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Abstract: Social robots keep proliferating. A critical challenge remains their sensible interaction
with humans, especially in real world applications. Hence, computing with real world semantics is
instrumental. Recently, the Lattice Computing (LC) paradigm has been proposed with a capacity
to compute with semantics represented by partial order in a mathematical lattice data domain. In
the aforementioned context, this work proposes a parametric LC classifier, namely a Granule-based-
Classifier (GbC), applicable in a mathematical lattice (T,v) of tree data structures, each of which
represents a human face. A tree data structure here emerges from 68 facial landmarks (points)
computed in a data preprocessing step by the OpenFace software. The proposed (tree) representation
retains human anonymity during data processing. Extensive computational experiments regarding
three different pattern recognition problems, namely (1) head orientation, (2) facial expressions, and
(3) human face recognition, demonstrate GbC capacities, including good classification results, and a
common human face representation in different pattern recognition problems, as well as data induced
granular rules in (T,v) that allow for (a) explainable decision-making, (b) tunable generalization
enabled also by formal logic/reasoning techniques, and (c) an inherent capacity for modular data
fusion extensions. The potential of the proposed techniques is discussed.

Keywords: Granular Computing; human-robot interaction; machine learning; tree data structures

1. Introduction

Advances in enabling technologies, both software and hardware, have encouraged
a widespread proliferation of social robots in several application domains, including
education, therapy, services, entertainment, and arts [1–5]. In all applications, the capacity
of social robots to sensibly interact with humans is critical [6–8].

In general, the interaction of a social robot with a human is driven by a mathematical
model implemented in software. The interest here is in “intelligence models” in the
following sense. First, a “model” here is defined as “a mathematical description of a
world aspect”; second, “intelligence” here is defined as “a capacity for both learning and
generalization, including non-numerical data as well as explanations as described next.

Conventional models typically regard the (physical) world; therefore, they are devel-
oped in the Euclidean space RN, based on real numbers stemming from sensor measure-
ments [9]. However, when humans are involved, in addition to sensory data during their
interaction with one another, humans also employ non-numerical data, such as spoken
words/language, symbols, concepts, rules, moral principles, and others. Therefore, for
a seamless interaction with humans, social robots are required to also cope with non-
numerical data. Another requirement, in the European Union, is the observance of the
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General Data Protection Regulation (GDPR); hence, anonymous data are preferable during
data processing [10]. Due to the personalized character of social robot-human interaction, it
is preferable to induce a model from personal data by machine-learning techniques, rather
than develop a model based on “first principles”.

Learning and generalization here are considered as necessary, but not sufficient, condi-
tions for intelligence. For instance, conventional steepest-descent methods pursue learning
by optimizing an energy-type “objective function”; moreover, they pursue generalization
by interpolation and/or extrapolation. However, conventional models typically operate
as black-boxes that carry out number-crunching and fall short of providing with common
sense explanations. In addition, the latter models cannot manipulate non-numerical data
(e.g., symbols or data structures). In the aforementioned context, the long-term interest
here is in a simple abductive classifier model toward inducing world representations that
are not merely descriptive, but also explanatory [11].

A mathematical approach for modeling has been proposed recently, based on the
fact that popular data domains are partially (lattice) ordered; for instance, the Cartesian
product RN, hyperboxes in RN, Boolean algebras, measure spaces, decision trees, and
distribution functions are partially (lattice) ordered. In conclusion, the Lattice Computing
(LC) information processing paradigm has been proposed as “an evolving collection of
tools and methodologies that process lattice ordered data per se including logic values,
numbers, sets, symbols, graphs, etc.” [9,12–17]. Different authors have recently correlated
the emergence of lattice theory with the proliferation of computers [18]. In the context of
LC, decision-making instruments have been introduced such as metric distances, as well as
fuzzy order functions; moreover, effective LC models have been proposed [12,19–21].

Since information granules are partially ordered [20], Granular Computing [22] can be
subsumed in Lattice Computing. Note that mathematical Lattice Theory or, equivalently,
Order Theory, is the common instrument for analysis regarding LC, fuzzy systems [23],
formal concept analysis and rough sets approximations [24], and other.

Previous LC classifiers have engaged non-numerical data including, lattice-ordered
gender symbols, and events in a probability space, as well as structured data, namely
graphs. However, the latter (graphs) have been used as instruments for ad hoc feature
extraction of vectors [25]. In other words, a graph in previous LC works has been used
only once, for data preprocessing. Similarly, different authors have recently employed
an interesting hierarchic and/or a linguistic descriptor approach for extracting vectors of
features regarding face recognition problems [26,27].

This work considers three social robot-human interaction related problems regard-
ing visual pattern recognition of (1) head orientation, in order to quantify the engage-
ment/attention of a human, (2) facial expressions, in order to adjust behavior according to
a human’s emotional state, and (3) human faces, in order to address a human personally. In
fact, this work focuses on the GbC classifier itself, rather than on human-robot interaction
applications. The latter application is a topic for future work.

The motivation of this work is the solution of specific research problems, as explained
subsequently. A social robot-human interaction calls for decision-making based on multi-
modal data semantics. However, most of the state-of-the-art models are developed strictly
in the Euclidean space RN, thus ignoring other types of data per se, such as structured data.
On the other hand, LC based models have the capacity to rigorously fuse multimodal data
per se, based on the fact that, first, popular data types are lattice-ordered and, second, the
Cartesian product of mathematical lattices is also a lattice; in particular, this preliminary
work considers trees data structures for classification. Furthermore, state-of-the-art models,
such as deep learning neural networks, typically require huge training data sets, whereas,
the proposed techniques here can be used with orders of magnitude fewer training data. In
addition, state-of-the-art methods such as deep learning often cannot explain their answers,
whereas the proposed method can explain its answers by granular rules induced from tree
data structure. In a similar vein, note that image recognition systems have been reported
lately in the context of fuzzy logic that can explain their decisions using type-2 fuzzy sets,
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fuzzy relations, and fuzzy IF-THEN rules [28]. Nevertheless, state-of-the-art methods
typically call for a different feature extraction per classification problem, whereas the pro-
posed method here engages the same features in three different classification problems.
Finally, state-of-the-art methods often do not typically retain the anonymity of the human
subjects, especially when they process images, whereas the proposed method extracts facial
landmark features in a data preprocessing step and thereafter, i.e., during data processing
such as training, it retains the anonymity of the human subjects.

The proposed classification techniques apply fairly “expensive” real world data. There-
fore, they differ from alternative machine (deep) learning techniques, such as generative
adversarial networks (GANs) [29], which massively generate new data with the same statis-
tics as the training set. The proposed techniques also differ from probabilistic graphical
models, such as the variational autoencoders (VAEs) [30], in that the latter use graphs to
optimally estimate probability distributions of vector data, whereas GbC here processes
graph (tree) data per se.

The novelties of this work include, first, a unifying, anonymous representation of a
human face for face recognition; second, the introduction of the Granule-based-Classifier
(GbC) parametric model that processes trees data structures; third, the induction of granular
rules, involving tree data structures, toward an explainable artificial intelligence (AI); and
fourth, the far-reaching potential of pursuing creativeness by machines based on a lattice
order isomorphism.

This work is organized as follows: Section 2 outlines the mathematical background.
Section 3 presents computational considerations. Section 4 describes the Granule-based-
Classifier (GbC). Section 5 demonstrates computational experiments and results. Finally,
Section 6 discusses comparatively the reported results; furthermore, it describes potential
future work extensions.

2. Mathematical Background

Useful mathematical lattice theory definitions and instruments have been presented
elsewhere [23,31,32]. This section customizes the aforementioned instruments to a specific
lattice, as explained in the following.

Consider a basic tree data structure, including a specific number L + 1 of levels, as well
as a specific number Ni of nodes per level, where i∈{0, . . . , L}; moreover, let each parent-
node have a specific number of children-nodes. For instance, for the tree in Figure 1a, it
is L = 3, N0 = 1, N1 = 2, N2 = 4, and N3 = 8; the root node n0 in Figure 1a has 2 children-
nodes; node n1,1 has 1 child-node; node n1,2 has 3 children-nodes, etc. Each node ni,j is
identified by two indices, namely a level number i and an index number j∈{1, . . . , Ni}; al-
ternatively, a (tree) node can be identified by a single cardinal integer number k∈{1, . . . , N},
where N = N0 + N1 + . . . + NL. A basic tree data structure gives rise to a set T of trees as
described next.

Let each tree node nj be associated with a constituent lattice (Lj,v), j∈{0, . . . , N}. A
specific tree instance emerges by attaching a specific lattice (Lj,v) element xj to node nj,
j∈{0, . . . , N}. The interest here is in the set T of all tree instances—Note that all the trees in
T have identical structure, and differ only in the lattice elements attached to their nodes.

Consider the Cartesian product lattice (P,v) = (L1 × . . . × LN,v), where, given that
Px,Py∈P with Px = (x1, . . . , xN) and Py = (y1, . . . , yN), the corresponding lattice meet and
join are defined as PxuPy = (x1, . . . , xN) u (y1, . . . , yN) = (x1uy1, . . . , xNuyN), and PxtPy
= (x1, . . . , xN) t (y1, . . . , yN) = (x1ty1, . . . , xNtyN), respectively; moreover, (x1, . . . , xN)
v (y1, . . . , yN)⇐⇒ x1vy1, . . . , xNvyN. Furthermore, consider the lattice (T,v) of trees
defined as (order-)isomorphic with lattice (P,v). We remark that, on the one hand, the set
T is convenient for interpretations, whereas, on the other hand, the set P lends itself to
calculations. Next, a positive valuation function is defined constructively in lattice (T,v).
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Figure 1. (a) A tree data structure example. (b) A lattice results in from the tree above by inserting an additional level
including the least lattice element O. The tree root corresponds to the greatest lattice element I.

Consider a basic tree structure, e.g., the one in Figure 1a, enhanced to a complete
lattice by inserting a single node O, namely the least element, at an additional level at the
bottom of the lattice’s Hasse diagram, as shown in Figure 1b. The corresponding greatest
element I is the tree root, i.e., I = n0.

Let vj: Lj→R, j∈{1, . . . , M} be a positive valuation function defined on every con-
stituent lattice (Lj,v), j∈{1, . . . , M}. Recall that (1) a positive valuation function in lattice
(L1 × . . . × LM,v) which may be defined by v = v1 + . . . + vM, and (2) a positive valuation
function in lattice (Lj,v), j∈{1, . . . , M} which may also be defined by λjvj (.), where λj > 0 is
a real number multiplier.

Given a basic tree structure, a positive valuation function V: T→R can be defined
constructively (bottom up), as explained subsequently. Let np be a parent-node with
children-nodes nc, c∈{1, . . . , C}. Let vp and vc, c∈{1, . . . , C} be positive valuation functions
defined locally on the tree nodes, respectively. If np is a tree leaf node, at level L, then V (.)
is defined as V = vp—For the least element O, it is defined as V (O) = 0; otherwise, V (.)
is defined as vp + kp (v1 + . . . + vC) in the Cartesian product lattice (L = Lp × L1 × . . . ×
LC,v), where kp > 0. In conclusion, the positive valuation function on the greatest element
I is defined as the positive valuation function of the whole tree. A concrete example is
shown in Section 3.

We remark that, instead of attaching a single lattice element to a basic tree node,
a lattice interval may be attached. In the latter case, a forest or, equivalently, grove of
individual trees instances is defined in T.

The above mathematical instruments are customized further, as detailed in the follow-
ing section.

3. Practical Computational Considerations

This section introduces, first, a structured representation of a human face and, second,
a positive valuation function in the corresponding mathematical lattice.

All constituent lattices, considered below in a basic tree data structure, emerge from
the chain of real numbers (R,≤), where “≤” is the conventional inequality relation between
real numbers. A positive valuation function v: R→R in (R,≤) is a strictly increasing
real function; moreover, a dual isomorphic function θ: (R,≤)→(R,≥) in (R,≤) is a strictly
decreasing real function. In particular, the constituent lattice of interest here is the sublattice
of conventional intervals of the Cartesian product lattice (R×R,≥×≤).
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3.1. Structured Human Face Representation

The human face conveys a lot of potentially useful information. For feature extraction,
in a data preprocessing step, established software was used, namely OpenFace library [33],
which receives a 2-dimensional image, i.e., a camera frame as an input and outputs the
2-dimensional coordinates of 68 facial landmarks (points) on the contours of the brows,
eyes, nose, mouth, and jaw, as shown in Figure 2a.

A structured representation of facial landmarks points was pursued toward retaining
structural semantics regarding face topology. More specifically, facial landmark points
were ad hoc structured in a three-level tree hierarchy of vectors in polar coordinates (r,ϕ),
as follows [34,35].

Figure 2. Cont.
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Figure 2. (a) 68 facial landmarks points. (b) The unit vector defined along the nose from landmark
point 27 to landmark point 30. The first three primary vectors are also shown from landmark point
27 to the centers of the eyes and mouth, respectively. (c) Secondary vectors from the center of the left
eye (primary point) to (secondary) landmark points on the left brow and left eye contour.

The first tree level includes the root of the tree which corresponds to the nose. The
latter defined the unit vector u from landmark point 27 to landmark point 30 on the nose
(Figure 2b). On the one hand, all vector lengths, for example, the ones shown in Figure 2b,c,
were measured against the unit vector u. On the other hand, all vector angles were
measured clockwise from a line with unit vector x vertical to u, such that the cross-product
u × x points outward Figure 2. The second tree level includes nodes dubbed primary that
identify primary features or, equivalently, primary points corresponding to primary vectors.
The latter include vectors from landmark point 27 to the center of each eye, whose positions
are calculated as the centers of mass of the respective eye contour; a third primary vector is
again from landmark point 27 to the center of the mouth, which is computed as the center of
mass of the mouth’s outer contour; the next five primary vectors are again from landmark
point 27 to the five landmark points 31, . . . , 35 on the nose end (i.e., the nostrils). The third
tree level includes nodes dubbed secondary that identify secondary features or, equivalently,
secondary points corresponding to secondary vectors. The latter include vectors from the end
of a primary vector to landmark points on the left/right eyes/brows, outer mouth, and
jaw contours. For example, Figure 2c shows (magnified) a number of secondary vectors
corresponding to the left eye/brow in the window, shown inside Figure 2b. A secondary
vector is always in tandem with a primary vector. In all, there are 8 primary points and
51 secondary points.

Figure 3a summarizes the basic tree structure considered. A numerical label on a
tree edge in Figure 3a indicates the index of the corresponding facial landmark point
in Figure 2 that defines the end of a primary/secondary vector, where, in the interest of
simplicity, adjacent tree nodes are grouped together.

By defining the back of a nose as the unit vector, the proposed tree data structure
becomes a rotation/scale/translation invariant. Moreover, the proposed transformation,
from a geometrical topology of facial landmark points to a basic tree data structure, is
invertible. In conclusion, the tree data structure in Figure 3b emerges, which represents
a human face with its nodes numbered sequentially from 0 to 59. In other words, data
preprocessing considers a human face image as an input, and it outputs a human face
structural representation, which is orders of magnitude smaller than an image as well as it
is anonymous.
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Figure 3. The considered tree structure representation of a human face. (a) The primary points
‘LEyeCenter’, ‘REyeCenter’ and ‘MouthCenter’ are computed from facial landmark points, as detailed
in the text. All facial landmark points are labeled numerically using the labels (i.e., numbers) of
Figure 2. (b) The above facial points are re-numbered sequentially. In all, there are 8 primary points
(on the first tree level) and 51 secondary points (on the second tree level).

Based on the mathematics presented in Section 2, a (structured) positive valuation
function is defined next.

3.2. A Structured Positive Valuation Function

Given the basic tree structure of Figure 3, according to the analysis in Section 2,
consider the Cartesian product lattice (L0 × . . . × L59,v) that corresponds to all the trees
of interest. A structured positive valuation function is computed as follows.

For a leaf node nj, j∈{4, . . . , 59} the positive valuation function is vj (uj), whereas for
the nodes nj, j∈{1,2,3} it is:

n1: vb1(u1,u9, . . . , u19) = v1(u1) + k1[v9(u9) + . . . + v19(u19)]

n2: vb2(u2,u20, . . . , u30) = v2(u2) + k2[v20(u20) + . . . + v30(u30)]

n3: vb3(u3,u31, . . . , u59) = v3(u3) + k3[v31(u31) + . . . + v59(u59)].

For the root node locally, it is assumed v0 (u) = 0. Therefore, for a specific tree instance
T its positive valuation is defined from the leaves upward as:

V(T) = v1(u1) + . . . + v8(u8) + k1[v9(u9) + . . . + v19(u19)] + k2[v20(u20) + . . . + v30(u30)] + k3[v31(u31) + . . . + v59(u59)] (1)

Using basic mathematical lattice theory results, it follows that a metric distance D (.,.)
between two trees Tu = (u1, . . . , u59) and Tw = (w1, . . . , w59) is computed as:

D(Tu,Tw) = V(TutTw) − V(TuuTw) (2)

The distance D (Tu,Tw) can be computed from local distances at each tree node as:

D(Tu,Tw) = d1(u1,w1) + . . . + d8(u8,w8) + k1[d9(u9,w9) + . . . + d19(u19,w19)] + k2[d20(u20,w20) + . . . + d30(u30,w30)] +
k3[d31(u31, w31) + . . . + d59(u59, w59)]
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Two fuzzy order functions are computed as:

σt(Tu,Tw) = V(Tw)/V(TutTw) (3)

σu(Tu,Tw) = V(TuuTw)/V(Tu) (4)

where V (TutTw) and V (TuuTw) are calculated, respectively, as:

V(TutTw) = V(u1tw1, . . . , u59tw59) = v1(u1tw1) + . . . + v8(u8tw8) + k1[v9(u9tw9) + . . . + v19(u19tw19)] +
k2[v20(u20tw20) + . . . + v30(u30tw30)] + k3[v31(u31tw31) + . . . + v59(u59tw59)]

and:

V(TuuTw) = V(u1uw1, . . . , u59uw59) = v1(u1uw1) + . . . + v8(u8uw8) + k1[v9(u9uw9) + . . . + v19(u19uw19)] +
k2[v20(u20uw20) + . . . + v30(u30uw30)] + k3[v31(u31uw31) + . . . + v59(u59uw59)]

An alternative fuzzy order function σc: T × T→[0,1] can be computed by a convex
combination of local fuzzy order functions at each tree node [36] as

σc(Tu,Tw) = c1σ(u1,w1) + . . . + c59σ(u59,w69) (5)

where c1 + . . . + c59 = 1, and σ could be either exclusively σt or exclusively σu. Recall
that any engagement of a fuzzy order function is named Fuzzy Lattice Reasoning (FLR);
more specifically, a fuzzy order function (σ) supports two modes of reasoning, namely
Generalized Modus Ponens and Reasoning by Analogy [9].

4. The Granule-Based-Classifier (GbC)

The previous sections have detailed a structured human face representation by a tree
data structure in lattice (T,v). In the following, Algorithm 1 describes a machine-learning
scheme with a capacity to induce knowledge from tree data structures in the form of
granular rules for classification.

Algorithm 1. GbC: Granule-based-Classifier (training phase)

0: Set a threshold size ∆T = ∆0;
1: Set a (small) size step δ;
2: Randomly partition the training data in each class in clusters, such that the lattice-join of all the
data in a cluster has size less than ∆T;
3: If two granules in different classes overlap then

Abolish both (overlapping) granules into the training data they were induced from;
Set ∆T ← ∆T − δ;
Goto 2;

else
End the training phase.

The basic idea behind GbC for training (i.e., Algorithm 1) is that, in the beginning,
Algorithm 1 computes uniform granules, in the sense that all the data within a uniform
granule belong to the same class of a user-defined maximum threshold size, ∆T = ∆0. If
granules in different classes overlap, then, to avoid potential contradictions, overlapping
granules are abolished; next, GbC resumes training on the data that induced overlapping
granules, using a smaller threshold size ∆T ← ∆T − δ. The latter procedure repeats until
(smaller) uniform granules are computed. Consequently, the computational complexity
of Algorithm 1 (i.e., GbC training) is computed as follows. Given that the number of the
training data is N, it takes time O (N × N) to compute all different sets of information
granules. Then, for each set of information granules, it takes time O (N× N) to test possible
overlaps between granules. The latter computations repeat O (∆0/δ) times. Therefore, the
computational complexity of Algorithm 1 (i.e., GbC training) is O (N4∆0/δ).

As soon as the training data have been replaced by (uniform) granules, the corre-
sponding class label is attached to each granule. In the aforementioned manner, pairs (g,l)
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emerge, where g is a granule, and l is its label. A pair (g,l) is interpreted as the rule “if g
then l”, symbolically g→l. Decision-making, i.e., classification, is carried out by assigning a
testing datum to a granule based on either a lattice metric distance (27D) or a lattice fuzzy
order function (σ). In conclusion, the corresponding “winner” granule label is assigned to
the testing datum as Algorithm 2 shows.

Algorithm 2. GbC: Granule-based-Classifier (testing phase)

0: Let (gi, ci), i∈{1, ..., M} be all the pairs of labeled granules, where gi is a granule and ci is its
corresponding label
Let g0 be an input granule to be classified
1. Calculate J , argmax

i∈{1,...,M}
σ(g0, gi)

2. Define the class of g0 as c0 = cj

Apparently, the computational complexity of Algorithm 2 (i.e., GbC testing) is O
(NrNs), where Nr and is Ns is the number of the training and testing data, respectively.

Recall that the representation of a granule by a lattice interval induced from all the
training data in a granule involves two types of FLR generalization, namely Type I Gener-
alization and Type II Generalization [23]; more specifically, Type I Generalization refers to
inclusion of points in a granule without explicit evidence, whereas Type II Generalization
means decision-making beyond a granule.

The GbC scheme is potentially applicable on any lattice data domain including,
in particular, the lattice (T,v) of tree data structures described in Section 2. Two basic
versions of GbC have been considered here, namely GbCvector and GbCtree, as subsequently
explained. More specifically, for k1 = k2 = k3 = 1 in Equation (1), no tree structure is
considered in the calculations; therefore, the corresponding classifier is called GbCvector.
Otherwise, if at least one of k1 or k2 or k3 is different than 1, then a tree structure is
considered in the calculations; therefore, the corresponding classifier is called GbCtree.

As a result of inducing trees in step-1 of Algorithm 1, a tree data structure in Figure 3b
may represent a forest or, equivalently, a grove, that is a set of trees, instead of representing
a single (individual) tree. We remark that a grove of trees is also called interval-tree,
whereas an individual tree is a trivial interval-tree. Differences of the GbC with other
decision-tree classifiers are summarized next.

The tree data structure in Algorithm 1 is constant as shown in Figure 3, whereas the
data induced tree data structures of alternative decision-tree classifiers are not constant [37].
Note that GbC induces the contents of its tree nodes instead. Furthermore, the forests
of trees that GbC considers are granules/neighborhoods of individual trees, whereas
forests of trees in the literature typically consist of individual trees without considering
any neighborhood of trees whatsoever [38].

The following section demonstrates applications of GbC.

5. Computational Experiments and Results

Recall that the motivation of this work is social robot–human interaction applications;
in particular, the focus here is on machine vision applications. In particular, it turns out
that during social robot–human interaction, the robot needs to keep (1) quantifying the
engagement/attention of the human it interacts with, (2) modifying its behavior accord-
ing to a human’s emotions—the latter is directly associated with facial expressions, and
(3) personally addressing the human it interacts with. Hence, this section deals with three
discrete pattern recognition problems, in a unifying manner, in the sense that the same
representation of a human face is used in all three problems. Instead of developing an
intelligence model based on “first principles”, a machine-learning model is assumed here
that may induce explanatory knowledge (i.e., rules) from real world data; more specifically,
a GbC scheme is used. The latter has the advantage of processing structured data per se as
detailed next.
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A tree data structure was induced from a single camera frame, as explained in
Section 3.1, including 59 primary and secondary nodes each of whom stores a pair (r,ϕ) of
polar vector coordinates. In particular, a tree data structure stored a pair ([r,r], [ϕ,ϕ]) of
trivial intervals, where both values r and ϕ were normalized over the interval [0, 1], such
that 0 corresponds to the minimum, whereas 1 corresponds to the maximum over all the
corresponding feature values. Regarding the data processing time, it took clearly less than
1 s overall to compute the image’s tree data structure representation in Figure 3.

Two types of positive valuation functions were employed exclusively per node includ-
ing, first, linear functions:

vj(x) = λjx (6)

where j∈{1, . . . , N = 59}, for both variables r and ϕ and, second, sigmoid functions:

vj(x) = Aj/(1 + exp{−λj(x − µj)}) (7)

where j∈{1, . . . , N = 59}, for both variables r and ϕ. In addition, the following function θ (x)
was used:

θ(x) = 1 − x (8)

for both variables r and ϕ, always.
Equation (5) was used with c1 = . . . = c8 = 1/C, c9 = . . . = c19 = k1/C, c20 = . . . = c30

= k2/C, and c31 = . . . = c59 = k3/C, where C = 8 + 11k1 + 11k2 + 29k3 and k1, k2, k3 are the
coefficients in Equation (1).

To optimize classification performance, a typical genetic algorithm was employed
with a population of 500 individuals for 50 generations. First, for the linear Equation (6),
it was λj∈[0.01,10], j∈{1, . . . , N = 59} for both variables r and ϕ. Second, for the sigmoid
Equation (7), it was Aj∈[0.1,20], λj∈[0.01,10] and µj∈[−50,50], j∈{1, . . . , N = 59} for both
variables, r and ϕ. Furthermore, for both linear and sigmoid positive valuation functions,
it was kj∈[0.1,50], j∈{1,2,3} in Equation (1) for both variables r and ϕ. Figure 4 displays the
genetic algorithm chromosome for linear positive valuation functions. Unless otherwise
stated, the experiments below used a standard ten-fold cross-validation.

Figure 4. Chromosome of a genetic algorithm for linear positive valuation functions.

5.1. Head Orientation Recognition Experiments

A human’s head orientation is important toward quantifying the human’s engage-
ment/attention during interaction with a robot [39]. The estimation of head orientation
was dealt with here as a classification problem, as follows.

Data were recorded in the HUMAIN-Lab, including snapshots of a human head
in various head poses. Nine basic orientations (i.e., classes) of interest were considered,
namely Upper Left, Up, Upper Right, Left, Front, Right, Lower Left, Down, and Lower
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Right. The resolution of the class “Front” was increased by considering three sub-classes,
namely “Front Left”, “Front”, and “Front Right”, as shown in Figure 5.

Figure 5. A total of 11 head orientations were assigned in 9 classes. Each head orientation was
assigned to a different class but the three head orientations “Front Left”, “Front”, and “Front Right”
were assigned to a single class, namely “Front”.

On the one hand, the training data included 100 image frames for each one of the
11 head orientations of Figure 5. All the training data were acquired at distance 40 cm,
under normal light. On the other hand, the testing data included 100 image frames for
each one of the 9 basic head orientations for four different environmental conditions; in
particular, all four combinations were considered of a subject distance from the camera
at either 40 cm or 100 cm, under lighting conditions considered either normal or dim,
corresponding to minimum light output (lumens) of 1600 and 90, respectively. In con-
clusion, one testing experiment was carried out for each one of the aforementioned four
environmental conditions.

Training/testing data frames, where a face was fully detected by the OpenFace library,
were considered exclusively. Each training/testing image was converted to its correspond-
ing (trivial) tree representation, as described in Section 3.1, including 59 features, i.e.,
N = 59. Then, a GbC scheme was applied.

In this experiment interval-trees were computed of the maximum possible size, ∆.
Hence, 11 interval-trees prototypes were computed; that is, one prototype per data cluster,
respectively. For instance, Figure 6a displays a trivial-tree, whereas Figure 6b displays an
interval-tree. Recall from Section 4 that an interval-tree T, together with the label l attached
to it, is interpreted as a granular rule “if T then l”, symbolically T→l, where the label l is
an element of the set {Upper Left, Up, Upper Right, Left, Front, Right, Lower Left, Down,
Lower Right}.

Figure 7a demonstrates how the values of the metric distance function Equation (2)
change; similarly, Figure 7b demonstrates how the values of fuzzy order function Equa-
tion (3), as well as Equation (4), both change for an arbitrary frame, namely fL, of the class
“Upper Left” versus all class prototypes. Figure 7a confirms, as expected, that the frame
fL is nearest to the class prototype “Upper Left”; similarly, Figure 7b confirms, also as
expected, that the frame fL is mostly similar to the class prototype “Upper Left”. Note that
Equation (3) results in larger values than Equation (4), since partly overlapping trees result
in smaller values for Equation (4) than they do for Equation (3).
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Figure 6. (a) A trivial-tree represents a single head orientation image frame. (b) An interval-tree
represents a neighborhood of trivial-trees; in other words, an interval-tree represents an information
granule or, equivalently, a grove of trivial trees.
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Figure 7. Two “measures of similarity” between an arbitrary testing frame of the class ‘Upper Left’
head orientation for 40 cm/normal environmental conditions versus nine head orientations (classes)
prototypes regarding (a) the metric distance function Equation (2), and (b) the fuzzy order functions
Equations (3) and (4), where the solid line corresponds to Equation (3) (i.e., σt), whereas the dashed
line corresponds to Equation (4) (i.e., σu).

A preliminary work [34] has considered (1) 11 prototypes, (2) normalized r and
ϕ values over the interval [0,1], (3) the r and ϕ separately, and (4) the functions v (x) = x and
θ (x) = −x. For comparison reasons, the corresponding results are repeated, in a different
format, in Table 1. In particular, a generic geometrical classification scheme has employed
as inputs the 68 facial landmarks (points) of Figure 2a. The results in Table 1 show that the
GbCvector can be clearly superior to a generic geometrical classification scheme.

Table 1. Results by the GbCvector classifier with separate vectors r and ϕ for four different environmental conditions.

Distance/Lighting
Environmental Conditions

Geometrical Representation Percentage (%) of Correct Classifications Using

D σt σu

40 cm/Normal
83.9 86.8 86.4 78.3 r

68.4 96.3 91.0 ϕ
40 cm/Dim 60.6 66.7 58.7 50.4 r

43.7 61.8 50.9 ϕ
1 m/Normal 63.9 84.2 71.3 66.8 r

53.2 77.4 73.1 ϕ
1 m/Dim 60.6 46.7 28.1 21.6 r

32.8 43.9 42.3 ϕ

Next, the r and ϕ were considered concatenated; all other considerations were kept
the same. The corresponding classification results are shown in Table 2.
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Table 2. Results by the GbCvector classifier with concatenated vectors r and ϕ for four different
environmental conditions.

Distance/Lighting Environmental
Conditions

Percentage (%) of Correct Classifications Using

D σt σu

40 cm/Normal 87.2 99.6 86.4
40 cm/Dim 58.6 65.7 58.1

1 m/Normal 83.4 86.3 75.9
1 m/Dim 62.5 48.2 38.2

Next, in addition to the latter consideration, the function θ (x) = 1 − x was employed
by implementing the complement coding technique motivated from models of brain neurons.
The corresponding classification results are shown in Table 3.

Table 3. Results by the GbCvector classifier with complement coding for four different
environmental conditions.

Distance/Lighting Environmental
Conditions

Percentage (%) of Correct Classifications Using

D σt σu

40 cm/Normal 87.2 98.2 96.7
40 cm/Dim 58.6 76.5 74.4

1 m/Normal 83.4 79.8 77.2
1 m/Dim 62.5 60.3 56.0

Next, in addition to the latter consideration, the functions vk (x) = λkx, k∈{1, . . . , 59}
were used optimized. The corresponding classification results are shown in Table 4.

Table 4. Results by the optimized GbCvector classifier for four different environmental conditions.

Distance/Lighting Environmental
Conditions

Percentage (%) of Correct Classifications Using

D σt σu

40 cm/Normal 97.8 99.4 97.3
40 cm/Dim 75.8 78.3 76.5

1 m/Normal 96.0 93.8 94.0
1 m/Dim 71.2 62.4 59.4

Finally, in addition to the latter consideration, the GbCtree scheme was used; fur-
thermore, the coefficients k1, k2, k3 (for r) and k4, k5, k6 (for ϕ) were optimized. The
corresponding head pose classification results are shown in Table 5.

Table 5. Results by the optimized GbCtree classifier for four different environmental conditions.

Distance/Lighting Environmental
Conditions

Percentage (%) of Correct Classifications Using

D σt σu

40 cm/Normal 97.8 99.3 99.1
40 cm/Dim 78.4 82.6 82.4

1 m/Normal 97.0 94.5 94.8
1 m/Dim 74.6 65.7 67.2

The results of this experiment are discussed comparatively in Section 6.

5.2. Facial Expression Recognition Experiments

Human facial expressions are important as they are closely associated with emotions.
This is essential information for a sensible social robot-human interaction. Therefore,
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this application regarded facial expression recognition. More specifically, the Extended
Cohn-Kanade (CK+) benchmark dataset was employed, including 327 image sequences
partitioned in seven discrete emotion labeled classes, namely, anger, contempt, disgust,
fear, happiness, sadness, and surprise [40,41].

An individual image sequence consists of 10 to 60 (image) frames, where a frame is
typically a 640 × 490 or 640 × 480 array of pixels; each of the latter stored either an 8-bit
gray scale or a 24-bit color value. One of the frames per image sequence, typically the last
one, was characterized in the database as “peak (of emotional intensity)”. The latter is the
only image used here from its corresponding image sequence in the experiments below.
Similar to before, an image was represented by a trivial-tree.

In this application, only facial landmarks points involved in facial expressions were
considered (Figure 2a). The selection of the aforementioned facial landmarks was based
on the Facial Action Coding System (FACS), as well as the Action Units (AU) of the facial
expressions for emotions [42,43], as shown in Table 6. In particular, the first two columns
of Table 6 associate an emotion with AUs whose name is shown in the third column;
furthermore, the fourth column displays the corresponding landmark points selected by
an expert. In conclusion, in addition to left/right eye and mouth centers from Figure 2a,
the following 22 landmarks points have been selected: 31, 33, 35 (from NoseEnd), 17,
19, 21, 36, 39 (from the left eye/brow), 22, 24, 26, 42, 45 (from the right eye/brow), 48,
51, 54, 57, 60, 62, 64, 66 (from the inner/outer mouth), and 8 (from the Jaw). Hence, a
reduced tree resulted compared to that of Figure 3; moreover, Equations (1) and (5) were
simplified accordingly. Note that a couple of empty sets appear in the fourth column of
Table 6 since, for two AUs, there were no landmark points among the 68 facial landmark
points; more specifically, there were no landmarks for either AU 6 nor AU 14 in Table 6. In
conclusion, the resulted tree representation consisted of 25 nodes, i.e., N = 25. Hence, the
data employed for classification here were reduced from 640 × 490 = 313,600 real numbers
per image down to 25 × 2 = 50 real numbers per tree, that is, orders of magnitude fewer
real numbers.

Table 6. Association of specific emotions with facial actions units and ultimately with facial landmarks points.

Emotion Action Units (AU) Description Corresponding Landmarks (Expert Selected)

Happiness 6, 12 Cheek Raiser, Lip Corner Puller {}, {48, 54, 60, 64}

Sadness 1, 4, 15 Inner Brow Raiser, Brow Lowerer, Lip Corner
Depressor {21, 22}, {17, 19, 21, 22, 24, 26}, {48, 54, 60, 64}

Surprise 1, 2, 26 Inner Brow Raiser, Outer Brow Raiser, Jaw
Drop {21, 22}, {17, 26}, {8}

Fear 1, 2, 4, 5, 7, 20, 26
Inner Brow Raiser, Outer Brow Raiser, Brow
Lowerer, Upper Lid Raiser, Lid Tightener, Lip

Stretcher, Jaw Drop

{21, 22}, {17, 26}, {17, 19, 21, 22, 24, 26}, {36, 39,
42, 45}, {36, 39, 42, 45},{48, 51, 54, 57, 60, 62, 64,

66}, {8}

Anger 4, 5, 7, 23 Brow Lowerer, Upper Lid Raiser, Lid
Tightener, Lip Tightener

{17, 19, 21, 22, 24, 26}, {36, 39, 42, 45}, {36, 39, 42,
45}, {48, 51, 54, 57, 60, 62, 64, 66}

Disgust 9, 15, 16 Nose Wrinkler, Lip Corner Depressor, Lower
Lip Depressor {31, 33, 34}, {48, 54, 60, 64}, {57, 66}

Contempt 12, 14 Lip Corner Puller, Dimpler {48, 54, 60, 64}, {}

Table 7 displays the experimental results using both classifiers GbCtree and GbCvec-
tor with a linear Equation (6) positive valuation function, whereas Table 8 displays ex-
perimental results using both classifiers GbCtree and GbCvector with a sigmoid Equa-
tion (7) positive valuation function. Tables 7 and 8 display the classification results both
before (within parentheses) and after parameter optimization. It must be noted that
Tables 7 and 8 display results by two different sigma-join functions σt (.,.), computed by
Equations (3) and (5), respectively, as well as by two different sigma-meet functions σu (.,.),
computed by Equations (4) and (5), respectively.
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Table 7. Results by GbC classifiers both optimized and non-optimized (within parentheses) for linear positive valuation
function regarding facial expression recognition.

Distance/Lighting Environmental Conditions
Percentage (%) of Correct Classifications Using

D Ratio σt Equation (3)
[Convex σt Equation (5)]

Ratio σu Equation (4)
[Convex σu Equation (5)]

GbCtree 80.12 (52.75) 81.18 (66.29) 80.15 (66.99)
[69.52 (66.81)] [69.19 (66.99)]

GbCvector 78.32 (52.75) 79.88 (66.29) 79.88 (66.99)
[67.45 (66.81)] [68.02 (66.99)]

Table 8. Results by GbC classifiers both optimized and non-optimized (within parentheses) for sigmoid positive valuation
function regarding facial expression recognition.

Distance/Lighting Environmental Conditions
Percentage (%) of Correct Classifications Using

D Ratio σt Equation (3)
[Convex σt Equation (5)]

Ratio σu Equation (4)
[Convex σu Equation (5)]

GbCtree 84.69 (53.51) 84.79 (66.35) 84.87 (66.35)
[83.95 (65.47)] [83.77 (65.99)]

GbCvector 79.02 (53.51) 84.35 (66.35) 84.93 (66.35)
[82.75 (65.47)] [82.87 (65.99)]

In both Tables 7 and 8, on the one hand, when the distance D (..) was used, the best
classification resulted in a zero tree size, i.e., when each training datum was represented
by a trivial-tree; on the other hand, when a fuzzy order function was used, then the best
classification results were obtained for 5 interval-trees prototypes per class.

Figure 8, for example, displays one rule induced from data of the class “happiness”.
Note that the rule consists of 25 pairs of intervals; each interval corresponds to normalized
polar, i.e., radial and angular, coordinates. It is clear that a pair of intervals defines
an annulus (ring) sector. For clarity, Figure 9a displays only a pair of annulus sectors,
namely the annulus sectors 21 and 23 underlined in Figure 8, on a human face in the class
“happiness”. Likewise, Figure 9b displays the corresponding pair of annulus sectors of
another rule, induced from data in the class “anger”.

Figure 8. A rule R, induced from data of the class “happiness”, defines a granule of primary
/secondary feature vectors by a conjunction of 25 annulus (ring) sectors in its antecedent. Underlined
annulus (ring) sectors 21 and 23 are displayed in Figure 9.
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Figure 9. Annulus sectors 21 and 23 corresponding, respectively, to two induced rule granules are
displayed along the mouth on a human face regarding the classes (a) “happiness”, thus confirming the
participation of AU6 (Cheek Raiser) and AU12 (Lip Corner Puller), and (b) “anger”, thus confirming
the participation of AU23 (Lip Tightener) (©Jeffrey Cohn).

An annulus (ring) sector identifies a granule of primary/secondary feature vectors.
For instance, Figure 9a, as well as Figure 9b, displays a pair of annulus sectors, that is, part
of a rule that recognizes a facial expression either “happiness” or “anger”, respectively.
Note that the aforementioned annulus sectors were computed by the lattice-join of the
“outer mouth left” and “outer mouth right” secondary feature vectors in the corresponding
granule. In particular, Figure 9a shows that both “happiness” prototypes are longer, wider,
and have an upward inclination, whereas Figure 9b shows that both “anger” prototypes are
shorter, narrower, and nearly horizontal. Figure 9 confirms that, as expected, from Table 6,
AUs participate per facial expression “happiness” and “anger” regarding lip movement.
Regarding “happiness”, there is a widening of the lip corners (AU6—Cheek Raiser), as well
as a raising of the cheeks (AU12—Lip Corner Puller), whereas for “anger”, there is a lip
tightening action (AU23—Lip Tightener). The latter is interpreted as explainable artificial
intelligence (AI), enabled by the fact that AU information is retained in the proposed tree
data representation all along during data processing.

The effectiveness of the 22 aforementioned selected features, corresponding to AUs
associated with specific emotions, was tested by running additional experiments using all
the 59 features considered in Section 3.1. In all cases, the GbCtree was employed due to its
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superior performance compared to GbCvector. In far more experiments, the employment
of the 59 features produced results 3 to 5 percentage points less than the results shown in
Tables 7 and 8, whereas in the remaining experiments, the employment of the 59 features
produced results comparable to the ones shown in Tables 7 and 8.

The results of this experiment are discussed comparatively in Section 6.

5.3. Face Recognition Experiments

Human face recognition is important in addressing a human personally during so-
cial robot–human interaction. In this application, the ORL benchmark dataset [44] was
considered, which includes 10 images of 40 different subjects. The images were acquired
under slight lighting variations, and with different facial expressions, as well as varying
facial details (e.g., glasses/no-glasses). All the images are taken against a dark uniform
background, with the subjects in an upright/front position. The size of each image is
92 × 112 pixels with 8-bit grey levels per pixel. The tree data structure of Figure 3b was
used and included 59 features, i.e., N = 59.

Table 9 displays experimental results using both classifiers GbCtree and GbCvec-
tor with a linear Equation (6) positive valuation function, whereas Table 10 displays
experimental results, using both classifiers GbCtree and GbCvector with a sigmoid Equa-
tion (7) positive valuation function. Both Tables 9 and 10 display the classification re-
sults after as well as before (within parentheses) parameter optimization. It is noted that
Tables 9 and 10 display results by two different sigma-join functions computed by Equa-
tions (3) and (5), respectively, as well as by two different sigma-meet functions, computed
by Equations (4) and (5),respectively.

Table 9. Results by GbC classifiers both optimized and non-optimized (within parentheses) for linear positive valuation
function regarding face recognition.

Distance/Lighting Environmental Conditions
Percentage (%) of Correct Classifications Using

D Ratio σt Equation (3)
[Convex σt Equation (5)]

Ratio σu Equation (4)
[Convex σu Equation (5)]

GbCtree 85.62 (51.71) 87.00 (53.50) 72.25 (53.25)
[72.50 (62.75)] [71.00 (53.00)]

GbCvector 84.37 (51.71) 86.25 (53.50) 70.50 (53.25)
[62.75 (62.75)] [61.00 (53.00)]

Table 10. Results by GbC classifiers both optimized and non-optimized (within parentheses) for sigmoid positive valuation function
regarding face recognition.

Distance/Lighting Environmental
Conditions

Percentage (%) of Correct Classifications Using

D Ratio σt Equation (3)
[Convex σt Equation (5)]

Ratio σu Equation (4)
[Convex σu Equation (5)]

GbCtree 87.75 (51.56) 87.75 (52.50) 87.75 (53.00)
[84.25 (54.00)] [84.75 (52.50)]

GbCvector 83.12 (51.56) 88.25 (52.50) 87.25 (53.00)
[84.00 (54.00)] [82.50 (52.50)]

In both Tables 9 and 10, when either the distance D (..) or a fuzzy order, either σt
(.,.) or σu (.,.), was used, the best classification resulted in a zero tree size, i.e., when each
training datum was represented by a trivial-tree.

The results of this experiment are discussed comparatively in Section 6.

6. Discussion and Future Work

This work has introduced the Granule-based-Classifier (GbC) parametric model.
Discussion of the results as well as potential future work is presented next.
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6.1. Discussion

The GbC was applied here on a mathematical lattice of tree data structures, each one
of whom represented a human face, thus retaining geometrical topology semantics. In
conclusion, the GbC here was applied to three different classification problems regarding
recognition of (1) Head Orientation, (2) Facial Expressions, and (3) Human Faces. The
same (tree data structure) representation was used in all aforementioned problems with
the following results.

First, in the Head Orientation recognition problem, the GbCvector performed, in
general, clearly better than a conventional classification scheme, as shown in Table 1. Fur-
thermore, Tables 2–4 have demonstrated that considering incrementally (a) concatenated
vectors r and ϕ, (b) the complement coding technique, and (c) optimized linear positive val-
uation functions, the classification accuracy progressively increased. GbCtree performance
versus GbCvector performance is discussed below. Note that the proposed, structural
human head representation has advantages compared to alternative methods [45], in
that the proposed representation can also be used for additional recognition tasks, as
subsequently explained.

Second, in the Facial Expression recognition problem, the GbC performed up to nearly
85%. Note that alternative, state-of-the-art classifiers in image pattern recognition have
reported performance up to 82% using an LBP scheme [46]; furthermore, deep learning
methods have reported higher classification accuracies, ranging from a mean of 91.80%
up to 96.92% [47], as well as from 91.64% up to 98.27% [48]. Note that alternative image
recognition methods had used orders of magnitude more data than GbC. In particular,
they had used multiple consecutive image frames until an emotion reaches a peak, where a
single image was represented by as many as 640 × 440 = 313,600 real numbers, whereas
a GbC, from an image sequence used only a single image frame, represented only by
25 × 2 = 50 real numbers; the latter are the x and y coordinates of 25 facial landmark points.

Third, in the Human Face recognition problem the GbC performed up to 88.25%.
Note that alternative, state-of-the-art classifiers in image pattern recognition have reported
classification accuracies ranging from 93% up to 96% by ANFIS [49], as well as from 92%
up to 100% by a CNN deep learning scheme [50]. Again, alternative image recognition
methods typically used orders of magnitude more data than GbC did. In particular, they
have used whole image frames, where a single image was represented by as many as
640 × 440 = 313,600 real numbers, whereas a GbC represented a single image frame by
59 × 2 = 118 real numbers; the latter are the x and y coordinates of 59 facial landmark points.

The clearly better classification performance of GbC in the Head Orientation recogni-
tion, compared to its performance in either Facial Expression- or Human Faces- recognition,
was attributed to the fact that the proposed tree data structure represents geometrical
topology semantics of a human face.

In the Facial Expression recognition, as well as in the Human Faces recognition
problem, a deep learning scheme (i.e., CNN) had better classification accuracy. It is
noteworthy that deep learning is employed in the OpenFace library to calculate the 68
facial landmarks (points) in a data preprocessing step. An advantage of the proposed
GbC classification schemes is that they all use the same data preprocessing to result in the
same human face representation, based on 68 facial landmarks (points), in three different
pattern recognition tasks. Hence, both GbC training and testing in three different pattern
recognition tasks is orders of magnitude faster than training and testing by task-specific
deep learning schemes for the same tasks. Such a wide applicability of the proposed GbC
with good classification resulting in three different tasks suggests that the proposed human
face representation method is promising. Another advantage is that the proposed tree
representation of a human face retains anonymity during data processing. Furthermore,
a GbC classifier induces granular rules that can be used to explain its answers, whereas
a deep learning classifier operates in a way that is similar to a black box that cannot
explain its answers. Note that an information granule may represent a word; in the
latter sense, the GbC computes with words. Moreover, the proposed representation is
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modular in the sense that other parts of a human body, e.g., the hands, the shoulders-torso
etc., can be straightforward incorporated, as well as additional modalities. The latter are
unique capacities of a GbC scheme that no deep learning scheme possesses. In addition,
compared to alternative fuzzy systems for face recognition [26,27], the GbC can operate on
structured (tree) data representations of a human face instead of operating solely on vectors
of features. Furthermore, by its parameters, the GbC can carry out tunable generalization.
Finally, the employment of a fuzzy order function explicitly engages logic/reasoning
in decision-making.

In general, the computational experiments here have involved two GbCs schemes,
namely GbCtree and GbCvector. In addition, they have involved one metric distance
function D (.,.) as well as fuzzy order functions σ (.,.). The typically, better performance
of σ (.,.) compared to D (.,.) was attributed to the rational definition of σ (.,.), by either
Equation (3) or Equation (4). It turned out that σt (.,.) in Equation (3) performed clearly
better than the convex fuzzy order with all σt (.,.) in Equation (5), as a positive valuation
function defined on a whole interval-tree results in a holistic comparison of two interval-
trees, whereas a positive valuation function, defined as the sum of positive valuation
functions on individual tree nodes, results in a fragmented comparison of two interval-
trees. Similarly, and for the same reason, σu (.,.) in Equation (4) performed better than the
convex fuzzy order with all σu (.,.) in Equation (5). Finally, the better performance of a
sigmoid positive valuation function compared to a linear one was attributed to the larger
number of parameters a sigmoid has, as detailed below. Moreover, the (marginally) better
classification accuracy of an optimized GbCtree, compared to an optimized GbCvector,
was attributed to the employment of a tree data structure that retains geometrical topology
semantics of a human face.

A GbC classifier has clearly performed better than random guess; therefore, GbC
classifiers can result in a strong classifier, in the sense of Probably Approximately Correct
(PAC), by boosting techniques [51]. In addition to boosting, an alternative instrument for
improving classification performance is the number of parameters as explained next.

Good classification performance is often reported by computational intelligence mod-
els with a large number of parameters, e.g., deep learning [52], or Type-2 fuzzy systems [53].
Note that LC models, including the proposed GbC schemes, can introduce an arbitrary
large number of parameters via parametric functions v (.) and θ (.) per constituent lattice.
It is noteworthy that a sigmoid positive valuation function with 3 parameters, resulting in
a total of either (3 × 59) × 2 = 354 parameters or (3 × 25) × 2 = 150 parameters, has per-
formed clearly better than a linear positive valuation function with 1 parameter, resulting
in a total of either (1 × 59) × 2 = 118 parameters or (1 × 25) × 2 = 50 parameters, in the
facial expression recognition and the face recognition problems, respectively. Note that a
typical deep learning model engages millions of parameters.

The above remarks encourage the engagement of boosting techniques, as well as the
increase of the number of GbC parameters toward further increasing GbC classification
accuracy, in a future work.

6.2. Future Work

Future work includes shorter-term plans, as well as longer-term plans. On the one
hand, shorter-term plans regard mainly technical improvements of GbC such as, firstly,
real-world applications of social robot-human interaction, including additional modalities
beyond machine vision for face recognition; and secondly, a quest for improved sub-optimal
solutions regarding parameter estimation, also considering more parameters per positive
valuation function. On the other hand, longer-term plans include a far-reaching pursuit of
“understanding”, “creativity” as well as “intention sharing” by machines. Note that future
AI is expected to be creative [54]; furthermore, proposed conditions for creativity include
metaphors [55]. Different authors have explained how analogy is the basis of metaphors [56].
This work has demonstrated that a lattice-isomorphism can establish an analogy between
two different lattice structures, possibly also toward “understanding” by machines, and
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“creativity” by machines as well as “intention sharing” of a machine with either another
one or a human, as it will be pursued in a future work.
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