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Abstract: The current climate change, unlike previous ones, is caused by human activity and is
characterized by an unprecedented rate of increase in the near-surface temperature and an increase
in the frequency and intensity of hazardous weather and climate events. To survive, society must be
prepared to implement adaptation strategies and measures to mitigate the negative effects of climate
change. This requires, first of all, knowledge of how the climate will change in the future. To date,
mathematical modelling remains the only method and effective tool that is used to predict the climate
system’s evolution under the influence of natural and anthropogenic perturbations. It is important
that mathematics and its methods and approaches have played a vital role in climate research for
several decades. In this study, we examined some mathematical methods and approaches, primarily,
mathematical modelling and sensitivity analysis, for studying the Earth’s climate system, taking into
account the dependence of human health on environmental conditions. The essential features of
stochastic climate models and their application for the exploration of climate variability are examined
in detail. As an illustrative example, we looked at the application of a low-order energy balance
model to study climate variability. The effects of variations in feedbacks and the climate system’s
inertia on the power spectrum of global mean surface temperature fluctuations that characterized the
distribution of temperature variance over frequencies were estimated using a sensitivity analysis
approach. Our confidence in the obtained results was based on the satisfactory agreement between
the theoretical power spectrum that was derived from the energy balance model and the power
spectrum that was obtained from observations and coupled climate models, including historical runs
of the CMIP5 models.

Keywords: outdoor ergonomics; climate change; climate variability; mathematical modelling; sensi-
tivity analysis; dynamical systems; stochastic models

1. Introduction

Mathematics represents a very effective and powerful instrument for comprehending
the world and solving complex problems in various sciences, engineering and technologies
(e.g., [1–4]). In this aspect, one cannot underestimate the essential role of mathematics
in solving planetary problems, among which, the problem of the interaction between
society and nature stands out [5,6]. Humans live and execute their diverse and multi-
faceted activities in interaction with the environment. On the one hand, humans affect
the environment, changing its properties; on the other hand, environmental conditions
affect humans, in particular, their health and even their ability to survive. At the turn
of the millennium, humankind is clearly faced with a new pressing challenge posed by
climate change. Current climate change, unlike previous ones, is human-induced [7,8] and
characterized by an unprecedented rate of increase in the global mean surface temperature
(GMST). A report [9] stated that since 1880, the GMST has increased by an average of
0.07 ◦C per decade. Meanwhile, the growth rate of the GMST in the first two decades of
the XXI century reached a value of 0.17 ◦C per decade, i.e., more than double the average
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rate. Among the most significant signs of human activities is a substantial increase in the
concentration of carbon dioxide (CO2) in the atmosphere. This greenhouse gas (GHG),
which is a by-product of fossil fuel combustion, is the main contributor to global warming.

Global warming has already affected climatic conditions in almost all regions of
Earth [7,8], but this effect varies significantly from region to region. Obviously, global
and regional climate changes have some impact on people and their activities [10,11].
Assessing the impact of changing climatic conditions on humans involves assessing climate
risks [12]. For this purpose, special mathematical models are used. Their input parameters
are climatic variables, such as temperature, humidity and precipitation (e.g., [13]). In turn,
climate models of varying degrees of complexity are used to predict climate change and
variability on global and regional scales [14]. It should be emphasized that the existing
estimates of global and regional climate changes are characterized by a high degree of
uncertainty [15,16]. The main causes of these uncertainties are considered, for example,
in [17–19]. The need of stakeholders for a deeper and clear understanding of what is
happening with the climate of our planet makes it necessary to obtain new knowledge
about the behaviour of the Earth’s climate system (ECS) under the influence of external
perturbations, both natural and human-made. This is very important for preparing society
for the development and implementation of the so-called adaptation strategies and mea-
sures that are required to reduce the effects of climate change. By adaptation, we mean the
process of society’s adjusting to current and projected changes in the climate system and
their effects [7].

Mathematics and its methods and approaches already play a vital role in climate
research (e.g., [20,21]). One can say without exaggeration that only mathematics allows us
to quantify and predict the effects of external natural and anthropogenic perturbations on
the climate system and its dynamics. In fact, quantitative research is based on mathematical
models of systems and objects under examination. In this regard, we note that reproducing
climate and projecting its change under the influence of external forcing, in contrast to
conventional problems of physics, have the essential peculiarity that is associated with the
impossibility of carrying out full-scale direct physical experiments. Due to several specific
properties of the climate system [22], the implementation of laboratory experiments looks
very problematic as well. It should be added that the time series of climatic variables,
which are obtained from instrumental observations, are short and contain data for only
a few decades, which makes it difficult to obtain statistically significant estimates of the
state of the climate system. This evidence suggests that mathematical modelling remains
the only method for projecting the evolution of the climate system under the influence of
natural and anthropogenic perturbations.

In this study, in the context of outdoor environmental ergonomics, we examined
some mathematical methods and approaches, primarily mathematical modelling, that are
applied to climate research. Stochastic dynamical systems that are applied to study climate
variability and sensitivity analysis are explored in detail.

2. Notes on Outdoor Environmental Ergonomics through the Prism of Climate Change

According to the Merriam-Webster Dictionary [23], “ergonomics is an applied science
concerned with designing and arranging things people use so that the people and things
interact most efficiently and safety”. It is also called “human engineering” or “human fac-
tors engineering”. Ergonomics’ areas of specialization include environmental ergonomics,
both indoor and outdoor, which explores how humans interact with their physical environ-
ment, as characterized by climatic conditions and several other environmental parameters.
Since humans are compelled to perform many types of work outdoors, their vital activity,
working capacity and health are largely determined by the weather and climate conditions.
Weather and climate can affect workers in different ways, causing a variety of health prob-
lems and changing their working efficiency. In this sense, ergonomics is of great importance
in reducing health risks that arise from adverse weather and climate conditions. In order to
use ergonomic techniques for assessing climate-related risk factors, one should know, first,
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the current climate conditions in a particular geographical area of interest and, second, how
the climate is likely to change in the near term. It is clear that current human-induced global
warming affects climate around the world. Humans working outdoors can be expected to
be among the first to be affected by climate change [24–26].

Climate affects outdoor workers in several ways: via air temperature, wind, humidity,
precipitation and some other natural hazardous events, the frequency and intensity of
which change with global warming. Climate change apparently could exacerbate health
risks via the increase in frequency and intensity of weather and climate-related events,
such as cold and heat waves, heavy rains and runoff, severe storms, droughts, floods,
biochemical hazards and air pollution. Climate change also contributes to depletion in
the atmospheric ozone content, increasing the ultraviolet (UV) radiation at the Earth’s
surface and thereby causing outdoor workers more intense exposure to UV radiation. In
addition, climate conditions significantly determine the requirements for protective equip-
ment for outdoor workers. This makes it necessary to predictably take into account the
peculiarities of the climate in various geographical regions regarding protective equipment
usage, taking into consideration the long-term use of the type of protective equipment that
is adopted. The intensity of many potentially dangerous physical factors (e.g., acoustic,
electromagnetic, vibration) depends significantly on the conditions of their propagation,
which are determined by the climate variables in a given geographical region of profes-
sional activity. Difficulties in taking into account the current and prognostic characteristics
of the climate when conducting ergonomic studies are determined both by the insufficient
development of mathematical models of the combined effect of physical factors on a human
(primarily due to the lack of experimental information) and the insufficient development
of mathematical models that simultaneously take into account the combined effects of
physical and psychophysiological factors. The development of such mathematical models
is currently being intensively pursued by mathematicians together with engineers, as well
as physiologists. In the first case, the priorities of developing models are associated with
the implementation of technologies of digital twins of the human body, which make it
possible to predict its reactions to factors of the conditions of activity for representatives
of various socio-professional groups of workers. In the second case, the priorities of the
development of models are associated with the study of the mechanisms of the influence
of physical factors on a person. In particular, the Nobel Prize in Physiology or Medicine
2021 was awarded for the study of receptors for temperature and touch, the results of
which are undoubtedly important for the successful solution of the problems that are
mentioned in this article. Climate is defined as the average weather over 30 or more years
(World Meteorological Organization recommended using 30 years). Climate variables,
such as temperature, humidity and wind speed, are used as inputs in methods and mod-
els of environmental ergonomics. In turn, climate variables can be derived from climate
projections, which are simulations of the planetary climate in future years and decades
based on suggested scenarios for the concentrations of atmospheric greenhouse gases,
aerosols and radiatively active gases. Climate projection results are based on a hierarchy of
climate models of varying complexity, ranging from coupled atmosphere–ocean general
circulation models and Earth system models to low-order conceptual climate models. To
obtain climate projections, all these models are exposed to radiative forcing, the level of
which is determined by emission scenarios of greenhouse gases and other radiatively active
components. Thus, climate models remain the only viable tool for quantifying the climate
change that is caused by natural and human-induced perturbations. Meanwhile, climate
change projections for the XXI century that are obtained from different models are inher-
ently uncertain. The main sources of uncertainty, which were analysed and summarized in
several studies (e.g., [15–17,19,27,28]), are as follows: uncertainty in greenhouse gas emis-
sion scenarios, natural climate variability and climate models’ uncertainties. Since we focus
on climate system simulations, the climate models’ uncertainties are of primary concern.
Climate models, in general, qualitatively agree in their response to external forcing but
quantitatively differ in the projected climate change for a given increase in concentrations
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of atmospheric greenhouse gases, aerosols and radiatively active gases. In addition, each
climate model has an individual “internal variability”, which is significantly different from
the real world climatic variability [29]. This is exactly why climate models are constantly
being revised and improved based on advances in knowledge.

3. Climate Models as Dynamical Systems and Their Sensitivity Analysis
3.1. Climate as a Complex Dynamical System

A system is understood as a set of interrelated and interdependent elements that work
together to achieve certain goals [30]. A system is called complex if it has properties such
as emergent behaviour, self-organization, a hierarchical structure, nonlinearity and sponta-
neous order. The reasons for the emergence of complexity in systems are quite numerous.
For example, nonlinear space-time interactions between system components lead to the
emergence of new dynamical properties that cannot be observed by exploring individual
elements of the system. In this context, the ECS is a complex large-scale physical system
that consists of five basic and interacting subsystems [31]: the atmosphere, hydrosphere,
cryosphere, lithosphere and biosphere. Each of these subsystems is characterized by a
finite set of distributed variables, the values of which at a given time determine the state of
the subsystem. The atmosphere is the most rapidly fluctuating and unstable ECS element.
The climate system of our planet is complex for the following reasons:

– As mentioned earlier, it is a five-element large-scale physical system with several
global hydrological and biochemical cycles. Its elements, being heterogeneous thermo-
dynamical systems, have significant differences in their structure, dynamics, physics
and chemistry. Dynamical and physical processes that occur in the ECS subsystems
differ in their scales, both spatial and temporal. Elements of the ECS link together
through numerous physical coupling mechanisms, both weak and strong, including
feedback mechanisms. In turn, each ECS subsystem can be viewed as complex,
consisting of subsystems, which themselves are composed of low-order subsystems.
The atmosphere, for instance, can be divided into several vertical layers depending on
its thermal stratification: the troposphere, stratosphere, mesosphere and thermosphere.
The troposphere, in turn, can also be subdivided into the surface layer, boundary layer
and free atmosphere based on the effect of the surface friction.

– Physical and dynamical processes in ECS span a wide range of time and space scales.
Temporal scales range from seconds to decades, and spatial scales range from molecu-
lar to planetary scales. The dynamics of the ECS is nonlinear. ECS elements interact
with each other nonlinearly, creating, under certain conditions, chaotic behaviour of
subsystems and the climate system as a whole.

– ECS has a large number of feedback mechanisms, both positive and negative, that
strongly affect climate formation.

– ECS components are non-insulated systems that act as cascade systems and interact
with each other in various ways, including through the transfer of momentum, sensi-
ble and latent heat, gases and particulate matter. Collectively, ECS elements constitute
a climate system, which is a unique large-scale natural object.

– Each ECS component has a specific response time, which must be considered when
building ECS models. For example, the atmosphere can be considered the only
component of the ECS model for dynamical processes with timescales from days to
weeks since the tropospheric response time is about one month, while oceans, land
surface and ice cover can be used to specify boundary conditions and/or external
forcing. To explore the dynamical processes with timescales ranging from months
to years, the ECS model must include the atmosphere and ocean, along with sea ice.
Thus, ECS models are built from a hierarchy of models that ultimately form a complex
integrated model.

– The ECS is an oscillating system that is characterized by fluctuations that are under
the influence of internal factors (natural oscillations), as well as due to external per-
turbations (forced oscillations). Naturally occurring fluctuations result from internal
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instabilities (e.g., hydrodynamic instabilities, such as barotropic and baroclinic insta-
bilities) and heat transport within the climate system that is caused by the interaction
of its components [7]. Intentional and unintentional human impacts belong to the
class of external forcings.

– Since the ECS exchanges energy with the environment, in this sense, it is a thermody-
namically open and non-isolated system. However, the ECS is a closed system with
regard to the exchange of matter with the environment. The main energy source that
drives the ECS is solar energy. Climate is affected by variations in external driving
forces that imply natural causes, such as fluctuations in solar and volcanic activities,
as well as changes in the gaseous and chemical composition of the atmosphere due
to anthropogenic factors. The impact of the ECS on outer space is nonessential. At
present, climate change is most influenced by variations in the composition of atmo-
spheric particles and gases. Carbon dioxide (CO2), the concentration of which in the
atmosphere has been continuously increasing since the Industrial Revolution, has the
greatest impact on current climate change.

– The ECS and its subsystems possess emergent properties, examples of which are at-
mospheric emerging phenomena, such as clouds, large-scale baroclinic and barotropic
eddies (cyclones, hurricanes) and small-scale eddies (tornadoes). An example of an
emerging climate event is the El Niño–Southern Oscillation, which is a sporadic quasi-
periodic variation in ocean surface temperatures across the tropical Pacific Ocean that
affects the global atmospheric circulation and ocean circulation patterns. Natural
emergent phenomena occur suddenly under some favorable conditions.

The ECS has several other important and specific properties that should be considered
when exploring climatic processes. However, even the properties listed above allow us to
conclude that only mathematical modelling can serve as the main tool for studying the ECS
and, in particular, climate projections. The experience of recent decades shows that the main
results of climate theory were obtained using global climate models. Ideally, the models
of the ECS should allow for reproducing the modern climate, exploring its sensitivity to
external perturbations and predicting the state of the ECS for many years and even decades
to come. It should be emphasized that methods of the dynamical systems theory constitute
the basis of methods of the mathematical theory of climate [32]. To apply this theory to
the study of a real climate system, it must be assigned with some abstract mathematical
object that represents the idealization of the ECS and can be called its “perfect” model. It is
assumed that such a perfect model exists and the observed dynamics of the ECS represents
a realization of the trajectory that is generated by this model. It is usually believed that a
perfect ECS model is a deterministic semi-dynamical system that is dissipative, ergodic and
possesses a global attractor, while any trajectory of it is unstable [30]. In a formalized form,
a model of the ECS is a set of 3D nonlinear differential equations in partial derivatives that
generates a deterministic finite-dimensional semi-dynamical system [32–34]:

dx
dt

= F (x, α, f ), x ∈ Rn, x|t=0 = x0, t ≥ 0, (1)

where x is the vector of state variables characterizing the system state at a given time t,
x0 is a given initial state of a system, n is the dynamical system dimension, α ∈ Rm is the
m-dimensional parameter vector and f is an external forcing.

Since analytical solutions for the climate system models are commonly not available,
we used numerical methods to solve Equation (1). To this end, the original system of partial
differentials in Equation (1) was replaced by discrete space-time approximations using any
suitable technique (e.g., Galerkin approach, finite-difference method). Thus, in climate
modelling, we consider discrete dynamical systems. The numerical solution of the discrete
model equations is only possible with the use of high-performance computers. Due to
the discrete structure of ECS models, a large number of physical processes and cycles
cannot be explicitly represented on the model grid. Theoretically, discrete ECS models
are unable to realistically reproduce the physical process on spatial scales of the order
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of two-fold resolution of the model grid [35]. Such processes are usually parameterized,
i.e., are expressed parametrically in a simplified manner. The generalized discrete climate
model that is used in computer simulations can be formally written as follows:

xk =M0,k(x0), k = 1, . . . , K, (2)

whereM0,k is a nonlinear model operator that propagates state variables from the initial
time t0 to time tk (this operator indirectly contains model parameters, including external
forcing) and K is the number of time steps.

For the sake of completeness, it makes sense to list some of the generic properties of
dynamical systems that are used in climate research [32,33]:

– These systems belong to the class of dissipative dynamical systems that possess
(strange) attractors.

– Trajectories of climate dynamical systems are generally unstable in the Lyapunov
sense.

– Some unstable trajectory, enclosed in an attractor, generates deterministic dynamical
chaos.

In climate research, the ECS evolution is generally considered on its attractor, assuming
that the ECS is an ergodic dynamical system. This allows for calculating the statistical
characteristics of a system (e.g., first, x = 〈x〉, and second, var(x) = x2 − x2 moments) by
averaging along a certain trajectory [32]. It should be noted that attractors of dissipative
dynamical systems, which are commonly called strange attractors, are characterized by a
very complex fractal structure. To determine their fractal dimension, the Kaplan–Yorke
conjecture is used [36].

Deterministic climate models are very useful for exploring and projecting long-term
climate change trends. To study the natural climate variability against the background of
human-induced global warming, it is advisable to use stochastic climate models, which
were first suggested by Hasselmann [37]:

dx = F (x, t) + g(x, t)dW, (3)

where x ∈ Rn is the multidimensional random process satisfying the initial conditions
x|t=0 = x0 with probability 1, W ∈ Rs is a vector of independent Wiener processes and
g(x, t) is a matrix that describes the dependence of the sub-grid noise on the state variables.

In climate research, noise can play the role of fluctuations of solar insolation at the top
of the atmosphere, sea surface temperature oscillations, weather processes, etc. Stochastic
models are a useful tool for studying the climate system’s response to random external
perturbations. In this case, the Fokker–Planck equation that is associated with Equation (3)
can be used to trace the evolution of the probability density function p(x, t).

3.2. Climate System Sensitivity to External Forcing

External forcing in climate models is described via some model parameters. Conse-
quently, the climate system’s response to external perturbations can be estimated on the
basis of a sensitivity analysis of dynamical systems [38], allowing us to ultimately assess
the climate change that is caused by natural factors and human activities. The choice of sen-
sitivity analysis method largely depends on the objectives of the study and the complexity
of the model that is used in computational experiments. Conventional sensitivity analysis
methods, both forward and adjoint, are very useful for simple (low-order, conceptual)
climate models. Using these methods, the effect of model parameter uncertainties and/or
variations in model dynamics is estimated via sensitivity functions that are defined as the
derivatives of model state variables with respect to the parameters. For a state variable
xi (i = 1, . . . , n), a sensitivity function with respect to the parameter αj (j = 1, . . . , m) is
defined as Sij = ∂xi/∂αj

∣∣
α0

j
, where α0

j is the parameter value around which the sensitivity
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function is estimated. If δαj is the uncertainty (or small change) in the parameter αj, then the
corresponding change δxi in the state variable xi is estimated as follows: δxi

(
δαj
)
≈ δαjSij.

In some cases, when we use simple climate models, the sensitivity functions can be
calculated from a system of inhomogeneous linear equations called sensitivity equations,
which are obtained by differentiating the model equations with respect to the parameters:

dSα/dt = Jx(F )Sα + Jα(F ), (4)

where Sα =
[
∂xi/∂αj

]
∈ Rn×m is the sensitivity matrix, Jx(F ) ∈ Rn×n and Jα(F ) ∈ Rn×m

are the Jacobians given by Jx(F ) =
[
∂Fi/∂xj

]
and Jα(F ) =

[
∂Fi/∂αj

]
.

To calculate the sensitivity functions, it is required to solve the model equations,
together with the sensitivity equations, with given initial conditions. Since the model
parameter vector is m-dimensional, to estimate the model’s sensitivity to its parameters,
we need to solve m times the model equations together with sensitivity equations. This
technique is suitable for simple climate models with few parameters. In addition, it is not
always possible to differentiate the model equations with respect to all parameters. In
climate research, the model response to changes in parameters can be represented by some
generic response functional that characterizes the climate model [39,40]:

R(x, α) =
∫ T

0
ϕ(t; x, α)dt, (5)

where ϕ is a nonlinear function of model state variables x and parameters α.
The gradient of R with respect to parameter vector α, calculated in the vicinity of

the point
(

x0, α0), is used to quantify the impact of parameter variations on the model
dynamics:

∇αR = (dR/dα1, . . . , dR/dαm)
T
∣∣∣
x0,α0

, (6)

where
dR/dαj

∣∣
x0,α0 = ∑n

i=1(∂R/∂xi)
(
∂xi/∂αj

)
+ ∂R/∂αj. (7)

Using complex climate models, the sensitivity to the parameter αj can be estimated
numerically as follows:

dR/dαj
∣∣
x0,α0 ≈

[
R
(

x0 + δx0; α0
1, . . . , α0

j + δα0
j , . . . , α0

m

)
− R

(
x0; α0

)]
/δαj. (8)

In this case, however, the accuracy of the sensitivity estimate is very dependent on
the magnitude of the perturbation δαj. To overcome this problem, we can introduce the
Gâteaux differential [39], which allows us to consider the sensitivity analysis in a differential
formulation. The Gâteaux differential for the response function R is of the form:

δR
(

x0, α0
)
=
∫ T

0

[
(∂ϕ/∂x)|x0,α0 ·δx + (∂ϕ/∂α)|x0,α0 ·δα

]
dt, (9)

where δx is the variation in the state vector due to the parameter vector variation in the
direction δα.

If we linearize the model equations around the unperturbed trajectory, then we derive
a set of variational equations for calculating δx:

∂δx/∂t = (∂F/∂x)|x0,α0 ·δx + (∂F/∂α)|x0,α0 ·δα. (10)

Then, the variation in the response function δR is calculated using Equation (9). This
approach is ineffective from the computational viewpoint if the model has a large number
of parameters. Using the adjoint approach, we can estimate the sensitivities in just one
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numerical experiment since the gradient of the response function can be computed from
the following equation [40]:

∇αR
(

x0, α0
)
=
∫ T

0

[
(∂ϕ/∂α)|x0,α0 − (∂F/∂α)T·x∗

]
dt, (11)

where x∗ is the solution of the adjoint equations integrated numerically in the inverse time
direction:

− ∂x∗/∂t− (∂F/∂α)T·x∗ = − (∂ϕ/∂α)|x0,α0 , x∗(T) = 0, t ∈ [0, T]. (12)

3.3. Sensitivity Analysis of a Chaotic Dynamical System

Sensitivity analysis based on the forward and adjoint conventional approaches dis-
cussed above does not yield positive results when we explore deterministic dynamical
systems that exhibit chaotic behaviour [41–43]. This is because general solutions of sen-
sitivity equations for dynamical systems of this kind grow unbounded as time tends to
infinity. As a result, the sensitivity functions obtained via conventional approaches are
highly uncertain. A deterministic dynamical system that exhibits chaotic behaviour is very
sensitive to initial conditions [44]; consequently, the rate of separation in the phase space
of the two trajectories that are initially infinitely close to each other exponentially grow
with time as δx(t) ≈ δx(0)eλt, where λ is the leading Lyapunov exponent and δx(0) is
the initial separation, resulting in large errors in the calculation of sensitivity functions.
The largest Lyapunov exponent for the chaotic dynamics is positive, i.e., λ > 0; therefore,
the two orbits diverge exponentially in time. Sensitivity functions that are calculated
using this manner are extremely inaccurate and inherently uninformative such that it does
not allow us to correctly estimate the system’s sensitivity to variations in its parameters.
This is primarily because the time-averaged sensitivities ∇α〈R(↑ α)〉 cannot be correctly
estimated using conventional sensitivity analysis methods since for chaotic dynamics
∇α〈R(↑ α)〉 6= 〈∇αR(↑ α)〉 , the integral

I = lim
T→∞

∫ T

0
lim

δα→0
[R(α + δα)− R(α)/δα]dt (13)

does not converge uniformly and the two limits would not commute [39–41]. In this
case, the method that is based on the theory of shadowing pseudo-orbits (approximate
trajectories) in dynamical systems comes to the rescue [45]. Using this approach, one can
estimate the time-averaged sensitivities 〈∇αR(α)〉 and make an unambiguous conclusion
regarding the system’s sensitivity to its parameters. Note that the shadowing property (or
pseudo-orbit property) implies that near an approximate system’s trajectory, there exists
the exact trajectory such that it lies uniformly close to a pseudo-trajectory. In this case, the
sensitivity analysis problem is reduced to finding a pseudo-trajectory, assuming that the
exact trajectory is a solution to the unperturbed problem. A detailed description of the
“shadowing” method is rather cumbersome and can be found in [42,43]; therefore, it will
not be discussed here. To illustrate the method and its accuracy and efficiency, we applied a
conceptual model that was obtained by coupling two variants of the chaotic Lorenz model
(L63) [44], the timescales of which differ by a factor ε [46]:

.
x = σ(y− x)− c(aX + k),

.
y = rx− y− xz + c(aY + k),

.
z = xy− bz + czZ,

.
X = εσ(Y− X)− c(x + k),

.
Y = ε(rX−Y− aXZ) + c(y + k).

.
Z = ε(aXY− bZ)− czz,

(14)
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where lowercase and capital letters denote fast and slow subsystems, respectively; σ, r
and b are the parameters of the L63 model, which are proportional to the Prandtl number,
Rayleigh number and dimension of the considered atmospheric layer, respectively (the
L63 system exhibits chaotic behaviour for the following parameter values: σ = 10, r = 28
and b = 8/3); c is the coupling strength parameter for variables x and y; cz is the coupling
strength parameter for variable z; k is the “uncentering” parameter; and a is the parameter
that represents the amplitude scale factor. Without loss of generality, one can assume that
and c = cz.

As an example, let us consider the sensitivity of the state variables of the model in
Equation (14) to the parameter r, which plays a very important role in shaping the model
dynamics. The system of sensitivity equations is derived by differentiating the system in
Equation (14) with respect to parameter r:

.
S1,r = σ(S2,r − S1,r)− cS4,r,

.
S2,r = x + rS1,r − S2,r − (xS3,r + zS1,r) + cS5,r,

.
S3,r = (xS2,r + yS1,r)− bS3,r + czS6,r,

.
S4,r = εσ(S5,r − S4,r)− cS1,r,

.
S5,r = ε[X + rS4,r − S5,r − (XS6,r + ZS4,r)] + cS2,r.

.
S6,r = ε[(XS5,r + YS4,r)− bS6,r]− cS3,r,

(15)

where the sensitivity functions are defined as follows:

S1,r =
∂x
∂r

, S2,r =
∂y
∂r

, S3,r =
∂z
∂r

, S4,r =
∂X
∂r

, S5,r =
∂Y
∂r

, S6,r =
∂Z
∂r

. (16)

To find how the sensitivity functions evolve over time, we needed to solve the sen-
sitivity system in Equation (15), along with the model in Equation (14). The calculated
sensitivity functions S3,r and S6,r are shown in Figure 1 (note that we have chosen the func-
tions S3,r and S6,r arbitrarily). These sensitivity functions exhibited fluctuating behaviour
and their envelopes grew exponentially over time. Consequently, it is very difficult to draw
a clear conclusion about the system’s sensitivity to variations in the parameter r. Similar
behaviour was inherent in the other sensitivity functions.
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To apply the shadowing sensitivity analysis method, first, we needed to calculate both
the original and pseudo trajectories (Figure 2). Then, the sensitivity of the model state
variables to the parameter r could be estimated (Table 1).

Table 1 shows that the variables z and Z were most sensitive to variations in the
parameter r, while the sensitivities of the fast x and y and slow X and Y variables to the
parameter r were much less than that of the variables z and Z.
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Table 1. Sensitivity functions for fast and slow variables for strong (c = 0.8) and weak (c = 0.15)
coupling between systems.

c ∂x/∂r ∂y/∂r ∂z/∂r ∂X/∂r ∂Y/∂r ∂Z/∂r

0.8 0.07 0.07 1.02 0.03 0.08 0.69

0.15 −0.01 −0.01 1.01 −0.09 −0.09 0.91

3.4. Climate System Response to Small External Forcing Based on the Fluctuation
Dissipation Relation

The fluctuation dissipation theorem (FDT), which is a powerful instrument in statisti-
cal physics, was first proposed in [47] and can be applied to estimate the climate system
response to a small external forcing. Generally speaking, this theorem establishes the quan-
titative relationship between the fluctuations in a stochastic system at thermal equilibrium
and the system’s response to an applied external perturbation. On the basis of the FDT for
a system with certain properties, it is possible to find a linear operator that characterizes
the system’s response to a small external forcing by using the covariance matrix of the
unperturbed system. However, the climate system is a nonlinear dissipative dynamical
system for which the standard assumptions of equilibrium statistical mechanics are not
fulfilled.

Despite the strong nonlinearity of the climate system, linear approximation and
the time-invariant hypothesis are widely used in climate research [7]. The fundamental
assumption of the linear approximation is that various external perturbations act indepen-
dently and additively on the system’s response. In this case, the response of the climate
system, which is characterized by some climatic variable x, to the external forcing ∆ f
can be represented as ∆x = S∆ f , where S is the sensitivity coefficient. For instance, to
estimate the change in the equilibrium surface temperature ∆Θs due to the radiative forc-
ing generated by an increase in atmospheric CO2 concentration, a simple relationship
between the CO2 concentration and the corresponding radiative forcing can be used [48]:
∆ fCO2(t) = 5.35× ln(c(t)/c(0)), where c(t) is the CO2 concentration (in parts per mil-
lion volume) at time t and c(0) is the reference CO2 concentration. Using the formula
∆Θs = S∆ fCO2 , where the sensitivity coefficient has a value of 0.8 K W−1 m2 [48], for a
doubling of pre-industrial CO2 level, we obtain ∆Θs ≈ 3 ◦C. Radiative forcing of 3.7 W m−2

for a doubling of CO2 was used in this calculation.
The reaction of nonlinear systems to external forcing is fundamentally different from

the response of linear systems. This difference is mostly due to the wider involvement
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of the system’s inherent characteristics and irregularities and the various ways of taking
them into consideration. Hence, the fluctuations of nonlinear systems are the integration of
external perturbations and internal feedback mechanisms. By using the FDT, it becomes
possible to clearly identify external perturbations and then separate them from the natural
system’s fluctuations. Let the evolution of some finite-dimensional deterministic dynamical
system, the state of which is characterized by the state vector x, be represented by the
following equation:

dx
dt

= F (x), x ∈ Rn, x|t=0 = x0, t ≥ 0. (17)

The time-averaged state of this system (the system’s “climate”) is determined by the
expression 〈x〉 = lim

τ→∞
(1/τ)

∫ τ
0 x(t)dt. Let the system in Equation (17) be perturbed by

some external forcing:
dx′

dt
= F

(
x′
)
+ δ f , x′

∣∣
t=0 = x′0. (18)

Obviously, the time-averaged state of this system 〈x′〉 differs from 〈x〉 and, thus, the
difference 〈δx〉 = 〈x〉 − 〈x′〉 depends on δ f : 〈δx〉 = U (δ f ), where U is some nonlinear
function. For a sufficiently small (infinitesimal) δ f , one can expect that 〈δx〉 and δ f are
linearly dependent. If a function U is differentiable with respect to δ f at some point, then U
can be expanded into a Fourier series. Then, by omitting high-order terms and leaving only
first-order linear terms, one can obtain an approximate linear relationship between 〈δx〉
and δ f : 〈δx〉 ≈ L(δ f ), where L = ∂U/∂δ f |δ f0

is a linear response operator. Finding the
response operator for dynamical systems that are used in climate research is a nontrivial
problem since these systems are not hyperbolic, for which a linear relation between 〈δx〉
and δ f was proved [49]. The use of the ε-regularization technique [50] makes it possible to
solve the problem of finding the response operator for a climate dynamical system. For a
“quasi-Gaussian” formulation of the FDT, the response operator L is of the form [51,52]:

L =
∫ T

0
C(τ)C(0)−1dt, (19)

where C(τ) is the covariance matrix with time lag τ: C(τ) =
〈

x(t + τ)xT(t)
〉
.

Thus, the relationship between the climate response 〈δx〉 and the external forcing δ f
is as follows:

〈δx〉 = δ f ·
∫ T

0
C(τ)C(0)−1dt. (20)

As shown in several papers (e.g., [52]), Equation (20) is satisfied with sufficiently
high accuracy for global atmospheric general circulation models. For illustrative purposes,
consider the one-dimensional stochastic dynamical system that has only one state variable
x and is generated by the Langevin equation:

.
x + αx = f (t), (21)

where the dot over the letter indicates a derivative with respect to time; α = 1/τe, where τe
is the relaxation time for x; and f (t) is an external forcing with zero mean 〈 f (t)〉 = 0 and
a correlation function that is given by 〈 f (t) f (t′)〉 = ϑδ(t− t′), where δ is the Dirac delta
function.

Note that the Langevin equation (Equation (21)) is a very simple version of a stochastic
energy balance climate model in which the external forcing is Gaussian white noise and the
variable x is the global mean surface temperature anomaly. The autocorrelation function for
the state variable x is 〈x(t)x(t′)〉/

〈
x2〉 = e−α|t−t′ |. The solution to Equation (21) is given by

x(t) = x(0)e−αt +
∫ t

0
e−α|t−t′ | f

(
t′
)
dt′. (22)
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The ensemble average of f (t) is zero; therefore:〈 .
x
〉
+ α〈x〉 = 0. (23)

Thus, for example, if the system in Equation (21), being initially in an equilibrium state,
is affected by an impulse perturbation that is described by the delta function ϑδ(t− t′) at
time t = t′, which leads to an instant increase in temperature anomaly at t = t′ by ϑ, then
the temperature anomaly begins to decay, exponentially decreasing back to zero. The rate
of decay is determined by the relaxation time.

The mean system response to any infinitesimal external forcing F (t) can be calculated
using Equation (20). In particular, for a staircase function F (t), i.e., a constant ∆s that is
activated at t = 0, the system response is given by

〈x〉 = ∆s lim
t→∞

t∫
0

e−ατdτ = ∆s lim
t→∞

1− e−αt

α
=

∆s

α
. (24)

4. Mathematical Models of Climate System
4.1. General Notes on Climate Modelling

The Earth’s climate system, as we discussed above, is a multicomponent, multiscale
and fully coupled system. Mathematical modelling is the most effective and, perhaps, the
only powerful tool for studying the climate and projecting its future state. Mathematical
modelling involves the development of extremely complex and sophisticated mathematical
models in which simulated processes are represented as a dynamical system and described
by a set of ordinary or partial differential equations. In general, these equations are based
on the fundamental laws of physics, such as the conservation of mass, momentum and
energy.

The basis for the development of climate models is the mathematical theory of climate,
which can be conditionally divided into the following directions:

– The mathematical formulation of the problem, i.e., the translation of the real-world
problem into the form of mathematical equations to be solved.

– Consideration of the existence and uniqueness of a solution to the climate model
equations.

– The problem of the existence of attractor and estimating its dimension.
– Study of the attractor’s fractal structure and invariant measure of the attracting set.
– Finite-difference approximations and their convergence, stability and consistency.
– Climate model sensitivity theory (theorems on linear approximation for various

moments, linear response theory to small perturbations, algorithms for constructing
the response operator).

– Response operator approximation methods.
– Numerical experiments and their analysis.

When developing climate models, it is usually assumed that the Navier–Stokes equa-
tions for a compressible fluid are valid for describing the atmospheric and ocean dynamics,
and the equations of classical equilibrium thermodynamics are locally valid as well. De
facto, in climate models, the Reynolds-averaged Navier–Stokes equations are used in which
the effects of sub-grid processes with scales smaller than the averaging scale are expressed
via the characteristics of large-scale processes. The main sub-grid processes include the
following:

– Atmospheric radiative transfer processes (transfer of shortwave (solar) and longwave
(terrestrial) radiation through the atmosphere).

– Hydrological cycle, including cloud formation and precipitation.
– Convection.
– Turbulence in the boundary and surface layers.
– Small-scale orography.
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– The gravity wave drag.
– Small-scale diffusion and dissipation.
– Land surface processes.
– Mixed ocean layer processes.

Among the variety of climate models that are used in climate research, four main
types of models can be distinguished [53,54]: simple climate models (two-dimensional,
one-dimensional or even zero-dimensional); intermediate complexity models; general
circulation models of the atmosphere with a simplified description of the upper mixed
ocean layer and sea ice; and fully coupled atmosphere–ocean general circulation models
(AOGCMs), which are at the top of the climate model hierarchy. At first glance, the
more complex the model that is used in climate research, the more accurate and reliable
the results that are obtained. To a large extent, this is correct. Nevertheless, in many
problems of climate theory, models of intermediate complexity and simple climate models
are used with great success. Choosing a suitable model is a creative process. This choice is
determined by the objectives of the study, taking into account numerous factors, including
the available computational resources. Idealized, well-understood simple climate models
that sit at the bottom of the climate model hierarchy are very useful tools for improving our
understanding of the climate system, analyzing possible climate change due to current and
future greenhouse gas emissions, estimating the effect of volcano activity on the cooling
of our planet and similar problems regarding climate theory. Climate system models of
intermediate complexity are mainly used to study the climate system over long timescales
at reduced computational costs. This class of models is also useful in the exploration of
individual climate-forming processes, feedbacks and the interactions between them. The
area of the application of atmospheric general circulation models is close to the area of
research of intermediate complexity climate models. Note that the gap between the models
of these two classes is not so large since some models of intermediate complexity are
derived directly from atmospheric general circulation models. At present, the use of simple
models, models of intermediate complexity and atmospheric general circulation models
in climate research is of an auxiliary nature. The most advanced tools that are currently
available for simulating the current climate and the climate response to external natural and
human-made perturbations are AOGCMs, which describe all components of the climate
system and their interactions in sufficient detail. In recent decades, the development of
AOGCMs has been marked by significant progress due to both advances in the study of the
climate system itself and an increase in computing resources, which provide ever greater
detail and completeness of the descriptions of climatically significant processes. Present-
day developments in computer technology provide the ability to numerically integrate
AOGCMs for many hundreds of years.

4.2. Governing Equations

AOGCMs are developed and constantly updated by different modelling groups
around the world, primarily to understand how the Earth’s climate has changed in the
past and how it might change in the future. AOGCMs provide the ability to model
physical, chemical and biological processes in the atmosphere, ocean, land and cryosphere
in great detail, requiring the most powerful supercomputers to produce climate projections.
Research groups that are involved in climate simulations coordinate their activity via the
Coupled Model Intercomparison Projects (CMIP), and the obtained results are published
in the Intergovernmental Panel on Climate Change (IPCC) assessment reports. In the
preparation of the last, Sixth Assessment Report (AR6), published this year, the results that
were obtained using 100 different AOGCMs that were developed by 46 different modelling
groups were used. All AOGCMs are constructed from mathematical equations that describe
the evolution of climate system components. These equations, as we mentioned earlier,
express the basic laws of physics, such as conservation of momentum, mass, energy, water
vapor and other gases and aerosols of other substances. Although the system of differential
equations that is used to build climate models varies from model to model, any AOGCM
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includes horizontal motion equations, an equation for vertical velocity (or hydrostatic
equation), a thermodynamic equation, a continuity equation and a moisture equation.
To close this system of differential equations, some additional diagnostic equations are
usually introduced, representing the relationships between climatic variables. One of the
AOGCMs that has been involved in the CMIP over the years is the INMCM, which was
developed in the Institute for Numerical Mathematics of the Russian Academy of Sciences
to simulate climate processes on a wide range of temporal scales, from synoptic timescales
to centennial climate change [55–58]. The system of equations that is used in the INMCM to
describe the atmospheric general circulation is written in spherical coordinates (λ, ϕ) as the
horizontal coordinates (here λ and ϕ are the longitude and latitude, respectively), and the
dimensionless pressure σ = p/ps (here p is the pressure and ps is the surface pressure) is
used as the vertical coordinate. The system of INMCM equations comprises the following:

(a) Two momentum equations:

∂u
∂t

+
1

a cos ϕ

[
−Ωps v cos ϕ +

∂

∂λ
(Φ + K) +

RT
ps

∂ps

∂λ
+

.
σ

∂u
∂σ

]
= Fu, (25)

∂v
∂t

+ Ωps u +
1
a

[
∂

∂ϕ
(Φ + K) +

RT
ps

∂ps

∂ϕ
+

.
σ

∂v
∂σ

]
= Fv, (26)

(b) The thermodynamic equation:

∂ps T
∂t + 1

a cos ϕ

(
∂ups T

∂λ + ∂vps cos ϕT
∂ϕ

)
+ ∂

.
σps T
∂σ −

RT
cpσ

[
ps

.

σ + σ
(

∂ps
∂t + u

a cos ϕ
∂ps
∂λ + v

a
∂ps
∂ϕ

)]
= ps (FT + ε),

(27)

(c) The equation for specific humidity that describes the hydrological cycle:

∂ps q
∂t

+
1

a cos ϕ

(
∂ups q

∂λ
+

∂v cos ϕps q
∂ϕ

)
+

∂
.
σps q
∂σ

= ps
[
Fq − (C− E)

]
, (28)

(d) The continuity equation:

∂ps

∂t
+

1
a cos ϕ

∫ 1

0

(
∂ps u

∂λ
+

∂ps v cos ϕ

∂ϕ

)
dσ = 0, (29)

(e) Hydrostatic equation:

∂Φ
∂σ

= −RT
σ

, (30)

(f) The equation of state:

p = ρRTv. (31)

Here u and v are the zonal and meridional wind components; a is the Earth’s mean
radius;

.
σ = dσ/dt is the analogue of the vertical velocity in the σ coordinate system; T is

the temperature; Φ is the geopotential; Ω = ζ + f is the absolute vorticity, where ζ is the
relative vorticity; f is the Coriolis parameter; K is the kinetic energy; R is the gas constant
for dry air; q is the specific humidity; cp is the specific heat of dry air at constant pressure;
Tv is the virtual temperature; and ρ is the air density. The terms Fu and Fv describe the
vertical friction and the horizontal diffusion processes; ε is the diabatic heating rate; FT and
Fq describe the vertical and horizontal diffusion of heat and water vapor, respectively; and
C and E describe the source and sink processes for water vapor, respectively. The absolute
vorticity and kinetic energy are given by

ζ =
1

ps

[
f +

1
a cos ϕ

(
∂v
∂λ

+
∂u cos ϕ

∂ϕ

)]
, K =

u2 + v2

2
.
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The boundary conditions are periodic around a latitude circle. At the poles, the
solution is assumed to be bounded. The vertical boundary conditions that are imposed on
the bottom (σ = 1) and the top (σ = 0) of the atmosphere are

.
σ = 0, meaning the vanishing

of vertical velocity. The equations that are used to simulate the ocean dynamics are written
in a spherical coordinate system in the Boussinesq hydrostatic approximation with a rigid
lid as follows:

(a) Two momentum equations:

du
dt
−
(

f +
u
a

tan ϕ
)

v +
1

aρ0 cos ϕ

(
∂p
∂λ
− σ

H
∂H
∂λ

∂p
∂σ

)
= Fu, (32)

dv
dt

+
(

f +
u
a

tan ϕ
)

u +
1

aρ0

(
∂p
∂ϕ
− σ

H
∂H
∂ϕ

∂p
∂σ

)
= Fv, (33)

(b) The thermodynamic equation:

dT
dt

= FT , (34)

(c) The equation for the mass continuity of salinity:

dS
dt

= FS, (35)

(d) The continuity equation:

1
a cos ϕ

(
∂uH
∂λ

+
∂vH cos ϕ

∂ϕ

)
+

∂
.
σ

∂σ
= 0, (36)

(e) Hydrostatic equation:

∂p
∂σ

= gHρ′, (37)

(f) The equation of state:

ρ′ = ρ(T, S, p)− ρ0, (38)

where
d
dt

=
∂

∂t
+

u
a cos ϕ

∂

∂λ
+

v
a

∂

∂ϕ
+

.
σ

H
∂

∂σ
.

Here σ = z/H, where z is the depth that is measured from the undisturbed ocean
surface; H = H(λ, ϕ) is the topography of the ocean bottom; u, v and

.
σ are the components

of the current velocity vector along the longitude, latitude and vertical coordinates, respec-
tively; T, S, p and ρ′ are, respectively, the temperature, salinity, pressure and departure
of density from the value of ρ0 = 1200 g m−3 (in this case, ρ(t, p, S) is a known nonlinear
function that defines the state of seawater, including its compression with increasing depth);
the right-hand side terms Fu, Fv, FT and FS have the same meaning as the corresponding
terms in atmospheric circulation equations and describe the turbulent dissipation and
turbulent exchange of heat and salinity.

The system in Equations (32)–(38) is written for a cylindrical non-simply-connected
domain that is bounded by the unperturbed ocean surface (σ = 0) and its bottom (σ = 1).
The boundary conditions for an analog of the vertical velocity at these horizons are of
the form

.
σ = 0. The model equations are solved numerically on the high-performance

supercomputer Lomonosov-2, which is deployed at the Moscow State University.
The INMCM is a participant of the CMIP, which provides a standard protocol for the

assessment of AOGCMs. Validation of the INMCM against observational data and the
reanalysis products shows that the model reproduces the current climate with reasonable
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accuracy, comparable to that of other similar coupled climate models [7,53,54]. That is
why this model has been successfully applied for many years for projecting climate using
various scenarios of human-made impact on the climate system of our planet. In particular,
the analysis of the results of numerous numerical experiments with the INMCM allows
us to conclude that the model response operator in Equation (20) reproduces the response
of the climate system to heating sources of various spatial structures with high accuracy.
The accuracy of reproducing the spatial structure of the response and its amplitude is,
on average, 72 and 85%, respectively, for the near-surface temperature. For some other
components of the response (for example, for the stream function and temperature in the
middle troposphere), the values of the correlations turn out to be much higher.

It is very important to emphasize that although climate models that are developed in
different research centers predict human-made warming in the future quite consistently, the
indicators that characterize the climate system response to a given radiative perturbation
differ significantly from model to model (e.g., [59]). Accordingly, global and regional
climate change projections have a rather high degree of uncertainty for given scenarios of
greenhouse gas emissions. For instance, the range of the projected global mean surface
temperature (GMST) for the late 21st century relative to the reference period of 1986–2005 is
likely to be 2.6 to 4.8 ◦C under the RCP8.5 greenhouse gas concentration scenario. Note that
RCP8.5 corresponds to the concentration pathway with the highest greenhouse gas emis-
sions. The range of the projected GMST under other emission scenarios (RCP2.6, RCP4.5,
RCP6.0) is also quite large (0.3 to 1.7 ◦C, 1.1 to 2.6 ◦C, and 1.4 to 3.1 ◦C, respectively) [7].
This uncertainty arises mainly from inter-model differences in the description of radiative
feedback mechanisms. Thus, the ongoing improvements of the AOGCMs and their ability
to represent the current climate are an extremely pressing challenge for modern climate
science.

4.3. Using Low-Order Simple Models to Study Climate Variability

Despite the fact that climate projections are based on ensembles of highly complex
and computationally expensive AOGCMs, low-order simple models are still very popular
in exploring various problems of climate theory. One of these very important problems is
the study of natural climate variability against the background of human-induced global
warming. Climate variability characterizes the variations of climate variables relative to
the mean state. Climate variability arises from natural quasi-periodic processes that are
inherent in the climate system, some of which are not fully understood (e.g., El Niño–
Southern Oscillation). External forcing due to volcanism or fluctuations in solar activity can
also cause climate variability. It is important that climate variability occurs over different
temporal and spatial scales. From the viewpoint of socio-economic development, it is
vital to quantify the variability of climate variables over a wide range of timescales, from
years to decades. Climate variability that is estimated on the basis of AOGCMs shows a
wide statistical range across models. For instance, the decadal variance of the GMST in
CMIP5 models differs from each other by a factor of more than four [29]. Some studies
have shown that changes in the variance of the GMST that is simulated by CMIP5 models
differ from each other significantly not only on decadal timescales but also on inter-annual
and multi-decadal timescales (e.g., [60]). However, the reasons for such a large inter-model
spread of the GMST variability are not entirely clear. Simple low-order climate models in
a stochastic formulation are useful tools for exploring how various physical mechanisms
(e.g., feedbacks) affect the formation of climate variability over a wide range of timescales.

Energy balance models (EBMs) are among the simple but quite effective models of
the climate system. These models were introduced almost simultaneously about 50 years
ago by M. Budyko [61] and W.D. Sellers [62]. The purpose of EBMs is to obtain a better
understanding of the Earth’s climate system, why the current state of the climate system
is what it is, how sensitive the climate is to external forcing, how feedbacks and climate
system inertia affect the climate system, etc. Simple climate models, such as EBMs, are
usually calibrated to global scale observations in order to be practically useful tools. De-



Mathematics 2021, 9, 2920 17 of 25

spite the intensive development of computer capabilities, simple climate models have
not lost their relevance. On the contrary, for decades, these models serve as a link be-
tween theoretical concepts and the results obtained from complex climate models. Over
the years, EBMs have been successfully applied to explore various aspects of the gen-
eral climate theory (e.g., [63–71]), including feedbacks (e.g., [72,73]), climate–vegetation
interaction (e.g., [74,75]) and climate–biosphere interaction (e.g., [76–79]). Here, we used a
two-box EBM representing the entire climate system with only two variables, the anomaly
of the GMST T and the anomaly of global mean deep ocean temperature TD [80,81]. Since
the two-box EBM is linear, it allows for the construction of an analytical solution that
describes the climate system’s behaviour near an equilibrium state. The model employs a
deep ocean box. Consequently, within the framework of this model, the climate system re-
sponse to radiative forcing is characterized by the “fast” τf ≈ 3.9 yr and “slow” τs ≈ 242 yr
relaxation times, allowing one to study the climate system evolution on timescales that
exceed the interannual cycle [82]. As shown in several studies (e.g., [19,37,65,83–90]),
simple linear systems, such as a two-box EBM with additive stochastic forcing that is
parameterized by Gaussian white noise, were shown to be useful for exploring climate
variability on timescales from years to decades. These models are able to explain much
of the observed climate variability on timescales that vary from annual through to sev-
eral decades. Since we were interested in climate variability on interannual–interdecadal
timescales, we applied a two-box EBM.

The model equations were written as follows:

C(dT/dt) = −λT − γ(T − TD) + Fs, (39)

CD(dTD/dt) = γ(T − TD), (40)

where C is the effective heat capacity of the upper box, consisting of the atmosphere and
the oceanic surface mixed layer and characterized the climate system inertia; λ, which
is called the climate feedback parameter, is the proportionality coefficient between the
radiative response and the GMST; γ is the deep ocean heat uptake parameter; CD is the
effective heat capacity of the deep ocean; and Fs is the stochastic forcing.

The patterns of real radiative stochastic forcing are rather complex and de facto
undefined. Hence, Fs in climate simulations is usually considered additive Gaussian
white noise, which is delta-correlated in time random process with a zero mean 〈Fs〉 = 0
and correlation function Rs(τ) = 〈Fs(t)Fs(t + τ)〉 = 2Dsδ(τ), where Ds is the diffusion
coefficient and δ(τ) is the delta function. The diffusion coefficient Ds is determined by the
variance of the random white noise process σ2

s and its correlation time τs as Ds = σ2
s τs [91].

As a measure of climatic variability, we used the variance of the GMST anomaly
σ2

T , which can be obtained in two different ways: via the power spectrum density (PSD)
of the GMST fluctuations, and via the Fokker–Planck (forward Kolmogorov) equation
that is associated with Equations (39) and (40). Let us consider the first approach to find
the variance σ2

T . The PSD of stochastic forcing Fs is, according to the Wiener–Khinchin
theorem [92], the Fourier transform of its autocorrelation function:

Ss(ω) =
1

2π

∫ ∞

−∞
e−iωtRs(τ)dτ =

σ2
s τs.
π

. (41)

If stochastic forcing Fs(t) passes through the EBM linear operator to get T(t), then the
PSD of T(t) is as follows:

ST(ω) = |H(ω)|2Ss(ω), (42)

where H(ω) is the Fourier transform of the EBM transfer function and ω is the real angular
frequency. Using the notation q2

s = 2Ds = 2σ2
s τs and substituting Equation (41) into

Equation (42), we obtain

ST(ω) =
q2

s
2π
|H(ω)|2. (43)
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The two-box EBM transfer function is the Fourier transform of the differential Equa-
tions (38) and (39) with zero initial conditions under the assumption that Fs(t) = δ(t),
where δ(t) is the Dirac delta function:

H(ω) =
γ + iωCD

CCD
[(

ω2
0 −ω2

)
+ iω2β

] . (44)

Then, the PSD of GMST fluctuations can be obtained using Equation (43):

ST(ω) =
1
π

q2
s

C2C2
D

γ2 + ω2C2
D(

ω2
0 −ω2

)2
+ 4β2ω2

. (45)

The integral of ST(ω) over positive frequencies is the variance of the GMST anomaly σ2
T:

σ2
T =

q2
s

2λC
γC + λCD

γC + (γ + λ)CD
. (46)

The climate response to (human-made) radiative forcing has a wide range of timescales.
For example, the response timescale of the atmosphere is just a few weeks. The response
timescale of a system that involves the atmosphere and the ocean mixing layer is a few
years, and the system that also involves the deep ocean is characterized by timescales
from decades to centuries and even longer. Within the framework of a two-box EBM,
the response timescale is determined by the parameter C, which characterizes the climate
system inertia since its value depends on the depth of the upper ocean layer that is included
in the model. In turn, the response strength depends on the feedback parameter λ. Since
these mechanisms play a critical role in the formation of the climate system’s response
to radiative forcing, we focused on analyzing the climate sensitivity to climate system
inertia and feedbacks. To estimate the effect of variations in the feedbacks and climate
system inertia on the climate variability, we applied sensitivity analysis using absolute
and relative sensitivity functions. It should be emphasized that since the signal power
spectrum displays the signal’s variance as a function of frequency, allowing one to estimate
the distribution of the GMST variance over varying timescales, to assess the effect of
climate feedbacks and inertia on its variability, we explored the sensitivity of the GMST
power spectrum to variations in the model parameters λ and C. Sequentially differentiating
Equation (45) with respect to the feedback parameter λ and climate inertia parameter C,
we derived the absolute sensitivity functions (ASF) ψλ and ψC that characterize the effect
of feedbacks and thermal inertia on the PSD of GMST fluctuations:

ψλ = − 1
π

2q2
s

C2C2
D

γ2 + ω2C2
D[(

ω2
0 −ω2

)2
+ 4β2ω2

]2
ω2

0
(
ω2

0 −ω2)C + 2βλω2

λC
, (47)

ψC = − 1
π

2q2
s

C2C2
D

γ2 + ω2C2
D[(

ω2
0 −ω2

)2
+ 4β2ω2

]2
ω2

C2

[
2β(2βC− λ− γ)−

(
ω2

0 −ω2
)

C
]
. (48)

The corresponding relative sensitivity functions (RSFs) ψR
λ and ψR

C are:

ψR
λ = −2

ω2
0
(
ω2

0 −ω2)+ (2λβ/C)ω2(
ω2

0 −ω2
)2

+ 4β2ω2
, (49)

ψR
C = −2

(
ω2

0 −ω2)2(1−ω2
0
)
+ 2β[2β− (λ + γ)/C]ω2(

ω2
0 −ω2

)2
+ 4β2ω2

. (50)

The reference values of EBM parameters that were used in the calculation were taken
from [93]: λ = 1.13 W m−2 K−1, C = 7.34 W yr m−2 K−1, CD = 105.5 W yr m−2 K−1 and
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γ = 0.73 W m−2 K−1. Values for these parameters were estimated based on a CMIP5
AOGCM analysis and are rounded multi-model means. The ranges of feedback λ and
climate system inertia C, which characterize the uncertainty in the corresponding parameter,
were as follows: 0.61 ≤ λ ≤ 1.70 W m−2 K−1 and 4.7 ≤ C ≤ 8.6 W yr m−2 K−1 [94].

For the sake of convenience, we introduce the dimensionless feedback coefficient f,
which is usually used in the system’s theory to characterize the feedbacks that are inherent
in the system. This coefficient is given by f = 1− λ/λ0, where λ0 ≈ 3.3 W m−2 K−1 is
the Planck feedback parameter, which characterizes the increase (decrease) in outgoing
terrestrial radiation per unit of warming (cooling) of our planet. The range of the feedback
coefficient f that corresponds to the range of feedback parameter λ is 0.49 ≤ f ≤ 0.82 with
an ensemble average value of 0.66. Note that higher values of the feedback parameter λ
correspond to smaller values of the feedback coefficient f . The parameter qs, which char-
acterizes the intensity of stochastic radiative forcing, was estimated using the asymptotic
relation q2

s = σ̃2
s τyr, where σ̃2

s is the radiative forcing variance averaged over the period
τyr [19]. Since in the model, a one-year averaging period is used, τyr = 1 yr, and time is
also measured in years, then q2

s = σ̃2
s . The standard deviation range of the global mean

radiative forcing is 0.16− 0.40 W m2, with a multi-model average value of 0.26 W m2 [94].
The ASFs to parameters λ and C that were calculated for different values of the

feedback coefficient f are displayed in Figure 3. The coefficient f is varied over a wide range
of values since feedback uncertainty is one of the main sources of uncertainty in the climate
system’s response to radiative forcing. Analysis of Figure 3 shows that the absolute value
of ψλ increased as the period of the GMST fluctuations increased. The rate of change in ψλ

was strongly dependent on the value of the feedback coefficient. The larger the coefficient f,
the greater the rate of change in ψλ. An important finding was that radiative feedbacks
were strong across the entire frequency range, and continued to become stronger at very
long timescales.
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The ASF ψC exhibited more complex behaviour, which was shaped like an inverted
bell. The point at which the function ψC had an extremum corresponded to the frequency
ν∗ = (λ + γ)/2πC. For the reference parameter values, this frequency corresponded to an
oscillation period of 25 years. It is interesting that the frequency ν∗ defined the bending
point at which the spectrum mode changed, i.e., ν∗ = νc (Figure 4). At frequencies larger
than νc (i.e., for fluctuations with ν > νc), the power spectrum corresponded to red noise,
while at low frequencies (ν < νc), the power spectrum reached the plateau region in which
the PSD was constant. Let us briefly discuss how the theoretical power spectrum obtained
with the two-box EBM fits the observational data. The PSD of the surface temperature
fluctuations had a power-law dependence on frequency STT(ν) ∝ ν−γ, where γ was the
scaling exponent (e.g., [95–98]). In the frequency range, corresponding to timescales from
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months to decades, γ = 0.80± 0.15 [98]. The scaling exponent value that was obtained
from the CMIP5 model results [19] for frequencies that corresponded to timescales from
years to decades was γ = 0.82± 0.10 with 95% confidence. Dividing this power spectrum
into a low-frequency range with decadal and interdecadal scales, and a high-frequency
range with an interannual scale, it was found that for these ranges, the values of the scaling
exponent were 0.40 and 1.53, respectively. The scaling exponent for the theoretical power
spectrum of the GMST fluctuations, as estimated via the two-box EBM with decadal and
longer timescales, was 0.2–0.4, depending on the value of the feedback factor; meanwhile,
the value of γ for the interannual timescales was closer to 2. The RSFs ψR

λ and ψR
C that

allowed us to rank the parameters λ and C in accordance with their importance in the
formation of the power spectrum are presented in Figure 5. This figure shows that the
RSFs were intrinsically nonlinear, varying significantly with frequency, but their behaviour
was monotonic. The intersection point of ψR

λ and ψR
C corresponded to the frequency of the

bending point νc, which was determined earlier. In the high-frequency range of the power
spectrum, the influence of the climate system’s inertia on the power spectrum was more
significant than the influence of the feedbacks. In contrast, in the low-frequency range, the
influence of the feedbacks on the power spectrum exceeded the influence of the climate
system’s inertia.
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The effect of the parameter uncertainty on the PSD was determined as follows:
δ(STT)δα ≈ ±|ψα||δα|, where the variation δα characterizes the absolute uncertainty in
the parameter α = (λ, C), and the variation δ(STT)δα characterized the uncertainty in
the power spectrum caused by δα. The fractional (percentage) uncertainty in the PSD
that was caused by uncertainties in the parameters λ and C was estimated as follows:
[δ(STT)/STT ]α ≈ ±ψR

α

∣∣δα/α0
∣∣ × 100%. The absolute and relative uncertainties in the

power spectrum of the GMST fluctuations were estimated with the assumption that the
parameter uncertainties corresponded to one standard deviation of the mean, i.e., we
assumed that δλ = 0.31 W m2 K−1 and δC = 1.1 W yr m−2 K−1 (Table 2). Table 2 shows
that the behaviour of δ(STT)δα was similar to the behaviour of the corresponding ASF due
to the linear relationship between them. The calculated fractional uncertainties presented
in Table 2 clearly confirmed the results of assessing the relative role of the parameters λ and
C in the formation of the power spectrum of the GMST fluctuations in different frequency
ranges.
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Table 2. Absolute and relative uncertainties in power spectrum of the GMST fluctuations caused by
one-sigma uncertainties in the feedback parameter λ and the climate system inertia parameter C.

Uncertainty Period of Oscillations (yr)
2 10 30 100

δ(STT)λ

(
K2 yr

)
±8.66 × 10−8 ±4.03 × 10−5 ±7.14 × 10−4 ±1.793 × 10−3

δ(STT)C

(
K2 yr

)
±1.20 × 10−5 ±2.23 × 10−4 ±4.46 × 10−4 ±1.17 × 10−4

[δ(STT)/STT ]λ (%) ±0.2 ±4.7 ±19.6 ±30.9
[δ(STT)/STT ]C (%) ±29.8 ±25.7 ±12.2 ±2.0

The role of the anthropogenic effect was not considered in this stochastic EBM. Mean-
while, in [19,82,94], the deterministic version of a two-box EBM was applied to analyze the
effect of human-induced radiative forcing on climate variability. Similarly, anthropogenic
forcing can be taken into account in the stochastic model. However, we should keep in
mind that the spectrum’s shape is invariant under rescaling.

In the future, we intend to consider a more complex model, namely, a 1D EBM in
stochastic formulation in which random forcing is a function of latitude.

5. Concluding Remarks

Mathematical theories, models and tools help us to solve some of the most challenging
problems in the physical, biological and life sciences, including climate sciences. Math-
ematics and its methods and approaches have played a vital role in climate research for
several decades. To date, mathematical modelling remains the only method and effective
instrument that is used to predict the climate system’s evolution under the influence of
natural and anthropogenic perturbations. Current climate change is one of the greatest
threats to humans in various aspects. Understanding the climate formation processes and
projecting the future state of the climate system are the main issues in climate science,
which cannot be solved without the use of mathematical methods for studying complex
systems. In this study, we considered some mathematical methods and approaches, pri-
marily mathematical modelling and sensitivity analysis, in the context of their application
to climate system exploration.

The current climate is characterized not only by a long-term trend but also by vari-
ability against the background of human-induced global warming. The exploration of
climate variability requires the development of stochastic climate models, which is not
a trivial problem. Here we discussed the essential features of stochastic climate models
and their application to climate variability exploration. As an illustrative example, we
considered the application of a low-order energy balance model to study climate variability.
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The effect of variations in feedbacks and the climate system’s inertia on the power spectrum
of the global mean surface temperature fluctuations were estimated using a sensitivity
analysis approach. We are aware that the results that are discussed here were obtained
under highly simplified assumptions and based on numerical experiments with a very
simple climate model, namely, with a randomly forced two-box EBM, which, as shown
previously [19,94], has the capability of reproducing with acceptable accuracy the change
in the GMST under external radiative forcing and examining the influence of feedbacks
and the climate system’s inertia on climate change and variability.

It is obvious that it is very difficult to describe all aspects of the application of mathe-
matics in climate science in one article; hence, we have considered only some areas of the
use of mathematical methods, which, in our opinion, are important in the study of climate.
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