dimensional Doss ρ-almost periodic type
functions of the form F : Λ× X → Y, where n ∈ N, ∅ 6= Λ ⊆ Rn, X and Y are complex
Banach spaces, and ρ is a binary relation on Y. The main structural properties of introduced
classes of functions are presented, including some applications to the abstract Volterra
integro-differential equations and the partial differential equations.

Concerning some drawbacks and research limitations of the class of Doss ρ-almost
periodic type functions, we would like to emphasize that the usually considered Doss
almost periodic type functions (ρ is equal to the identity operator) do not have a linear
vector structure, which can be very unpleasant for providing certain applications. It is also
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clear that a Doss almost periodic function F : Rn → X need not have a mean value, which
is also a very unpleasant property of Doss almost periodic functions.

Concerning some practical implications of our work, we would like to emphasize
that the various types of Doss almost periodicity are invariant under the actions of the
convolution products. This enables us to consider the existence and uniqueness of Doss
almost periodic solutions for various classes of abstract Voleterra integro-differential equa-
tions and inclusions; the abstract semilinear Cauchy problems and inclusions can be also
analyzed since we can formulate composition principles in our framework. It is also worth
noting that the class of Doss p-almost periodic functions provides, in the theoretical sense,
a unification concept for the class of Besicovitch p-almost periodic functions and the class
of Weyl p-almost periodic functions (1 ≤ p < ∞). In our further investigations, we will
analyze the multi-dimensional analogues of conditions (A)–(B) and results established by R.
Doss [26,27] as well as the class of multi-dimensional semi-ρ-periodic functions and certain
classes of (equi-)Weyl-(p, ρ)-uniformly recurrent functions. It could be also of importance
to analyze the multi-dimensional Hartman almost periodic functions, as well.

We close the paper with the observation that we can further extend the notion intro-
duced in Definition 1 by allowing that the function F(t) depends not only on t > 0 but also
on τ ∈ Λ′. For example, we can consider the following notion (with the exception of as-
sumption F : (0, ∞)→ (0, ∞), which is replaced by the assumption F : (0, ∞)×Λ′ → (0, ∞)
here, we retain all remaining standing assumptions of ours):

Definition 3. We say that the function F(·; ·) is Doss-(p, φ, F,B, Λ′, ρ)-almost periodic if and
only if, for every B ∈ B and ε > 0, there exists l > 0 such that for each t0 ∈ Λ′ there exists a point
τ ∈ B(t0, l) ∩Λ′ such that, for every t > 0, x ∈ B and · ∈ Λt we have the existence of an element
y·;x ∈ ρ(F(·; x)) such that:

lim sup
t→+∞

F(t, λ) sup
x∈B

[
φ
(
‖F(·+ τ; x)− y·;x‖Y

)]
Lp(·)(Λt)

< ε. (26)

In actual fact, sometimes it is very important to assume that the function F depends
also on τ ∈ Λ′. We will illustrate this fact by considering the second-order partial differen-
tial equation: ∆u = − f , where f ∈ C2(R3) has a compact support. Let us recall that the
Newtonian potential of f (·), defined by:

u(x) :=
1

4π

∫
R3

f (x− y)
|y| dy, x ∈ R3,

is a unique function belonging to the class C2(R3), vanishing at infinity and satisfying
∆u = − f ; see, for example, [31] (Theorem 3.9, pp. 126–127).

In our final application, we will assume that ρ = cI for some c ∈ C, p(·) ≡ 1 and
φ(x) ≡ x, as well as that ∅ 6= Λ′ ⊆ Λ = R3 and there exists a finite real number d > 0
such that:

F1(t, τ) ≥ d

[
F(t, τ) + sup

·∈Λt

∫
(·+τ−K)\(·−K)

dy
|y|

]
, t > 0, λ ∈ Λ′. (27)

Then, we have the following:

Theorem 4. Suppose that f is Doss-(1, φ, F, Λ′, c)-almost periodic and supp( f ) ⊆ K. Then u is
Doss-(1, φ, F1, Λ′, c)-almost periodic.

Proof. Let ε > 0 be given, and let τ ∈ Λ′ be as in (26). Using the Fubini theorem, we have
the existence of a finite real number t1(ε, τ) > 0 such that:
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∥∥u(x + τ)− cu(x)
∥∥

L1(Λt)

≤ 1
4π

∫
Λt

∫
R3

| f (x + τ − y)− c f (x− y)|
|y| dy dx

=
1

4π

∫
R3

[∫
Λt
| f (x + τ − y)− c f (x− y)| dx

]
dy
|y|

=
1

4π

∫
x−K

[∫
Λt
| f (x + τ − y)− c f (x− y)| dx

]
dy
|y|

+
1

4π

∫
(x+τ−K)\(x−K)

[∫
Λt
| f (x + τ − y)− c f (x− y)| dx

]
dy
|y|

≤ 1
4π

m(K)
ε

F(t, τ)
+

1
4π

ε

F(t, τ)

∫
(x+τ−K)\(x−K)

∫
Λt

dy
|y| , t ≥ t1(ε, τ).

Keeping in mind the assumption (27) and the notion introduced in Definition 3, this
simply implies the required statement.

We can similarly analyze the two-dimensional analogue of this example by considering
the logarithmic potential of f (·), given by:

u(x) :=
(−1)
2π

∫
R2

ln(|y|) · f (x− y) dy, x ∈ R2;

see also [31] (Remark 3.7, p. 128) and [7].
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