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Abstract: Naive Bayes (NB) is easy to construct but surprisingly effective, and it is one of the top ten
classification algorithms in data mining. The conditional independence assumption of NB ignores
the dependency between attributes, so its probability estimates are often suboptimal. Hidden naive
Bayes (HNB) adds a hidden parent to each attribute, which can reflect dependencies from all the other
attributes. Compared with other Bayesian network algorithms, it offers significant improvements
in classification performance and avoids structure learning. However, the assumption that HNB
regards each instance equivalent in terms of probability estimation is not always true in real-world
applications. In order to reflect different influences of different instances in HNB, the HNB model
is modified into the improved HNB model. The novel hybrid approach called instance weighted
hidden naive Bayes (IWHNB) is proposed in this paper. IWHNB combines instance weighting with
the improved HNB model into one uniform framework. Instance weights are incorporated into
the improved HNB model to calculate probability estimates in IWHNB. Extensive experimental
results show that IWHNB obtains significant improvements in classification performance compared
with NB, HNB and other state-of-the-art competitors. Meanwhile, IWHNB maintains the low time
complexity that characterizes HNB.

Keywords: Bayesian network; hidden naive Bayes; instance weighting

1. Introduction

Bayesian network (BN) combines knowledge of network topology and probability. It
is a classical method which can be used to predict a test instance [1]. The BN structure is a
directed acyclic graph, and each edge in BN reflects the dependency between attributes.
Unfortunately, it has been confirmed that finding the optimal BN from arbitrary BNs is
an non-deterministic polynomial (NP)-hard problem [2,3]. Naive Bayes (NB) is one of the
most classic and efficient models in BNs. It is easy to construct but surprisingly effective [4].
The NB model is shown in the Figure 1a. A1, A2, · · · , Am denote m attributes. The class
variable C is the parent node of each attribute. Each attribute Ai is independent from
the others.

The classification performance of NB is comparable to well-known classifiers [5,6].
However, the conditional independence assumption of NB ignores the dependencies
between attributes in real-world applications, so its probability estimates are often sub-
optimal [7,8]. In order to reduce the primary weakness brought by the conditional in-
dependence assumption, a lot of improved approaches of NB have been proposed to
alleviate the primary weakness in NB by manipulating attribute independence asser-
tions [9,10]. These improved approaches can fall into five main categories: (1) Structure
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extension by extending the NB’s structure to overcome the attribute independence as-
sertions [11–14]; (2) Instance weighting by constructing a NB classifier on an instance
weighted dataset [15–18]; (3) Instance selection by constructing a NB classifier on a selected
local instance subset [19–21]; (4) Attribute weighting by constructing a NB classifier on an
attribute weighted dataset [22–26]; (5) Attribute selection by constructing a NB classifier
on a selected attribute subset [27–30].

Figure 1. The different structures of related models.

Structure extension adds finite directed edges to reflect the dependencies between
attributes [31]. It is efficient to overcome the conditional independence assumption of NB,
since probabilistic relationships among attributes can be explicitly denoted by directed
arcs [32]. Among various structure extension approaches, the hidden naive Bayes (HNB) is
an improved model that essentially combines mixture dependencies of attributes [33]. It
can display Bayesian network topology well and reflect the dependencies from all other
attributes. However, HNB regards each instance as equally important when computing
probability estimates. This assumption is not always true because different instances
could have different contributions. In order to improve the classification performance of
HNB, it will be interesting to study whether a better classification performance can be
achieved by constructing an improved HNB model on the instance weighted dataset. The
resulting model which combines instance weighting with the improved HNB model into
one uniform framework inherits the effectiveness of HNB, and reflects different influences
of different instances.

In this study, we propose the novel hybrid model which combines instance weighting
with the improved HNB model into one uniform framework, referred to as instance
weighted hidden naive Bayes (IWHNB). With the research of the existing HNB model,
we propose an improved HNB model that can reflect different contributions of different
instances. In contrast to the existing HNB model, the improved HNB model is built on
the instance weighted dataset. Instance weights are incorporated into generating each
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hidden parent to reflect mixture dependencies of both attributes and instances. In our
IWHNB approach, the improved HNB model is proposed to approximate the ground-
truth attribute dependencies. Meanwhile, instance weights are calculated by the attribute
value frequency-based instance weighted filter. Each instance weight is incorporated into
probability estimates and the classification formula in IWHNB.

We have completed experiments to compare IWHNB with NB, HNB, and other state-
of-the-art competitors. Empirical studies show that IWHNB obtains more satisfactory
classification performance than its competitors. Meanwhile, IWHNB maintains the low
time complexity that characterizes HNB. The main contributions of the work presented in
this paper can be briefly summarized as follows:

1. We reviewed the related work about structure extension and found that there is almost
no method that focuses on the hybrid paradigm which combines structure extension
with instance weighting.

2. We reviewed the related work about the existing instance weighting approaches and
found that the Bayesian network in these researches is limited to NB.

3. The IWHNB approach is an improved approach which combines instance weighting
with the improved HNB model into one uniform framework. It is a new paradigm to
calculate discriminative instance weights for the structure extension model.

4. Although some training time is spent to calculate the weight of each instance, the
experimental results show that our proposed IWHNB approach is still simple and
efficient. Meanwhile, the classification performance of the IWHNB approach is more
satisfactory than its competitors.

The paper is organized as follows. In Section 2, we review the related work with
regard to this paper. In Section 3, we propose our IWHNB approach. In Section 4, we
describe the experimental setup and results. In Section 5, we give our conclusions and
outline suggestions for future research.

2. Related Work
2.1. Structure Extension

Structure extension adds finite directed edges to encode probabilistic relationships.
The extended NB structure encodes attribute independence statements, where directed arcs
can explicitly characterize the joint probability distribution. In the case of given its parents,
the attribute is independent of its non descendants. Given a test instance x, represented by
an attribute vector < a1, a2, · · · , am >, Equation (1) is formalized to classify instance x in
structure extended NB:

c(x) = arg max
c∈C

P(c)
m

∏
i=1

P(ai|Πai , c), (1)

where m is the number of attributes, Πai is the attribute value(s) of ΠAi , and ΠAi denotes
the set of parent nodes of Ai except for the class node C. The prior probability P(c) is
defined by Equation (2) as follows:

P(c) =
1 + ∑n

t=1 δ(ct, c)
q + n

, (2)

where n is the number of training instances, ct is the class label of the tth training instance,
q is the number of classes, and δ(•) is a binary function, where the value is 1 when two
variables are equal, and the value is 0 when unequal.

A number of structure extension approaches have been proposed to alleviate the
primary weakness in NB [31]. The network structure of tree-augmented naive Bayesian
(TAN) comprising all the attribute nodes is tree-like [14]. The class is the parent node
of each attribute, and each attribute can have only one other attribute parent from other
attributes. Aggregating one-dependence estimators (AODE) aggregate the joint probability
distribution of all qualified classifiers [12]. This Bayesian model directly makes each
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attribute the parent node of all other attributes, and does not need to learn the topological
structure between attributes. Weighted average of one-dependence estimators (WAODE)
is proposed to assign different weights to different one-dependence estimators [34]. Each
attribute is set as the root attribute once.

Among various structure extension approaches, the hidden naive Bayes (HNB) [33] is
an improved model that essentially combines mixture dependencies of attributes. In this
study, our proposed IWHNB approach is based on the HNB model, so the HNB model is
introduced in detail here. The existing HNB model is shown in the Figure 1b. C is the class
label. Each hidden parent Ahpi

, i = 1, 2, · · · , m is created for each attribute Ai. A dashed
directed line which is from each hidden parent Ahpi

to attribute Ai distinguishes it from
a regular arc. A test instance x, x =< a1, · · · , am > classified by HNB is formalized as
Equation (3):

c(x) = arg max
c∈C

P(c)
m

∏
i=1

P(ai|ahpi
, c), (3)

where the prior probability P(c) is also computed by Equation (2). A hidden parent Ahpi
is

created for each attribute Ai. The probability P(ai|ahpi
, c) is formalized as Equation (4):

P(ai|ahpi
, c) =

m

∑
j=1,j 6=i

Wij ∗ P(ai|aj, c), (4)

where Wij (i, j = 1, 2, · · · , m and i 6= j) are the weights calculated to reflect influences from
other attributes. Wij is calculated as Equation (5):

Wij =
IP(Ai; Aj|C)

∑m
j=1,j 6=i IP(Ai; Aj|C)

, (5)

where IP(Ai; Aj|C) is the conditional mutual information formalized as Equation (6):

IP(Ai; Aj|C) = ∑
ai ,aj ,c

P(ai, aj|c)log
P(ai, aj|c)

P(ai|c)P(aj|c)
, (6)

where P(ai|c), P(aj|c) and P(ai|aj, c) are formalized as Equations (7)–(9), respectively:

P(ai|c) =
1 + ∑n

t=1 δ(ati, ai)δ(ct, c)
ni + ∑n

t=1 δ(ct, c)
, (7)

P(aj|c) =
1 + ∑n

t=1 δ(atj, aj)δ(ct, c)
nj + ∑n

t=1 δ(ct, c)
, (8)

P(ai, aj|c) =
1 + ∑n

t=1 δ(ati, ai)δ(atj, aj)δ(ct, c)
ni + ∑n

t=1 δ(atj, aj)δ(ct, c)
, (9)

where ati is the ith attribute value of the tth training instance, ni is the number of values for
the ith attribute.

In the HNB model, we can see that each hidden parent essentially combines mixture
dependencies of all other attributes. The HNB model avoids structure learning with in-
tractable computational complexity and reflects the dependencies from all other attributes,
but it regards each instance equally important when computing probability estimates.
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2.2. Instance Weighting

Naive Bayes (NB) is one of the most classic and efficient models in Bayesian net-
works. The classification performance of the NB classifier is comparable to state-of-the-art
classifiers. The classifier of NB uses Equation (10) to classify a test instance x:

c(x) = arg max
c∈C

P(c)
m

∏
i=1

P(ai|c), (10)

where the prior probability P(c) is also computed by Equation (2). In the meantime,
the conditional probability P(ai|c) is defined by Equation (11):

P(ai|c) =
1 + ∑n

t=1 δ(ati, ai)δ(ct, c)
ni + ∑n

t=1 δ(ct, c)
, (11)

where ni is the number of values for the ith attribute.
Instance weighting is a practical way to improve NB by constructing a NB classifier on

the instance weighted dataset [35]. It calculates the discriminative weight of each instance
according to the distribution of the instance. Instance weighted NB still uses Equation (10)
to classify a test instance x. The classification formula of instance weighted NB is the
same as that for NB. However, different from the NB classifier, instance weighted NB
calculates the discriminative weight of each instance, and incorporates discriminative
instance weights into the prior probability and the conditional probability estimates. The
prior probability P(c) is redefined by Equation (12):

P(c) =
1 + ∑n

t=1 wtδ(ct, c)
q + ∑n

t=1 wt
, (12)

where wt is the weight of the tth training instance. In the meantime, the conditional
probability P(ai|c) is redefined by Equation (13):

P(ai|c) =
1 + ∑n

t=1 wtδ(ati, ai)δ(ct, c)
ni + ∑n

t=1 wtδ(ct, c)
. (13)

How to calculate the different weight of each instance to build an instanced weighted
NB classifier is crucial. Instance weighting approaches can broadly fall into two categories:
eager learning and lazy learning. Eager learning uses general characteristics of instances
to calculate instance weights during the training phase. Each instance weight is directly
computed as a preprocessing step before the classification phase. Rather than calculating
instance weights based on general characteristics of instances, lazy learning is more prof-
itable to optimize instance weights at classification phase. Lazy learning first uses search
algorithms to search for instance weights, and then optimize instance weights by building
the target classifier on the instance weighted NB. Lazy learning spends more computational
cost. So, eager learning normally is faster to calculate instance weights compared to lazy
learning, but lazy learning has better classification performance than eager learning.

Discriminatively weighted NB uses the estimated conditional probability loss to
calculate discriminative instance weights [15]. It is an eager learning approach, it achieves
remarkable classification results in both classification accuracy and ranking. Attribute
value frequency weighted NB is a simple and efficient eager learning approach [18]. This
instance weighting filter focuses on the frequency of each attribute value to learn the weight
of each instance. It calculates each instance weight according to its attribute value number
and its attribute value frequency. Lazy NB clones each instance in the neighborhood [16].
It is a lazy learning approach. It calculates the similarity between the test instance and
each training instance, and clones are then made based on the similarity. The improved
algorithm called instance weighted NB finds the mode within training instances, and then
calculates each weight according to the similarity between the mode and each instance [17].
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Numerous instance weighting studies have revealed that the Bayesian networks in
these existing instance weighting approaches are all limited to NB. It will be interesting to
study whether a better classification performance can be obtained by exploiting instance
weighting on the structure extended NB.

3. Instance Weighted Hidden Naive Bayes

The studies show that both structure extension and instance weighting can improve
the classification performance. Structure extension extends the structure to overcome the
unrealistic assumption, but regards each instance as equally important. Instance weight-
ing weights each instance discriminatively to overcome the conditional independence
assumption. Each instance weight is incorporated to calculate probability estimates, but
the Bayesian network of existing instance weighting approaches is limited to NB. Based on
the above analysis, we study whether more satisfying classification results can be obtained
by exploiting instance weighting on the structure extended NB.

Following the reasons above, this paper focuses the research on the new hybrid
paradigm which combines structure extension with instance weighting. The extended
structure should be more accurate to reflect the dependency between attributes. Meanwhile,
different instance weights can be incorporated into probability estimates and the classifi-
cation formula to give more accurate results compared to traditional methods. Learned
instance weights can reflect different contributions of different instances. Based on these,
we propose a new hybrid approach which combines the improved hidden naive Bayes
with instance weighting into one hybrid model. This improved hybrid approach is called
instance weighted hidden naive Bayes (IWHNB). We modify the HNB model into the
instance weighted hidden naive Bayes (IWHNB) model. In the following subsection, we
describe the IWHNB model in detail.

3.1. The Instance Weighted Hidden Naive Bayes Model

Hidden naive Bayes (HNB) generates a hidden parent to each attribute to reflect
dependencies from all other attributes [33]. Figure 1 effectively creates relationships among
the models, as if they had evolved directly from one to the other. As Figure 1a shows, naive
Bayes (NB) is one of the most classic and efficient models in BNs. As Figure 1b shows,
the HNB model essentially adds a hidden parent to each attribute, but it regards each
instance as equally important. The HNB model avoids structure learning with intractable
computational complexity. It can be interpreted as the weight of each instance is set to 1
by default in HNB. However, in the training dataset, some instances contribute more to
classification than others, so they should have more influence than less important instances.
Different contributions for different instances can be a very important consideration.

Motivated by the work of HNB [33], we modify the HNB model into the instance
weighted hidden naive Bayes model in our IWHNB approach. The instance weighted
hidden naive Bayes model is shown in the Figure 1c. C is the class label, and is the parent
node of each attribute. A hidden parent Ahpi

, i = 1, 2, · · · , m is also created for each
attribute Ai. n is the number of training instances. wt is the weight of the tth training
instance. In the improved HNB model, each instance weight wt is integrated to generate the
hidden parent to each attribute. A dashed directed line which is from each hidden parent
Ahpi

to attribute Ai distinguishes it from a regular parent. Different from the existing HNB
model, the improved HNB model not only essentially reflects dependencies from all other
attributes but also can reflect different contributions of different instances.

In our IWHNB approach, the test instance x =< a1, · · · , am > classified by IWHNB is
formalized as Equation (14):

c(x) = arg max
c∈C

P(c)
m

∏
i=1

P(ai|ahpi
, c). (14)
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Although the classification formula of our IWHNB approach is the same as that for
HNB, the calculations of the probabilities P(c) and P(ai|ahpi

, c) are different. We embed
each instance weight wt into the generation of each hidden parent. Instance weights are
also incorporated into calculating probabilities. The detailed processes are described as
follows. Firstly, we redefine the prior probability P(c) as Equation (15):

P(c) =
1 + ∑n

t=1 wtδ(ct, c)
q + ∑n

t=1 wt
. (15)

Secondly, the probability P(ai|ahpi
, c) is formalized as Equation (16).

P(ai|ahpi
, c) =

m

∑
j=1,j 6=i

Wij ∗ P(ai|aj, c), (16)

where P(ai|aj, c) and Wij both are redefined in our IWHNB approach. We redefine the
probability P(ai|aj, c) as Equation (17):

P(ai, aj|c) =
1 + ∑n

t=1 wtδ(ati, ai)δ(atj, aj)δ(ct, c)
ni + ∑n

t=1 wtδ(atj, aj)δ(ct, c)
, (17)

where wt is the weight of the tth training instance.
Thirdly, Wij are weights which are measured by the conditional mutual information

IP(Ai; Aj|C) to reflect influences from other attributes. Wij is calculated as Equation (18):

Wij =
IP(Ai; Aj|C)

∑m
j=1,j 6=i IP(Ai; Aj|C)

, (18)

where IP(Ai; Aj|C) is defined as follows:

IP(Ai; Aj|C) = ∑
ai ,aj ,c

P(ai, aj|c)log
P(ai, aj|c)

P(ai|c)P(aj|c)
. (19)

In the process of computing IP(Ai; Aj|C) and Wij, we incorporate instance weights to
compute probability estimates. We redefine the probabilities P(ai, aj|c), P(ai|c) and P(aj|c).
The probability P(ai|aj, c) is redefined as Equation (17). Meanwhile, P(ai|c) and P(aj|c) are
respectively redefined as:

P(ai|c) =
1 + ∑n

t=1 wtδ(ati, ai)δ(ct, c)
ni + ∑n

t=1 wtδ(ct, c)
. (20)

P(aj|c) =
1 + ∑n

t=1 wtδ(atj, aj)δ(ct, c)
nj + ∑n

t=1 wtδ(ct, c)
. (21)

Finally, the probability P(ai|ahpi
, c) is computed by Equation (16). The test instance is

classified by Equation (14). Instance weights are incorporated into the process of calculating
probability estimates and the classification formula.

In our IWHNB approach, the improved HNB model is modified to reflect the influ-
ences of both attributes and instances. Different contributions for different instances are
considered when generating the improved HNB model. Different influences of different
instance weights are embedded to generate a hidden parent of each attribute. Now, the only
question is how to quantify different instance weights. To address this question, the next
subsection will describe how to quantify the weight of each instance.
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3.2. The Weight of Each Instance

In order to maintain the computational simplicity that characterizes HNB, we exploit
eager learning, known as the attribute value frequency-based instance weighted filter, to
calculate each single instance weight. The frequency of an attribute value means the ratio
between the occurrence times of each attribute values and the instances’ number. It can
contain important information to define instance weights [18]. To quantify the frequency of
an attribute value, fti is used to denote the frequency of attribute value ati (the ith attribute
value of the tth instance). We define Equation (22) to denote the attribute value frequency:

fti =
∑n

r=1 δ(ari, ati)

n
, (22)

where ari is the ith attribute value of the rth instance. For the tth training instance, its
attribute value frequency vector is denoted as < ft1, ft2, · · · , ftm >. The more frequently
an attribute value appears, the more influence of an attribute value there is on the instance.
The frequency of the occurrence of attribute values can well reflect the importance of
the instance.

In our IWHNB approach, not only the attribute value frequency but also the num-
ber of values of different attributes is considered. < n1, n2, · · · , nm > is used to de-
note values of each attribute’s value number. It reflects the diversity of each attribute.
Each instance weight has positive correlation with its attribute value frequency vector
< ft1, ft2, · · · , ftm > and the attribute value number vector < n1, n2, · · · , nm >.

Finally, we set the weight of each instance to be the dot product of the attribute value
frequency vector and attribute value number vector. The weight of the tth instance wt is
formalized as the following Equation:

wt = < ft1, ft2, · · · , ftm > • < n1, n2, · · · , nm >

=
m

∑
i=1

( fti ∗ ni). (23)

Based on the simple and efficient attribute value frequency-based instance weighted
filter, a proper weight is assigned to each different instance. Discriminative instance
weights are embedded to generate a hidden parent of each attribute to reflect the influences
of both attributes and instances.

Now, the detailed learning algorithm for our instance weighted hidden naive Bayes
(IWHNB for short) can be described as Algorithm 1. From Algorithm 1, the time complexity
of computing instance weights is O(3nm). n is the number of training instances. m is the
number of attributes. IWHNB needs to compute the conditional mutual information for
each pair of attributes. The time complexity is O(qm2v2), v is the average number of values
for an attribute, q is the number of class labels. The time complexity for computing each
weight Wij is O(m2). These formulas sum over n, thus, the training time complexity of
IWHNB is O(3nm + nm2 + nqm2v2). The training procedure of the algorithm IWHNB is
similar to that of HNB, except the additional procedure for calculating each instance weight.
At classification time, Equation (14) is used to classify a test instance, and it takes O(qn2).
The total time complexity of the IWHNB algorithm is O(qn2 + 3nm + nm2 + nqm2v2),
which shows that IWHNB is simple and efficient.



Mathematics 2021, 9, 2982 9 of 15

Algorithm 1 Instance Weighted Hidden Naive Bayes

Input: TD-a training dataset; a test instance x
Output: the predicted class label of x
1: Initialize all instance weights by the attribute value frequency-based instance weighted

filter
2: for each training instance t = 1 to n do
3: for each training instance’s attribute value, i = 1 to m do
4: Set new instance weight of tth instance to be the dot product of its attribute

value frequency vector < ft1, ft2, · · · , ftm > and the attribute value number vector
< n1, n2, · · · , nm >

5: end for
6: end for
7: Discriminative instance weights are incorporated into the process of calculating proba-

bility estimates.
8: for each possible class label c that C takes do
9: Calculate P(c) using Equation (15)

10: for each attribute Ai, i = 1 to m do
11: Calculate P(ai|c) using Equation (20)
12: end for
13: for each pair of attributes Ai and Aj(i 6= j) do
14: Calculate P(ai|aj, c) as Equation (17)
15: Calculate IP(Ai; Aj|C) using Equation (19)
16: Calculate Wij using Equation (18)
17: end for
18: Calculate P(ai|ahpi

, c) using Equation (16)
19: end for
20: Predict the class label c(x) of x by Equation (14)

4. Experiments and Results

In order to verify the performance of our proposed IWHNB, we completed experi-
ments to compare IWHNB with NB, HNB and other state-of-the-art competitors. These
state-of-the-art competitors and their abbreviations are listed as follows. HNB, AODE
and TAN are state-of-the-art structure extension approaches. AVFWNB is an eager in-
stance weighting approach. AIWNB is a new improved approach which combines instance
weighting with attribute weighting.

• NB: Naive Bayes [36].
• HNB: Hidden naive Bayes [33].
• AVFWNB: Attribute value frequency weighted NB [18].
• AIWNB: Attribute and instance weighted NB [35].
• AODE: Aggregating one-dependence estimators [12].
• TAN: Tree-augmented NB [14].

We performed our study on the 36 University of California, Irvine (UCI) datasets [37].
These datasets are published on the WEKA platform [38]. They are from a wide range of
fields and also have various data characteristics. In the process of preprocessing, we replace
missing attribute values with the modes of the nominal attribute values or the means of
the numerical attribute values. We also use the Fayyad & Irani’s minimum description
length (MDL) method [39] to discretize numerical attribute values. If the attribute’s value
number is the same instances’ number, the attribute is redundant. So, we delete this type of
attribute. There are three redundant attributes deleted: “Hospital Number” in the dataset
“colic.ORIG”, “instance name” in the dataset “splice”, and “animal” in the dataset “zoo”.

Table 1 shows the results of a comparison of the classification accuracy of each ap-
proach on each dataset after averaging the classification accuracies from ten runs of 10-fold
cross-validation, respectively. Meanwhile, two-tailed t-test with the p = 0.05 significance
level [40,41] is used to compare the proposed IWHNB with its competitors. We use the
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symbol • to denote our proposed IWHNB is a significant improvement over its competitors,
and use the symbol ◦ to denote it is a significant degradation over its competitors. The
second-to-last line reveals the average accuracy of each algorithm, which can provide a
gross indicator of its classification performance across all datasets. At the bottom of the
Table 1, W/T/L reflects that our proposed IWHNB wins on W datasets, ties on T datasets
and loses on L datasets over its competitors.

Then, the summary test results based on a corrected paired two-tailed t-test with
the p = 0.05 significance level are shown in Table 2. For each entry i(j), i is the number
of datasets on which the algorithm in the column achieves higher classification accuracy
than the algorithm in the corresponding row, and j is the number of datasets on which the
algorithm in the column achieves significant wins with the p = 0.05 significance level with
regard to the algorithm in the corresponding row. The ranking results are summarized in
Table 3. The first column is the difference between the total number of wins and the total
number of losses that the corresponding algorithm achieves compared with all the other
algorithms, which is used to generate the ranking. The second column is the total number
of winning datasets. The third column is the total number of losing datasets.

Table 1. Comparisons of the classification accuracy for IWHNB versus NB, HNB, AVFWNB, AIWNB, AODE and TAN.

Dataset IWHNB NB HNB AVFWNB AIWNB AODE TAN

anneal 98.31 ± 1.29 96.13 ± 2.16 • 98.33 ± 1.22 98.62 ± 1.15 98.94 ± 1.05 98.01 ± 1.39 98.61 ± 1.02
anneal.ORIG 94.65 ± 2.24 92.66 ± 2.72 • 95.29 ± 2.04 93.32 ± 2.65 • 95.06 ± 2.23 93.35 ± 2.53 94.55 ± 2.10
audiology 78.17 ± 7.15 71.40 ± 6.37 • 69.04 ± 5.83 • 78.58 ± 8.44 83.93 ± 7.00 ◦ 71.66 ± 6.42 • 65.35 ± 6.84 •
autos 85.56 ± 7.93 72.30 ± 10.31 • 82.17 ± 8.60 77.27 ± 9.43 • 78.04 ± 9.02 • 80.74 ± 8.68 80.85 ± 8.99 •
balance-scale 69.05 ± 3.74 71.08 ± 4.29 ◦ 69.05 ± 3.75 71.10 ± 4.30 ◦ 73.75 ± 4.22 ◦ 69.34 ± 3.82 70.75 ± 3.99 ◦
breast-cancer 70.47 ± 6.29 72.94 ± 7.71 73.09 ± 6.11 71.41 ± 7.98 71.90 ± 7.55 72.53 ± 7.15 69.53 ± 7.13
breast-w 96.30 ± 1.94 97.25 ± 1.79 96.32 ± 2.01 97.48 ± 1.68 ◦ 97.17 ± 1.68 96.97 ± 1.87 96.27 ± 2.08
colic 81.20 ± 6.00 81.39 ± 5.74 82.09 ± 5.86 81.47 ± 5.86 83.45 ± 5.45 82.64 ± 5.83 81.00 ± 5.86
colic.ORIG 74.23 ± 6.52 73.62 ± 6.83 74.06 ± 5.79 72.91 ± 6.34 73.87 ± 6.40 74.62 ± 6.51 68.31 ± 6.04 •
credit-a 85.23 ± 3.82 86.25 ± 4.01 85.91 ± 3.70 86.23 ± 3.85 87.03 ± 3.83 86.71 ± 3.82 85.39 ± 3.81
credit-g 75.85 ± 3.69 75.43 ± 3.84 76.12 ± 3.72 75.38 ± 3.90 75.81 ± 3.60 76.50 ± 3.89 73.54 ± 4.16 •
diabetes 76.75 ± 4.20 77.85 ± 4.67 76.81 ± 4.11 77.89 ± 4.66 77.87 ± 4.86 78.07 ± 4.56 78.70 ± 4.29 ◦
glass 77.70 ± 8.98 74.39 ± 7.95 77.80 ± 8.40 76.25 ± 8.07 74.02 ± 8.41 76.08 ± 8.07 76.23 ± 8.87
heart-c 81.52 ± 7.12 83.60 ± 6.42 82.31 ± 6.81 83.04 ± 6.68 82.71 ± 6.61 83.20 ± 6.20 81.62 ± 7.50
heart-h 84.56 ± 6.05 84.46 ± 5.92 84.87 ± 6.03 84.90 ± 5.68 84.29 ± 5.85 84.43 ± 5.92 84.05 ± 6.66
heart-statlog 82.33 ± 6.59 83.74 ± 6.25 82.33 ± 6.55 83.78 ± 6.29 83.22 ± 6.61 83.33 ± 6.61 82.44 ± 6.48
hepatitis 87.38 ± 8.43 84.22 ± 9.41 88.26 ± 7.28 85.38 ± 9.00 85.75 ± 8.97 84.98 ± 9.26 86.01 ± 8.25
hypothyroid 99.32 ± 0.40 98.48 ± 0.59 • 98.95 ± 0.48 • 98.98 ± 0.48 • 99.07 ± 0.48 98.76 ± 0.54 • 99.15 ± 0.44
ionosphere 93.96 ± 3.65 90.77 ± 4.76 • 91.82 ± 4.33 • 91.94 ± 4.09 92.40 ± 4.13 92.79 ± 4.26 92.25 ± 4.33
iris 93.27 ± 5.72 94.47 ± 5.61 93.80 ± 5.86 94.40 ± 5.50 94.40 ± 5.50 93.20 ± 5.76 94.20 ± 5.74
kr-vs-kp 92.70 ± 1.37 87.79 ± 1.91 • 92.36 ± 1.30 • 88.18 ± 1.86 • 93.73 ± 1.28 ◦ 91.01 ± 1.67 • 92.88 ± 1.49
labor 95.90 ± 9.21 93.13 ± 10.56 94.87 ± 9.82 94.33 ± 10.13 94.33 ± 9.30 94.70 ± 9.15 92.47 ± 10.89
letter 90.17 ± 0.62 74.00 ± 0.88 • 88.20 ± 0.66 • 75.07 ± 0.84 • 75.56 ± 0.89 • 88.76 ± 0.70 • 85.49 ± 0.76 •
lymphography 85.89 ± 8.02 84.97 ± 8.30 85.84 ± 8.86 85.49 ± 7.83 84.68 ± 7.99 86.98 ± 8.32 85.30 ± 8.79
mushroom 99.96 ± 0.06 95.52 ± 0.78 • 99.94 ± 0.10 99.12 ± 0.31 • 99.53 ± 0.23 • 99.95 ± 0.07 99.99 ± 0.04
primary-tumor 46.14 ± 6.17 47.20 ± 6.02 47.66 ± 6.21 45.85 ± 6.53 47.76 ± 5.25 47.67 ± 6.30 44.77 ± 6.84
segment 96.87 ± 1.07 91.71 ± 1.68 • 95.88 ± 1.19 • 93.69 ± 1.41 • 94.16 ± 1.38 • 95.77 ± 1.23 • 95.58 ± 1.32 •
sick 97.52 ± 0.76 97.10 ± 0.84 • 97.56 ± 0.74 97.02 ± 0.86 • 97.33 ± 0.85 97.39 ± 0.79 97.40 ± 0.76
sonar 84.63 ± 7.72 85.16 ± 7.52 84.63 ± 7.34 84.49 ± 7.79 82.23 ± 8.65 86.60 ± 6.91 84.45 ± 8.31
soybean 94.61 ± 2.18 92.20 ± 3.23 • 93.88 ± 2.47 94.52 ± 2.36 94.74 ± 2.19 93.28 ± 2.84 94.98 ± 2.38
splice 96.24 ± 1.00 95.42 ± 1.14 • 95.84 ± 1.10 • 95.61 ± 1.11 • 96.21 ± 0.99 96.12 ± 1.00 94.95 ± 1.18 •
vehicle 73.70 ± 3.41 62.52 ± 3.81 • 72.37 ± 3.35 • 63.36 ± 3.87 • 63.59 ± 3.92 • 72.31 ± 3.62 73.39 ± 3.26
vote 94.39 ± 3.21 90.21 ± 3.95 • 94.43 ± 3.18 90.25 ± 3.95 • 92.18 ± 3.76 • 94.52 ± 3.19 94.43 ± 3.34
vowel 90.32 ± 2.71 65.23 ± 4.53 • 85.12 ± 3.65 • 67.46 ± 4.62 • 69.98 ± 4.11 • 80.87 ± 3.82 • 86.09 ± 3.91 •
waveform-5000 86.24 ± 1.45 80.72 ± 1.50 • 86.21 ± 1.44 80.65 ± 1.46 • 82.98 ± 1.37 • 86.03 ± 1.56 82.22 ± 1.71 •
zoo 98.33 ± 3.72 93.98 ± 7.14 97.73 ± 4.64 96.05 ± 5.60 96.05 ± 5.60 94.66 ± 6.38 95.15 ± 6.68

Average 86.37 83.31 85.86 84.21 84.94 85.68 84.95

W/T/L - 17/18/1 9/27/0 13/21/2 8/25/3 6/30/0 9/25/2
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Table 2. Summary test results on classification accuracy.

Algorithm IWHNB NB HNB AVFWNB AIWNB AODE TAN

IWHNB - 11 (1) 17 (0) 12 (2) 15 (3) 14 (0) 11 (2)
NB 25 (17) - 27 (16) 26 (11) 27 (15) 29 (13) 20 (13)

HNB 18 (9) 9 (1) - 13 (3) 16 (4) 18 (1) 12 (2)
AVFWNB 24 (13) 10 (0) 23 (11) - 25 (10) 24 (10) 16 (8)
AIWNB 21 (8) 9 (0) 20 (7) 8 (0) - 21 (8) 15 (6)
AODE 22 (6) 7 (1) 18 (3) 12 (3) 15 (7) - 16 (4)
TAN 25 (9) 16 (2) 24 (5) 20 (2) 21 (5) 20 (6) -

Table 3. Ranking test results on classification accuracy.

Algorithm Wins-Losses Wins Losses

IWHNB 54 62 8
HNB 22 42 20

AIWNB 15 44 29
AODE 14 38 24
TAN 6 35 29

AVFWNB −31 21 52
NB −80 5 85

Based on comparison results, the conclusion is evident that our IWHNB approach
obtains the best experimental results compared with its competitors. We summarize the
conclusions briefly as follows:

1. According to results in Table 1, the averaged classification accuracy of IWHNB across
all datasets is 86.37%. It is considerably higher than its competitors, such as NB
(83.31%), HNB (85.86%), AVFWNB (84.21%), AIWNB (84.94%), AODE (85.68%) and
TAN (84.95%). This suggests that our proposed IWHNB approach is effective.

2. IWHNB obtains the most satisfactory experimental results in accuracy. IWHNB
outperforms NB (17 wins, 18 ties and 1 loss), HNB (9 wins, 27 ties and 0 losses),
AVFWNB (13 wins, 21 ties and 2 losses), AIWNB (8 wins, 25 ties and 3 losses), AODE
(6 wins, 30 ties and 0 losses) and TAN (9 wins, 25 ties and 2 losses).

3. The summary and ranking test results show that IWHNB is overall the best across
all datasets (62 wins and 8 losses). The descending sort across all datasets is IWHNB,
HNB, AIWNB, AODE, TAN, AVFWNB and NB.

4. Compared with HNB, IWHNB considerably improves the classification accuracy (nine
wins and zero losses). This suggests that this improved hybrid approach which com-
bines the improved HNB model with instance weighting improves the classification
performance effectively.

Furthermore, we observe the performance of IWHNB in terms of the elapsed training
time (in milliseconds). Our experiments were conducted on a Linux machine with 3.2 GHz
processor and 8 GB of RAM. The elapsed training time comparison results are shown in
Tables 4–6. Note that the meanings of the t-test results in these tables are opposite to those
in Tables 1–3. For the elapsed training time, a small number which indicates lower time
complexity is better than a large number. Thus, in Table 4, the symbols ◦ and • denote
statistically significant improvement or degradation over its competitors, respectively.
Each W/T /L implies that compared to its competitors, our proposed IWHNB wins on W
datasets, ties on T datasets, and loses on L datasets. In Table 5, i of value i(j) denotes the
number of datasets that the algorithm corresponding to the column loses compared to the
algorithm corresponding to the row. In Table 6, the second and third columns represent the
total numbers of losses and wins, respectively. The first column is the difference between
the second column of losses and third column of wins. We summarize the main highlights
of these comparisons as follows:
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1. According to results in Table 4, the averaged elapsed training time of IWHNB is
13.15 milliseconds, which is a little bigger than that of HNB (12.56 milliseconds).
Therefore, our proposed IWHNB approach maintains the computational simplicity
that characterizes HNB. It is a simple, efficient and effective approach.

2. Compared with TAN, IWHNB has the lower time complexity. The averaged elapsed
training time of IWHNB is smaller than that of TAN (15.84 milliseconds). It reduces
the elapsed training time on 8 datasets, and loses on 0 datasets.

3. According to Tables 4–6, IWHNB indeed has higher time complexity than NB,
AVFWNB, AIWNB, AODE, HNB, but it still has low computational simplicity. Struc-
ture extension and instance weighting are both completed in our IWHNB approach.

Table 4. Comparisons of the elapsed training time for IWHNB versus NB, HNB, AVFWNB, AIWNB, AODE and TAN.

Dataset IWHNB NB HNB AVFWNB AIWNB AODE TAN

anneal 19.42 ± 12.25 0.45 ± 0.88 • 13.28 ± 6.04 • 0.93 ± 1.37 • 6.20 ± 4.53 • 7.84 ± 1.64 • 17.18 ± 7.88
anneal.ORIG 16.80 ± 3.95 0.25 ± 0.44 • 12.32 ± 1.79 • 0.36 ± 0.50 • 4.20 ± 0.65 • 6.95 ± 1.00 • 14.19 ± 1.10
audiology 63.53 ± 18.79 0.13 ± 0.34 • 57.39 ± 4.66 0.24 ± 0.43 • 6.53 ± 1.38 • 7.12 ± 1.20 • 95.49 ± 9.07 ◦
autos 4.65 ± 1.25 0.03 ± 0.17 • 4.35 ± 0.63 0.09 ± 0.29 • 1.15 ± 0.41 • 0.86 ± 0.43 • 4.89 ± 0.65
balance-scale 0.18 ± 0.39 0.06 ± 0.42 0.08 ± 0.27 0.07 ± 0.26 0.17 ± 0.40 0.05 ± 0.22 0.18 ± 0.46
breast-cancer 0.52 ± 0.70 0.02 ± 0.14 • 0.40 ± 0.49 0.01 ± 0.10 • 0.27 ± 0.45 0.16 ± 0.37 0.38 ± 0.55
breast-w 0.62 ± 0.49 0.03 ± 0.17 • 0.48 ± 0.50 0.04 ± 0.20 • 0.48 ± 0.52 0.30 ± 0.48 0.59 ± 0.49
colic 1.95 ± 0.50 0.09 ± 0.29 • 1.77 ± 0.49 0.13 ± 0.34 • 0.83 ± 0.40 • 0.98 ± 0.38 • 2.34 ± 0.52
colic.ORIG 3.77 ± 1.20 0.09 ± 0.29 • 3.28 ± 0.53 0.13 ± 0.34 • 1.54 ± 0.54 • 1.44 ± 0.62 • 4.05 ± 0.87
credit-a 1.83 ± 0.88 0.05 ± 0.22 • 1.34 ± 0.50 0.18 ± 0.39 • 0.78 ± 0.44 • 0.87 ± 0.46 • 1.59 ± 0.73
credit-g 3.00 ± 0.59 0.15 ± 0.36 • 3.12 ± 0.59 0.26 ± 0.44 • 1.66 ± 0.81 • 2.17 ± 0.45 • 3.42 ± 0.81
diabetes 0.48 ± 0.50 0.09 ± 0.29 • 0.36 ± 0.48 0.09 ± 0.29 0.37 ± 0.49 0.31 ± 0.46 0.40 ± 0.55
glass 0.42 ± 0.50 0.00 ± 0.00 • 0.38 ± 0.49 0.02 ± 0.14 • 0.13 ± 0.34 0.07 ± 0.26 0.44 ± 0.52
heart-c 0.70 ± 0.61 0.10 ± 0.30 • 0.68 ± 0.49 0.04 ± 0.20 • 0.29 ± 0.46 0.23 ± 0.42 0.90 ± 0.61
heart-h 0.63 ± 0.49 0.07 ± 0.26 • 0.68 ± 0.49 0.03 ± 0.17 • 0.31 ± 0.46 0.27 ± 0.47 0.71 ± 0.56
heart-statlog 0.60 ± 0.51 0.05 ± 0.22 • 0.37 ± 0.51 0.03 ± 0.17 • 0.29 ± 0.46 0.28 ± 0.45 0.43 ± 0.54
hepatitis 0.81 ± 0.51 0.06 ± 0.24 • 0.72 ± 0.51 0.03 ± 0.17 • 0.35 ± 0.48 0.39 ± 0.49 0.95 ± 0.39
hypothyroid 19.24 ± 1.92 1.16 ± 0.60 • 18.46 ± 1.46 1.90 ± 0.70 • 10.27 ± 1.63 • 17.96 ± 3.36 21.08 ± 2.44
ionosphere 5.20 ± 0.77 0.06 ± 0.24 • 5.26 ± 0.63 0.09 ± 0.29 • 2.36 ± 0.50 • 2.78 ± 1.38 • 7.79 ± 1.23 ◦
iris 0.03 ± 0.17 0.00 ± 0.00 0.05 ± 0.22 0.04 ± 0.20 0.05 ± 0.22 0.05 ± 0.22 0.05 ± 0.22
kr-vs-kp 27.11 ± 5.29 1.33 ± 0.64 • 23.27 ± 1.22 • 1.71 ± 0.71 • 23.76 ± 23.79 23.15 ± 4.53 30.78 ± 5.71
labor 0.51 ± 0.85 0.00 ± 0.00 0.38 ± 0.51 0.02 ± 0.14 0.18 ± 0.39 0.05 ± 0.22 0.52 ± 0.56
letter 81.00 ± 21.55 4.51 ± 0.86 • 72.44 ± 8.74 9.73 ± 1.05 • 74.51 ± 36.78 66.65 ± 23.94 79.07 ± 13.71
lymphography 1.16 ± 0.72 0.02 ± 0.14 • 1.15 ± 0.67 0.04 ± 0.20 • 0.47 ± 0.50 • 0.26 ± 0.44 • 1.18 ± 0.67
mushroom 24.98 ± 3.41 1.85 ± 1.37 • 24.47 ± 1.47 4.26 ± 0.79 • 25.80 ± 4.66 25.55 ± 3.54 27.06 ± 3.80
primary-tumor 3.28 ± 0.57 0.06 ± 0.24 • 3.57 ± 0.76 0.09 ± 0.29 • 0.91 ± 0.47 • 0.58 ± 0.50 • 3.76 ± 1.68
segment 11.00 ± 1.36 0.42 ± 0.52 • 12.32 ± 1.52 0.78 ± 0.50 • 7.52 ± 1.49 • 6.87 ± 1.19 • 13.28 ± 1.78 ◦
sick 18.14 ± 1.98 1.04 ± 0.53 • 17.77 ± 1.64 1.85 ± 0.59 • 11.92 ± 2.79 • 16.74 ± 1.54 22.35 ± 5.21 ◦
sonar 7.16 ± 0.85 0.07 ± 0.26 • 7.76 ± 1.40 0.18 ± 0.39 • 2.24 ± 0.51 • 4.17 ± 1.09 • 29.32 ± 3.92 ◦
soybean 17.57 ± 2.01 0.30 ± 0.46 • 17.80 ± 1.84 0.53 ± 0.50 • 4.85 ± 1.86 • 5.59 ± 1.54 • 20.50 ± 2.12 ◦
splice 81.68 ± 7.16 1.79 ± 0.67 • 89.51 ± 4.19 ◦ 3.14 ± 0.75 • 63.97 ± 8.34 • 80.66 ± 11.04 101.74 ± 11.40 ◦
vehicle 2.95 ± 0.58 0.13 ± 0.37 • 2.87 ± 0.51 0.25 ± 0.44 • 1.45 ± 0.52 • 1.63 ± 0.60 • 3.09 ± 0.64
vote 0.92 ± 0.34 0.07 ± 0.26 • 0.90 ± 0.46 0.11 ± 0.31 • 0.52 ± 0.54 0.64 ± 0.54 1.00 ± 0.45
vowel 2.86 ± 0.59 0.15 ± 0.36 • 3.04 ± 0.63 0.23 ± 0.42 • 1.14 ± 0.40 • 1.11 ± 0.31 • 2.93 ± 0.57
waveform-5000 47.56 ± 2.10 1.61 ± 0.58 • 49.06 ± 2.40 3.05 ± 0.85 • 29.01 ± 1.84 • 46.70 ± 4.64 55.69 ± 2.93 ◦
zoo 0.98 ± 0.38 0.00 ± 0.00 • 1.01 ± 0.33 0.08 ± 0.27 • 0.19 ± 0.39 • 0.21 ± 0.43 • 1.03 ± 0.36

Average 13.15 0.45 12.56 0.85 7.96 9.21 15.84

W/T/L - 0/3/33 1/32/3 0/4/32 0/15/21 0/19/17 8/28/0

Table 5. Summary test results on elapsed training time.

Algorithm IWHNB NB HNB AVFWNB AIWNB AODE TAN

IWHNB - 0 (0) 12 (1) 1 (0) 2 (0) 2 (0) 27 (8)
NB 36 (33) - 36 (32) 30 (6) 36 (25) 35 (23) 36 (31)

HNB 24 (3) 0 (0) - 0 (0) 5 (0) 1 (0) 33 (13)
AVFWNB 35 (32) 5 (0) 36 (31) - 36 (24) 35 (23) 36 (32)
AIWNB 34 (21) 0 (0) 29 (21) 0 (0) - 17 (6) 35 (24)
AODE 34 (17) 1 (0) 34 (18) 1 (0) 18 (0) - 35 (25)
TAN 8 (0) 0 (0) 2 (0) 0 (0) 0 (0) 0 (0) -
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Table 6. Ranking test results on elapsed training time.

Algorithm Losses-Wins Losses Wins

TAN 133 133 0
IWHNB 97 106 9

HNB 87 103 16
AODE −8 52 60

AIWNB −23 49 72
AVFWNB −136 6 142

NB −150 0 150

5. Conclusions and Future Work

Hidden naive Bayes (HNB) adds a hidden parent to each attribute to encode attribute
dependencies. However, it regards each instance as equally important. In this paper,
we propose an improved hybrid approach which combines the improved NB model
with instance weighting into one hybrid model, called instance weighted hidden naive
Bayes (IWHNB). In our IWHNB approach, different contributions for different instances
are considered when generating the improved HNB model. Experiments are conducted
to compare IWHNB with NB, HNB and other state-of-the-art competitors in terms of
the classification accuracy and the elapsed training time. The classification accuracy
comparison results show that our IWHNB approach obtains the best experimental results
compared with its competitors. The elapsed training time comparison results show that
IWHNB maintains the computational simplicity that characterizes HNB. IWHNB is a
simple, efficient and effective approach.

How to calculate optimal instance weights to overcome the unrealistic assumption is
crucial. We think that more sophisticated algorithms can be used to learn more optimal
instance weights to optimize our current version.
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BN Bayesian Network
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