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Abstract: Heavy-haul railway transport is a critical mode of regional bulk cargo transport. It
dramatically improves the freight transport capacity of railway lines by combining several unit trains
into one combined train. In order to improve the efficiency of the heavy-haul transport system and
reduce the transportation cost, a critical problem involves arranging the combination scheme in the
combination station (CBS) and scheduling the train timetable along the trains’ journey. With this
consideration, this paper establishes two integer programming models in stages involving the train
service plan problem (TSPP) model and train timetabling problem (TTP) model. The TSPP model
aims to obtain a train service plan according to the freight demands by minimizing the operation
cost. Based on the train service plan, the TTP model is to simultaneously schedule the combination
scheme and train timetable, considering the utilization optimal for the CBS. Then, an effective hybrid
genetic algorithm (HGA) is designed to solve the model and obtain the combination scheme and train
timetable. Finally, some experiments are implemented to illustrate the feasibility of the proposed
approaches and demonstrate the effectiveness of the HGA.

Keywords: freight transportation; heavy-haul railway; combination scheme; train timetable; genetic
algorithm

1. Introduction
1.1. Background

Heavy-haul railways have been the backbone of the coal transportation system be-
cause of their high capacity [1] and high efficiency for a long time. With the continuous
growth of freight volume, the number of trains in the heavy-haul railway system keeps
increasing, which brings great difficulties to the transportation plans’ scheduling and
operation management in both stations and trunk lines. Therefore, one of the emergency
issues that railway operators are concerned about is how to schedule transportation plans
to reduce operating costs while ensuring transportation demand.

After North American railways took the lead in adopting heavy-haul railway trans-
portation in the 1950s, this transportation mode quickly adapted to the needs of bulk cargo
transport such as for coal, ore, etc., and developed rapidly in the world. The United States,
Canada, Russia, Brazil, China, South Africa, Australia, Sweden, and more than ten other
countries have carried out heavy-haul railway transportation. The heavy-haul railway
transportation mode dramatically improves the freight transport capacity of railway lines
by combining several unit trains into one combined train. Taking China as an example, the
supply and demand for coal are extremely uneven geographically. The eastern region of
China has been economically developed and its industrial production has a great need for
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coal resources. However, coal resources are mainly distributed in the western region [2].
Under this particular distribution pattern of natural resources, developing a heavy-haul
railway can effectively guarantee coal supply and transportation.

With the rapid growth of the demand for heavy-haul transportation, railway operators
have proposed a series of measures to guarantee the transport capacity of the heavy-haul
railway, including increasing the load of combined trains, running different types of
combined trains, and reducing the headway of adjacent trains. Under the condition that
railway infrastructure cannot be revolutionarily upgraded, the flexible organization of
several types of combined trains is one of the most effective ways for railway operators to
satisfy the freight demand at a lower cost. From a transportation system-wide perspective, a
reasonable heavy-haul railway transportation plan should meet the transportation demand,
reduce the station operation workload, and reduce the operation cost.

A complete heavy-haul railway transportation plan consists of several sub-plans. It
includes the train service plan, train combination scheme, train timetable, locomotive
circulation scheme, empty train return scheme, decomposition scheme, etc. The heavy-haul
railway operators are involved in various steps of the decision-making process to obtain a
complete heavy-haul railway transportation plan. Six main stages in the decision-making
process of the heavy-haul railway transportation plan are listed below.

(1) Collect the transport demand. The railway operators collect the buyers’ transport
requirements, including the number and the destination of the required bulk goods.

(2) Schedule the train service plan. Determine the number and type of heavy-haul
trains running between each station pair under the given unloading station requirements
and loading station capacity conditions.

(3) Schedule the train combination scheme. In a heavy-haul railway system, the unit
trains must be combined at a combination station (CBS) to run towards the unloading
stations. Therefore, a detailed combination scheme should be arranged for the unit trains
in the CBS.

(4) Schedule the train timetable. Based on the train combination scheme, determine all
trains’ arrival and departure times at each station.

(5) Schedule the locomotive circulation scheme and train maintenance scheme. Heavy-
haul trains generally require multi-locomotive traction. Set up the trains’ locomotive
circulation and train maintenance schemes according to the preset locomotive routing and
maintenance procedures.

(6) Schedule the empty train return scheme and the decomposition scheme. After the
combined trains’ unloading at the unloading stations, the empty trains must return to the
CBS for decomposition operations and return to the loading stations.

This paper focuses on developing a joint scheduling approach to schedule the (2)–(4)
stages listed above. The decision-making process of the (2)–(4) stages is a complex process
guided by transport demand. Figure 1 illustrates the relations between the stages in
the decision-making process. It starts by collecting the loading capacity of each loading
station and the requests for each unloading station’s demand. Then, heavy-haul railway
operators need to generate executable combination schemes and train timetables based
on the collected information according to the actual situation of the heavy-haul railway.
The decision-making process at these stages needs to comprehensively consider all kinds
of information of the heavy-haul railway transportation system and reflect it into the
transportation plan.
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1.2. Literature Review

In the early stage, heavy-haul transportation was mainly carried out to relieve the tight
transportation capacity on busy trunk lines. Thus, the research focused mainly on freight
transportation organization from a macro perspective. Fan [3] took the selectivity of the
traffic flow path, the line capacity, and the unloading area of the heavy-haul railway into
the optimization process and constructed an optional optimization model for the loading
area. Yang [4] considered the logical matching relationship for the weight, speed, and
density of heavy-haul railways to be a critical factor in freight railways and the matching
relations of these three elements should be assured according to the country economy,
society needs, and routes’ essential condition. Ma [5] discussed the external and internal
factors that affect heavy-haul railways. The external factors include economic development,
transportation price, and production factor price. In contrast, the internal factors include
loading capacity, station capacity, unloading capacity, and maintenance capacity. Sun [6]
analyzed the traffic capacity of coal transportation in the Baotou-Shenmu Railway and
suggested strengthening the carrying capacity according to the present and further freight
volume. Zhou [7] put forward strategies to improve the heavy-haul railway carrying
capacity of the Baotou-Shenmu Railway in stations, improve train transportation efficiency
and traction quality, and optimize the heavy-haul transportation organization plan, among
other strategies as well.

With the increase of the freight volume of the heavy-haul railway, scholars have begun
discussing the organization of the railcar flow in heavy-haul transport systems, focusing
mainly on the relationship between the demand of cargo and the handling capacity of
the railway system. Xue [8] proposed a method calculating the coupling degree between
the station stages plan and the given dynamic railcar flow. Wang [9] studied the heavy-
haul train operation plan problem with a multi-objective programming model, taking the
prescriptive transportation volume index, the capacity of the railway line, and the available
locomotives as the constraints. Zhao [10] established an optimization model of railcar flow
organization in the loading area of the heavy-haul railway to minimize the combination
time consumption and to maximize the flow of the heavy-haul railway. Then, he solved
the model with the minimum cost and maximum flow algorithm. Tang [11] also built a
minimum cost maximum flow model, of which the optimization goal is to maximize the
operation time saved by direct transportation. Wang [12] focused on the cost of cargo
flow in transit and established a 0–1 non-linear programming model with the objective of
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achieving the least cost. Jing [13] established the optimization model of direct flow in the
loading area with the least operation time and lowest running consumption.

The increasing freight volume also increased the workload of stations in the heavy-
haul railway systems. However, the manual approaches are still widely used in the
actual railway operation, which are time-consuming and highly rely on the experience
of the design managers [14]. Thus, scholars also paid attention to the organizational
optimization of heavy-haul railway stations. The station technical operation is an essential
part of the heavy-haul railway transportation organization. The stations of heavy-haul
railways can be divided into four types: loading stations, CBS, unloading stations, and
intermediate stations [15], which mainly handle the loading, unloading, combined, and
decomposed operations. Among these types, the CBS is primarily responsible for the
combined operations of heavy trains based on the combination scheme [16]. Hence, it is an
important node of the heavy-haul railway at the macro level. After realizing the critical role
of station technical schemes in the operation and the management of heavy-haul railway
systems, scholars began to focus on the research about the CBS.

Along this line, Wei [17] studied the influence of turnout selection on the passing
capacity of heavy-haul railway stations, the additional start or stop time of trains, the
period of the train timetable, and the headway of tracks. Ye [18] analyzed the reasons for
the station’s passing capacity based on the operation of 20,000 tons of combined trains
in Hudong Station. He put forward an optimized organization plan to ensure heavy-
haul trains’ safe transportation in Hudong Station. Liang [19] calculated the time that
the trains occupied the station track by analyzing the operation process of the combined
trains in the CBS and checked the number of the station arrival–departure tracks setting in
Hudong Station. Tang [11] studied the operation organization of Hudong Station on the
Daqin Railway and made an in-depth analysis of the organization mode of train queuing.
In the cargo flow organization model established by him, the optimization goal is to
maximize the adaptation time saved by direct transportation. Under constraints of the
combination regulations, train’s weight, the latest permissible time for the combination
of the departure trains, etc., the non-linear 0–1 programming model was established by
Han [20] with the objective of the minimum station dwell time and decomposition time
of the heavy-haul train at CBS. Ma [21] constructed the linear 0–1 programming model
and quadratic 0–1 programming model, setting the utilization equilibrium and the track’s
selection tendency as the objective functions.

The heavy-haul railway transport is a particular pattern of railway freight transport,
which is different from the general passenger and freight railway transport. From the whole
network scale perspective, the heavy-haul railway is a radial tree-shaped network with
strong system independence rather than a large-scale network structure. From the view
of station operation in the technical station, the heavy-haul trains need to be combined or
decomposed in the CBS with unit trains as the minimum unit, which is similar to the freight
train’s marshaling. The scheduling of the combined scheme in the CBS of the heavy-haul
railway can be regarded as a special case of the train formation problem (TFP). The TFP
determines the routing and frequency of trains and assigns the demands to trains [22].

The TFP has received research attention from a mathematical point of view. Therefore,
the transportation organization of heavy-haul railway stations can also learn from some
research studies based on marshaling yards. For example, a neural network is examined
for obtaining good solutions in short time periods for the TFP by Martinelli [23]. Xiao [14]
established the comprehensive optimization model of the train formulation plan using both
the single-block trains and two-block trains, aimed at the minimization of the total car–hour
consumption at all yards. As for a discrete deterministic-controlled system that simulates
the operation of the flat yard, Kozachenko [24] obtained a mathematical statement of the
problem of choosing the optimal order of multi-group train formation. Lin [25] built a
bi-level linear integer model to solve the train service network problem of the Chinese
railway system. Later, he [26] presented the formulation of a train formation problem in rail
loading stations from a systematic perspective. Yaghini [27] proposed a hybrid algorithm of
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the simplex method and simulated annealing for the train formation problem. Murali [28]
presented a decision tool to aid train planners to obtain good quality routes and schedules
quickly for short-time horizons. Lazarev [29] provided the integer linear programming
statement to form trains and define both their routes and schedules by minimizing the total
weighted delivery time of all orders.

There are mainly two differences between heavy-haul railway transport and general
freight railway transport. Firstly, at the beginning of the transport, the loading stations
need to load a particular length of unit trains without specifying the destination of each
railcar. In contrast, in the general freight railway system, different railcars have specific
destinations, thus railway operators need to combine the railcars with similar destinations
into a train. Secondly, at the end of the transport, considering that the unloading stations
in the heavy-haul railway have a large unloading capacity, the railway operators transport
the combined trains into specific unloading stations directly.

To our knowledge, however, there are few demand-oriented scheduling approaches of
heavy-haul railway transportation plans. This paper is particularly interested in proposing
a new approach to simultaneously schedule the combination scheme and heavy-haul train
timetable on a heavy-haul railway considering the demand of the unloading area.

The rest of this paper is organized as follows. Section 2 introduces the general form of a
heavy-haul railway network and the operation process of trains in the heavy-haul transport
system. We also explain several terms of the heavy-haul transport system. Section 3
describes the problem and proposes two optimization models to solve the heavy-haul
railway’s combination scheme and train timetable. Section 4 designs a hybrid algorithm
based on the genetic algorithm framework to solve the proposed model. In Section 5, a
small case and a real-world case are solved by the proposed approach to prove the method’s
effectiveness. Section 6 presents some conclusions.

2. Conceptual Illustration

This section will introduce the composition of a heavy-haul railway and the operation
process of trains in the railway system.

2.1. Composition of the Heavy-Haul Railway

The heavy-haul railway usually connects the railway to the production side and the
demand side of bulk cargo like a corridor. Thus, it is also called the heavy-haul railway
corridor. It has the characteristics of high independence and large carrying capacity. The
heavy-haul railway corridor is usually a special freight railway line used to transport a
particular type of bulk cargo. This kind of heavy-haul railway generally transports a single
type of cargo and operates massive railcars’ flow every day.

Figure 2 is a simplified schematic diagram of a heavy-haul railway. As shown in the
figure, a typical heavy-haul railway can be divided into three parts: loading area, transport
area, and unloading area.
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1. Loading area

The loading area contains two types of technical stations. One is the loading station,
which is the place where the unit trains are loaded. The loading stations in the loading area
mainly connect to the trunk line through branch railway lines. Empty railcars are loaded at
loading stations and become heavy unit trains (in the following text, we call it unit trains).
Part of the heavy unit trains also directly turn into the heavy-haul railway through the
boundary (the boundary connects the heavy-haul railway to other railway lines). Another
technical station is the CBS, the most critical technical station in the heavy-haul railway
system. The unit trains would be sent here for combined operation. The unit trains are
assembled here and combined into combined trains for the unloading area.

2. Transport area

The transport area is the trunk line between the CBS and the unloading area. Accord-
ing to the train timetable, the combined trains run on the trunk line to transport the bulk
cargo to the unloading area.

3. Unloading area

The unloading area is the end of a heavy-haul railway. Here, the buyer submits the
demand and hands over the bulk cargo. Part of the branch line in the unloading area is
not directly connected to the unloading station but is a boundary connecting other railway
lines. The combined trains will arrive at the unloading stations to unload the bulk cargo or
to be transferred from the boundary to other places. The combined trains become empty
trains after unloading at the unloading station.

For the sake of simplification, this paper considers that all unit trains will be combined
in the CBS. However, there were also a number of direct trains on the heavy-haul railways
that only need a simple inspection operation at the CBS. As running trains directly connect
to the destination, it is helpful to reduce the workload of the CBS [30], and some loading
stations load and send specific types of combined trains. These trains do not need combined
operation when through the CBS. For this scenario, when these direct trains run between
the loading area and the CBS, we regard them as unit trains. When they run between the
CBS and unloading area, we regard them as combined trains. We also treat the inspection
operation of direct trains in CBS as a combined operation.

2.2. Operating Process of Trains

In order to intuitively introduce the operational process of unit trains and the com-
bined trains in a heavy-haul railway system, an illustration of a small heavy-haul railway
network is given below.
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As shown in Figure 3, A is the CBS in a small-scale heavy-haul railway network. The
unloading station d requires 10 kt of coal. Therefore, two unit trains with 5 kt loads are sent
to the unloading station d from both loading station a and loading station b. Unit train u1
(blue dotted arcs) departs from loading station a, and unit train u2 (red dotted arcs) departs
from loading station b. At the CBS A, u1 and u2 are combined into a combined train c1
(purple arcs) with a 10 kt total load.
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When we extend this physical railway network on the time axis, we can find more
temporal details from the time–geography perspective. As shown in Figure 4, the vertical
axis corresponds to time and we discretize consecutive periods into small increments. The
benefit of adopting a space–time network framework is to precisely capture the temporal
and spatial interaction of the transportation system [31]. In this way, we can intuitively
understand the moving trajectory of the trains in the heavy-haul railway. The process
of train operation in the heavy-haul railway can be divided into two types: travel in the
section and station technical operation.

4. Travel in the section

The straight arcs in Figure 4 are the space–time trajectories of the trains. They show the
spatial and temporal displacement of the train in the sections. The start of the straight arcs
means the section’s origin station and the train’s departure time. The end of the straight
arcs means the section’s destination station and the train’s arrival time. Thus, the duration
of the straight arcs reflects the train’s running time in the section. The running time of the
trains in a section is generally constant because the trains do not need to perform additional
operations in the section.

5. Station technical operation

Train station operations in the heavy-haul railway include loading operations at the
loading station, unloading operations at the unloading station, and technical operations at
the CBS. After arriving at the CBS, the unit train needs to connect other pre-designated unit
trains as a combined train. The whole combined operation includes the process of arriving,
changing locomotives, connecting trains, and train inspection. A combined operation
usually takes more than 2 h. However, the direct trains only need to carry out the train
inspection at the CBS rather than participate in the combined operation. Here, we treat
train inspection as a special combination of operations. All heavy-haul trains need to finish
the technical operation at the CBS before they can be dispatched to the trunk line.
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As shown in Figure 4, the duration of a unit train’s staying in the CBS is the dwell
time from the unit train’s arrival to its departure after combining into a combined train,
including the headway and all combined operation times. Obviously, the longer unit trains
stay in the CBS, the longer cargo will be in transit, increasing delivery time. At the same
time, the unit trains occupy the resources such as tracks in the CBS, which will reduce
the station’s utilization. Therefore, in actual operation, we hope to reduce the total dwell
time of unit trains in the CBS as much as possible so as to improve the efficiency of CBS
operations and to reduce the delivery time of cargo.

The technical operations of the CBS are based on a combination scheme. The combi-
nation scheme will specify when the unit trains arrive at the CBS, will assign the specific
constituent unit trains for the combined train, and will specify when the combined train
will be dispatched from the CBS. The formulation of the combination scheme determines
the total dwell time of the unit trains in the CBS. Therefore, optimizing the combination
scheme is the key point to improve the efficiency of the heavy-haul transport system.

2.3. Framework

This paper proposes a new methodology using a hybrid genetic algorithm to simul-
taneously account for cargo transportation demand and station technical operation to
optimize both train combination scheme and timetable. Thus, the heavy-haul transport
system can meet the transportation service at a lower cost. The framework of our proposed
methodology is illustrated in Figure 5.



Mathematics 2021, 9, 3068 9 of 29

Mathematics 2021, 9, x 9 of 30 
 

 

To simplify the problem, we divide the heavy-haul railway transportation plan prob-
lem into two stages. In the first stage, the heavy-haul train service plan is designed. The 
cargo demand and heavy-haul railway’s operating conditions determine the number of 
each type of heavily loaded train between different stations. The second stage is to sched-
ule an appropriate combination scheme and train timetable for the heavy-haul train ser-
vice plan generated in the first stage. 

Combined scheme 
parameters

(combined rules, 
operating time)

Railway network
(stations, sections)

Input

Model and algorithm

Output

Cargo demand
(demand, capacity)

Timetable 
parameters

(headway, running 
time)

Model 1: Train service plan problem 
(minimize the operating costs)

Train service plan

Model 2: Train timetabling problem 
(minimize the total dwell time)

Combined scheme Train timetable

Hybrid genetic algorithm

 
Figure 5. The framework of the heavy-haul train timetabling methodology. 

3. Optimization Model 
To provide high-performance transportation services, railway operators need to op-

timize the heavy-haul railway transportation plan based on the required demand. In this 
section, we describe the train service plan problem (TSPP) and the train timetabling prob-
lem (TTP). Table 1 lists the sets, indices, and parameters used in this paper. 

Table 1. Sets, indices, and parameters. 

Symbol Definition 
T  The set of combined trains and unit trains 
comT  The set of combined trains, comT T∈  
uniT  The set of unit trains, uniT T∈  
S  The set of stations 
V  The set of sections 
K  The set of combined train types 
U  The set of unit train types  
p  The index of combined trains, comp T∈  
q  The index of unit trains, uniq T∈  
i , j  The index of stations, ,i j S∈  

zs  The label of the CBS, zs S∈  

Figure 5. The framework of the heavy-haul train timetabling methodology.

To simplify the problem, we divide the heavy-haul railway transportation plan prob-
lem into two stages. In the first stage, the heavy-haul train service plan is designed. The
cargo demand and heavy-haul railway’s operating conditions determine the number of
each type of heavily loaded train between different stations. The second stage is to schedule
an appropriate combination scheme and train timetable for the heavy-haul train service
plan generated in the first stage.

3. Optimization Model

To provide high-performance transportation services, railway operators need to op-
timize the heavy-haul railway transportation plan based on the required demand. In
this section, we describe the train service plan problem (TSPP) and the train timetabling
problem (TTP). Table 1 lists the sets, indices, and parameters used in this paper.

Table 1. Sets, indices, and parameters.

Symbol Definition

T The set of combined trains and unit trains
Tcom The set of combined trains, Tcom ∈ T
Tuni The set of unit trains, Tuni ∈ T

S The set of stations
V The set of sections
K The set of combined train types
U The set of unit train types
p The index of combined trains, p ∈ Tcom

q The index of unit trains, q ∈ Tuni

i, j The index of stations, i, j ∈ S
sz The label of the CBS, sz ∈ S
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Table 1. Cont.

Symbol Definition

Sloa The set of loading stations, Sloa ∈ S
Sunl The set of unloading stations, Sunl ∈ S
(i, j) The label of the section that connects station i and station j, (i, j) ∈ V

k The index of combined train types, k ∈ K
u The index of unit train types, u ∈ U

p(i, j) p(i, j) ∈ {0, 1}; if combined train p, choose the section (i, j), p(i, j) = 1, otherwise
p(i, j)= 0

q(i, j) q(i, j) ∈ {0, 1}; if unit train q, choose the section (i, j), q(i, j) = 1, otherwise q(i, j)= 0
pk pk ∈ {0, 1}; if the type of combined train is k, pk = 1, otherwise pk= 0
Ik The minimum headway of the combined train when its type is k
Iu The minimum headway of the unit train when its type is u
qu qu ∈ {0, 1}; if the type of unit train q is u, qu = 1, otherwise qu= 0

ϕk,u
The number of u-type unit trains required to combine a k-type combined train,
ϕk,u ∈ Z

ttec
k The total dwell time of the k-type combined train in the CBS

r(i, j) The running time of trains running on the section (i, j)
wu The number of railcars in a u-type unit train
lcap
i The unloading capacity of the unloading station i

ldem
i The demand for unloading station i
µk The cycle length of train turn-around
M A big enough positive number
ck The cost of running a k-type combined train
λ The section capacity utilization
tλ Longest service time of the railway line

Dstart, Dend The allowable starting and ending time for combined trains
Astart, Aend The allowable starting and ending time for unit trains

3.1. Train Service Plan Problem (TSPP) Model

The heavy-haul railway train service plan should include the following parts: the
type and quantity of the unit trains departing from each loading station, and the type and
quantity of the combined trains arriving at each unloading station.

In a heavy-haul railway system, the combined trains take on the transport between
the CBS and unloading stations. The combined trains require different operation times and
human resources, and cause different track wear due to their different total loads. Thus,
the operating cost of the different types of the combined trains is different. However, the
heavy-haul railway train service plan involves a key criterion, which is railway operators’
profitability [32]. To this end, we introduce an optimization model that intends to minimize
the total cost requirements. The problem also aims to determine the number of u-type unit
trains departing from loading station i to the CBS, which can be defined by variable yu

i , and
to determine the number of k-type combined trains departing from the CBS to unloading
station j, which can be defined by variable xk

j . Table 2 lists the two types of variables used
in this model.

Table 2. Decision variables for the TSPP model.

Symbol Definition

yu
i The number of u-type unit trains departing from loading station i to the CBS, i ∈ Sloa

xk
j

The number of k-type combined trains departing from the CBS to unloading station
j, j ∈ Sunl

1. Problem statement

A heavy-haul railway system has several loading and unloading stations. Given the
loading stations’ capacity, the unloading stations’ demand, and the unloading capacity.
Find a train service plan to meet the cargo demand to make the total operation cost minimal.
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2. Objective function

The objective function is to minimize the operating costs of the heavy-haul railway. ck
denotes the cost of running a k-type combined train. The parameter ck can be calibrated by
the experience of the railway operator.

min z = ∑
j∈Sunl

∑
k

ckxk
j (1)

3. Demand constraints

Constraint (2) ensures that the cargo that can be transported by the combined trains,
arriving at the unloading station within one day, shall meet the demand for the cargo at
the unloading station.

∑
k

∑
u

xk
j
ϕk,uwu ≥ ldem

j , ∀j ∈ Sunl (2)

4. Unloading capacity constraints

Due to the limited unloading capacity of each unloading station, the quantity of cargo
to be carried by the combined trains arriving at each unloading station shall be less than
the daily unloading capacity of the unloading station.

∑
k

∑
u

xk
j ϕk,uwu ≤ lcap

j , ∀j ∈ Sunl (3)

5. Loading capacity constraints

Due to the limited loading capacity of each loading station, the number of unit trains
departing from each loading station shall be less than the daily loading capacity of the
loading station.

∑
u

yu
i wu ≤ lcap

i , ∀i ∈ Sloa (4)

6. Section carrying capacity constraints

In a heavy-haul railway’s trunk line and branch lines, the headway between any two
adjacent trains should be greater than the minimum headway. As a result, the number of
trains going through the heavy-haul railway every day is limited. Therefore, the number of
unit trains or combined trains passing through any section should be less than the section
carrying capacity.

∑
j

∑
k

Ikyk
j ≤ tλ (5)

7. Flow balance constraint for the CBS

The unit trains arriving at the CBS are combined into the combined trains and sent
into the trunk line. The CBS cannot be used as a storage place for trains, thus the number
of railcars arriving at the CBS is equal to the railcars departing from it.

∑
j∈Sunl

∑
k

xk
j ϕk,u = ∑

i∈Sloa

yu
i , ∀u ∈ U (6)

3.2. Train Timetabling Problem (TTP) Model

In our approach, the result of the TSPP model provides input parameters related to
the train timetable. Since we already know the number of different types of unit trains and
combined trains that need to be operated in the heavy-haul railway, we need to further
develop appropriate schedules for these trains.

The goal of the TTP model is to schedule the trains to minimize the total dwell time
in the CBS. The model also aims to determine the combination relationship between the
unit trains and combined trains, which can be defined by variable θp,q. Here, we use two
groups of decision variables. The unit train schedule variable dq(i, j) and aq(i, j) denote
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the departure time and arrival time of unit train q in station i and station j. The combined
train schedule variable dp(i, j) and ap(i, j) denote the departure time and the arrival time
of combined train p in station i and station j. Table 3 lists the variables used in this model.

Table 3. Decision variables for the TTP model.

Symbol Definition

ap(i, j) The arrival time of combined train p arriving at station j from section (i, j)
aq(i, j) The arrival time of unit train q arriving at station j from section (i, j)
dp(i, j) The departure time of combined train p departing from station i to section (i, j)
dq(i, j) The departure time of unit train q departing from station i to section (i, j)

θp,q
Unit train assignment variable (if the combined train p is combined by unit train q,
θp,q = 1; otherwise, θp,q = 0)

1. Problem statement

Given the number and type of unit trains and combined trains that need to be operated
in the heavy-haul railway system, determine the trains’ combination scheme in the CBS
and the train timetable of each station to make the total dwell time minimal.

2. Objective function

The objective function is to minimize the total dwell time of the trains in the CBS.
The function ∑

p
dp(i, j)θp,q denotes the departure time of combined train p. Additionally,

suppose the combined train p is composed of unit train q. The dwell time of unit train q in
the CBS can be calculated by the function ∑

p
dp(i, j)θp,q − aq(i, j). Thus, the total dwell time

of unit trains in the CBS can be expressed by (7).

min z2 = ∑
q

[
∑
p

dp(sz, j)θp,q − aq(i, sz)

]
, ∀p ∈ Tcom, ∀q ∈ Tuni (7)

3. Minimum station operating time constraints

The dwell time of trains must be longer than its minimum station operating time to
ensure the necessary combined operation before departure. Constraint (8) guarantees the
minimum station operating time of combined train q in the CBS. M is a big enough positive
number. If combined train p is not composed of unit train q, the right-hand side of the
inequality is equal to a big enough negative number, thus the inequality is always true. If
combined train p is composed of unit train q, the right-hand side of the inequality is equal
to the minimum station operating time.

dp(sz, j)− aq(i, sz) ≥ θp,qttec +
(
θp,q − 1

)
M, ∀p ∈ Tcom, ∀q ∈ Tuni (8)

4. Marshalling constraints

Each type of combined train has a prescribed rule of marshaling which specifies the
type and number of the component unit trains. For example, a 15 kt combined train is
composed of three 5 kt unit trains and a 10 kt combined train is composed of two 5 kt
unit trains. It is worth noting that a 10 kt unit train can be sent into the trunk line directly
without marshaling. For the sake of description in the model, we describe it as a 10 kt
combined train composed of a 10 kt unit train in this scenario.

∑
q

θp,qqu = ∑
k

pk ϕk,u, ∀p ∈ P, ∀u ∈ U (9)
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5. Running time constraints

r(i, j) denotes the running time of trains in section (i, j). Equation constraints (10) and
(11) enforce the rule that the running time of combined trains and unit trains should equal
to r(i, j) if (i, j) is in its route.

ap(i, j)− dp(i, j) = r(i, j)p(i, j), ∀(i, j) ∈ V, ∀p ∈ Tcom (10)

aq(i, j)− dq(i, j) = r(i, j)q(i, j), ∀(i, j) ∈ V, ∀q ∈ Tuni (11)

6. Headway constraints

The headways of different types of trains are different. The function ∑
k

Ik pk denotes

the minimum headway of combined train p and constraint (13) ensures that the interval
between two adjacent combined trains in section (i, j) must not be less than the mini-
mum headway. ∣∣∣aq′(i, j)− aq(i, j)

∣∣∣ ≥∑u qu Iu, ∀q, q′ ∈ Tuni (12)∣∣∣ap′(i, j)− ap(i, j)
∣∣∣ ≥∑k pk Ik, ∀p, p′ ∈ Tcom (13)

7. Operating period constraint

Both combined trains and unit trains must be operated within the permitted period.

aq(i, sz) ∈
[

Astart, Aend
]
, ∀q ∈ Tuni (14)

dp(sz, j) ∈
[

Astart, Aend
]
, ∀p ∈ Tcom (15)

4. Hybrid Genetic Algorithm

To solve the TSPP model and TTP model for a heavy-haul railway system, we propose
the following solution approach by solving the TSPP model using commercial solver
GUROBI and solving the TTP model using a hybrid genetic algorithm (HGA). In this
section, we introduce the detailed solving process of the HGA.

The TTP model is the optimal integration of a heavy-haul railway combined scheme
and train timetable. It is a difficult problem since both the train formation problem and the
train timetabling problem are NP-hard problems [22,33,34]. Therefore, to solve the TTP
model, we developed a genetic algorithm-based framework.

Genetic algorithms (GA), first proposed by Holland [35], are inspired by natural
genetic and evolutionary mechanisms to find high-quality solutions for complex problems.
The genetic algorithm constructs a fitness function according to the objective function
of the problem. The fitness value may directly or indirectly represent a solution to the
original problem. The algorithm performs evaluation, genetic calculation, and selection on
a population composed of multiple solutions (each solution corresponds to a chromosome),
and after multiple generations of reproduction, the individual with the best fitness is
the optimal solution to the problem. A population contains multiple individuals and for
each their chromosome includes one or several gene fragments. The GA includes the
following steps [36]: (1) chromosome representations; (2) initial populations generate;
(3) fitness function; (4) genetic operations (including crossover and mutation); (5) selection
mechanisms; and (6) termination condition.

The GA is widely used in industrial engineering, artificial intelligence, automatic
control, and other fields because of its great potential in solving complex optimization
problems [37].

Specifically, the HGA to solve the TTP model is set up as explained below.
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4.1. Representation Scheme

In this solution approach, we represent solutions indirectly by parameters that are
later used to obtain a solution by a special decoding procedure. Each solution chromosome
is made of two gene fragments.

Gene fragment I: The first gene fragment represents the departure sequence of the
combined trains departing from the CBS. It is made of Nc genes, where Nc is the number
of the combined trains. After obtaining the type and number of trains that need to run
between the CBS and each loading station or unloading station, we create a unique index
for each train. The value of the jth gene of gene fragment I represents the departure
sequence of train j.

Gene fragment II: The second gene fragment is a matrix to represent the connection
relationship between the unit trains and combined trains. When the number of combined
trains is Nc and the number of unit trains is Nu and a Nu × Nc, a matrix can be built and
we call it the combination matrix. The combination matrix is a 0–1 matrix. If the value of
row i and column j is 1, that means combined train j is composed of unit train i.

Figure 6 depicts a small example. As shown in the figure, seven unit trains are assigned
into four combined trains in the CBS. Four combined trains, namely c1, c2, c3, and c4, depart
the CBS in the sequence as 2, 1, 3, and 4, respectively. Thus, the departure sequence can be
represented by the vector (2, 1, 3, 4). For combined train c1, it consists of unit trans u1 and
u2. Thus, its corresponding row in the combination matrix should be (1, 0, 0, 1, 0, 0, 0).
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4.2. Initial Populations and Infeasible Solution Adjustment

The combination matrix is a gene fragment of a chromosome generated randomly
by initialization or through crossover and mutation. It may not satisfy the constraints
of train marshaling. Therefore, infeasible combination matrix adjustment strategies are
designed for chromosomes to obtain an available connection relationship. The infeasible
combination matrix adjustment process is illustrated in Algorithm 1.

Algorithm 1 Infeasible combination matrix adjustment

Step 1. Calculate the initial number and type of unit trains that are combined into a
combined train.

Create set Ccom, calculate the current number of unit trains connected to the combined train
p, and let cp denote it. Then, add cp to Ccom.

Step 2. Adjust chromosomes so that each combined train consists of a specified number of
unit trains.

For each combined train p ∈ Tcom

If cp > ϕk,u
Create index set Rp1
Find out all indices r where θp,r = 1 and add r to Rp1
Create subset Rp2
Randomly choose ϕk,u − cp elements r′ in Rp1 and add r′ to Rp2
Let θp,r′= 0 for all r′ in Rp2

If cp < ϕk,u
Create index set Rp1
Find out all indices r where θp,r= 0 and add r to Rp1
Create subset Rp2
Randomly choose cp − ϕk,u elements r′ in Rp1 and add r′ to Rp2
Let θp,r′= 1 for all r′ in Rp2

Step 3. Calculate the current number and type of unit trains that are combined into a
combined train.

Create set Cunit, calculate the current number of combined trains connected to unit train q,
and let cq denote it. Then, add cq to Cunit.

Step 4. Adjust chromosomes so that each unit train can be combined into, at most, one
combination train.

Create index set Rq0
Find out all indices s where cq = 0 and add s to Rq0

For each unit train q ∈ Tuni

If cq > 1
Create index set Rq1
Find out all indices r where θr,q= 1 and add r to Rq1
Create subset Rq2, Rq3
Randomly choose cq − 1 elements r′ in Rq1 and add r′ to Rq2

Randomly choose cq − 1 elements s′ in Rq0 −
q−1
∑

q=1
Rq3 and add s′ to Rq3

Let θr′ ,q= 0 for all r′ in Rq2 and let θr′ ,s= 0 for all s′ in Rq3

4.3. Decoding

The chromosomes are made of two gene fragments that represent the combined trains’
departure sequence and the connection relationship; thus, the chromosomes have to be
decoded to derive the combination scheme and train timetable. The chromosome decoding
process is divided into three main steps. First, we transform the two gene fragments of the
chromosome into the operation sequence of the trains. Then, we use a linear program to
determine the combination scheme of the unit trains and the combined trains in the CBS.
Finally, we calculate the train timetable according to the combination scheme.

First of all, we determine the order of any two combined trains departing from the
CBS according to gene fragment I of the chromosome. Next, determine the order of any
two unit trains arriving at the CBS according to gene fragment II. Here, we introduce two
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parameters, namely Ocom(p, p
′
) and Ouni(q, q′). Ocom(p, p′) denotes the departure order of

combined trains p and p′. When combined train p departs from the CBS before combined
train p′, then Ocom(p, p′) = 1; otherwise, Ocom(p, p′)= 0. Ouni(q, q′) denotes the arrival
order of unit trains q and q′. When unit train q arrives at the CBS before combined train q′,
then Ocom(q, q′) = 1; otherwise, Ocom(q, q′)= 0.

The process of determining the value of the parameters Ocom(p, p′) and Ouni(q, q′) is
shown in Algorithm 2. The calculation process of determining the operation sequence of
trains can be divided into two steps. In step 1, we roughly calculate all trains’ arrival and
departure times in the COS according to the departure sequence in gene fragment I and the
connection relationship in gene fragment II. Then, in step 2, we determine the departure
order of any combined train pair by sequencing in gene fragment I. Similarly, we compare
the arrival times in step 1 to determine the arrival order of any unit train pair. As a result,
we derive an assignment to Ocom and Ouni.

Algorithm 2 Determine the operation sequence of trains in the CBS

Input: Gene fragment I g1, gene fragment IIG2
Output: Ocom, Ouni

Step 1: Initialize the departure time of the combined trains and the arrival time of the unit
trains according to gene fragments I and II.

Create set Dcom to denote the initialized departure time of the combined trains
Create set Auni to denote the initialized arrival time of the unit trains
For each combined train p ∈ Tcom

If g1(p) = 1
Let dp = 0 and add dp to Dcom

Else
If g1(p) = g1(p′) + 1
Let dp = dp′ + ∑k Ik p′k and add dp to Dcom

For each unit train q ∈ Tuni

u = 0
For each combined train p ∈ Tcom

If G2(p, q) = 1
Let aq = dp −∑k pkttec

k − Iuu and add aq to Auni

u = u + 1
Step 2: Determine departure order Ocom for any combination train pair and arrival order

Ouni for any unit train pair.
Create set Ocom of the combined train departure order
Create set Ouni of the combined train arrival order
For each combined train p ∈ Tcom

For each combined train p′ ∈ Tcom

If g1(p) < g1(p′)
Let op,p′ = 1 and add op,p′ to Ocom

Else
Let op,p′ = 0 and add op,p′ to Ocom

For each unit train q ∈ Tuni

For each combined train q′ ∈ Tuni

If aq < aq′

Let oq,q′ = 1 and add oq,q′ to Ouni

Else
Let oq,q′ = 0 and add oq,q′ to Ouni

After the train operation sequence is determined, the solution space of the original
problem is greatly reduced. Using parameters Ocom(p, p′), Ouni(q, q′), and a large positive
number M, we can rewrite the absolute value inequality in constraints (12) and (13). The
operation time of the combined trains and unit trains in the CBS can be easily solved.
We rewrite this part as the combination planning problem (CPP). The objective function
of the CPP is the same as TTP, that is, to minimize the total operation time of the CBS.
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Additionally, the operating time of the trains in the CBS needs to meet the station operating
time requirements.

To sum up, this program’s objective function and constraints are shown in (16) and (17).

min z3 = ∑
q

[
∑
p

dp(sz, j)θp,q − aq(i, sz)

]
, ∀p ∈ Tcom, ∀q ∈ Tuni (16)

s.t.



dp(sz, j)− aq(i, sz) ≥ θp,q∑k pkttec
k +

(
θp,q − 1

)
M, ∀p ∈ Tcom, ∀q ∈ Tuni

dp′(sz, j)− dp(sz, j) + (1− op,p′)M ≥ ∑k pk Ik, ∀p, p′ ∈ Tcom

aq′(i, sz)− aq(i, sz) + (1− oq.q′)M ≥ ∑u qu Iu, ∀q, q′ ∈ Tuni

dp(sz, j) ∈
[

Dstart, Dend
]
, ∀p ∈ Tcom

aq(i, sz) ∈
[

Astart, Aend
]
, ∀q ∈ Tuni

(17)

We will call the commercial solver Gurobi to solve the CPP.
Finally, calculate the train timetable based on the solution of CPP. In this paper, we

assume that all trains run at the same speed class and that there is no train overtaking that
occurs when running on a heavy-haul railway. Therefore, once the time of a combined
train departing from the CBS is determined, its arrival time at the unloading station and
stop time at the adjacent stations can also be determined. Same as for combined trains, the
schedule of a unit train can also be calculated once its arrival time at the CBS is determined.
Formulas for calculating the arrival and departure times of other stations are shown in (18).{

ap(i, j)− dp(i, j) = r(i, j)p(i, j), ∀(i, j) ∈ V, ∀p ∈ Tcom

aq(i, j)− dq(i, j) = r(i, j)q(i, j), ∀(i, j) ∈ V, ∀q ∈ Tuni (18)

4.4. Fitness Function

The fitness function is shown in (19), where the denominator represents the total
operating time of the trains in the CBS. Its reciprocal is good for evaluating the quality of
the solution: a larger fitness function value indicates a better solution.

f =
1

∑
q

[
∑
p

dp(i, j)θp,q − aq(i, j)

] (19)

4.5. Crossover

Crossover is one of the genetic operations that combines two chromosomes to generate
a new chromosome. First, select two chromosomes from the current population with
probability Ps. Ps is a set of probability, indicating the possibility of each individual being
selected. The selection probability of each individual is proportional to its fitness value.
The chosen two chromosomes will crossover with the probability of Pc. Then, randomly
select a crossover point for gene fragment I and gene fragment . After crossover, it should
avoid generating infeasible solutions [38]. For the newly generated chromosomes that
may not satisfy the constraint, we use the adjustment strategy proposed in Algorithm 1 to
ensure the feasibility of the newly generated chromosomes.

4.6. Mutation

The mutation is another genetic operation to evolve the chromosomes. The random-
ness mutation of the population can allow the search process to jump out of the local
optimal solution and search for the global optimal solution. However, this randomness
does not necessarily mean that the population will evolve in a better direction. A high
mutation probability may make the population mixed with poor individuals and the results
experience difficulty in converging. However, when the mutation probability is too low,
the population may fail to evolve for many generations and become trapped in the local
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optimal solution. To solve this problem, Glover [39] tried to use a heuristic search in the
mutation process to improve the performance.

Therefore, we introduced a neighborhood search into the mutation process to ensure
that the population evolves in a better direction. The select chromosomes will be mutated
with probability Pm. We separately apply the following mutation procedure for each gene
fragment.

For gene fragment I, randomly select two chromosomal sites and exchange the genes
of the two sites. For gene fragment II, randomly select a chromosomal site and change the
value of the gene. The gene of fragment II is a 0–1 binary variable, that is, to change 0 to 1
or 1 to 0.

During each mutation, we generate a neighborhood set for the chromosome. Then,
we use the fitness function to evaluate the quality of chromosomes in the neighborhood set
and choose the best mutant chromosome as the newly generated chromosome.

4.7. Termination Conditions

The algorithm ends and outputs the result when the optimal objective value does not
change continuously or when the number of iterations reaches the predetermined value.

4.8. Algorithm

The framework of the algorithmic procedure is summarized below in Figure 7.
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5. Case Study

This section provides several numerical experiments on the proposed heavy-haul
railway train timetabling problem in order to prove the effectiveness of our models
and algorithms.

5.1. A Small Case

In this section, we use a small case to illustrate the effectiveness of the proposed model
and hybrid algorithm.

5.1.1. Operation Data

The corresponding schematic diagram of a small heavy-haul railway network is
presented in Figure 8. As shown in the figure, this small heavy-haul railway consists of
three loading stations (station a, station b, and station c), three unloading stations (station d,
station e, and station f ), and a CBS. The loading capacity of station a, station b, and station
c is each 550 cars per day. The unloading demand of station d, station e, and station f is
360 cars/day, 720 cars/day, and 540 cars/day, respectively. Lastly, the unloading capacity
of station d, station e, and station f can meet the unloading requirements.
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In this small heavy-haul railway, the unit train types include 5 kt unit trains and 10 kt
unit trains that contain 60 railcars and 120 railcars, respectively. The combined train types
include 10 kt (2× 5 kt) combined trains, 15 kt (3× 5 kt) combined trans, and 20 kt (4 × 5 kt)
combined trans. The corresponding combination rule and operation cost of these combined
trans are 10 kt (2 × 5 kt) combined trans (two 5 kt unit trains, cost = 0.9), 15 kt (3 × 5 kt)
combined trans (three 5 kt unit trains, cost = 1), and 20 kt (4 × 5 kt) combined trans (four
5 kt unit trains, cost = 1; or two 10 kt unit trains, cost = 1.8). The combined operation in
the CBS should be during 0:00–8:00 and the combined train needs to depart from the CBS
during 6:00–8:00.

5.1.2. Optimization Results

By solving the TSPP, we derive the type and number of unit trains that need to be
loaded at each loading station, as well as the type and number of combined trains that need
to be unloaded at each unloading station. The solution of the TSPP is shown in Table 4.
The TTP will be further solved based on this solution.
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Table 4. Solution of the TSPP in the small case.

Unloading
Stations

Unit Train
Type

Number of
Trains

Loading
Stations

Combined Train
Type

Number of
Trains

station a 5 kt 9 station d 10 kt (2 × 5 kt) 1
station b 5 kt 9 station d 20 kt (4 × 5 kt) 1
station c 5 kt 9 station e 20 kt (4 × 5 kt) 3

station f 10 kt (2 × 5 kt) 1
station f 15 kt (3 × 5 kt) 1
station f 20 kt (4 × 5 kt) 1

Then, we apply the proposed HGA to obtain the optimal combination scheme and
train timetable to minimize the total dwell time of all heavy-haul trains. Specifically, some
parameters of the HGA are set as follows:

• The crossover rate is set to 0.85;
• The mutation rate is set to 0.15 and the number of elements in the neighborhood set of

mutation chromosomes is set as 20;
• The larger positive number M is set to 10,000; and
• When the optimal value exceeds 50 iterations without optimization, the iteration

reaches the termination condition.

The corresponding results and the solution searching process of the small case are
plotted in Figure 9. By generating and optimizing the combined operation plan of heavy-
haul trains at the CBS, the total combined operation time in the system is 4664 car–hours.
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In order to verify the effectiveness of the proposed model, we compare the results
with the timetable obtained by the manual scheduling operation. To this end, we designed
a simulation process to imitate the manual scheduling operation approaches of the heavy-
haul railway scheduling system. The simulation steps are as follows:

Step 1: Assign a combination scheme of combined trains and unit trains based
on experience.

Step 2: Randomly assign a series of the departure times of the combined trains in
the CBS.

Step 3: Determine the arrival time of the unit trains at the CBS backwards according
to the departure time of the combined trains and the required dwell time.

Step 4: Calculate trains’ arrival and departure times in each section according to the
section running time.

Step 5: Check for conflicts and adjust the train timetable.
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Next, the simulation method is applied to the small case to obtain a solution. The
total dwell time obtained by the simulation is 7876 car–hours. Compared to the pro-
posed model’s optimization results, the simulation method’s operation time increases by
3212 car–hours, resulting in a time waste of about 40.8%.

Figure 10 shows the combination scheme’s diagram using the HGA and the simulation.
The horizontal axis shows the time and the vertical axis shows the position of the trains.
These combination scheme diagrams can be divided into three parts. The upper oblique
lines represent the unit trains running between the loading stations and the CBS. The lower
oblique lines represent the combined trains running between the CBS and the unloading
stations. The horizontal and vertical lines in the middle represent the combination relation-
ship and the dwell time of each train. As shown in the figure, compared to the combination
scheme obtained by the simulation, the solution obtained by the HGA is more compact
and uses less time in the CBS.
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To further compare the two methods, we calculate the waiting time of each unit train
that waits for the combination operation in the two combination schemes. The waiting
time is the period that lasts from when the unit train enters the CBS to when it starts the
combination operation. The waiting time of each unit train in the CBS is shown in (20).
We define the unit train whose waiting time in the CBS is less than 90 min as the efficient
turnover train (ETT).

wp = ∑p∈Tcom dp(sz, j)θp,q − aq(i, sz), ∀q ∈ Tuni (20)
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Figure 11 plots the waiting time distribution of unit trains in the two solutions. The
horizontal axis represents the index of the unit train and the vertical axis represents the
waiting time of the corresponding unit train in the CBS. The green dotted line indicates
that the waiting time is 90 min and the points below the green dotted line are the ETT. As
shown in Figure 11, 18 unit trains in the combination scheme obtained by the TTP belong
to the ETT, while only 7 ETT are in the combination scheme obtained by the simulation.
Therefore, the combination scheme solved by the TTP can effectively reduce the waiting
time of unit trains in the CBS, thus reducing the service load of stations and improving
train turnover efficiency.
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By comparing these two methods of scheduling the combination schemes, the effi-
ciency of the TTP is verified.

5.1.3. Effectiveness of the Algorithm

In order to verify the effectiveness of the algorithm, we introduce an unimproved
genetic algorithm (GA) and a tabu search (TS) to solve the optimization problem.

In experiments of GA, we still adopt the same representation scheme, population
initialization operation, and chromosome-crossing operation as the method in this paper.
The fitness function still adopts the reciprocal of the objective function. The difference is
that the CPP is not called during the decoding process to find the optimized combination
scheme. Meanwhile, the mutation operation uses single random mutation instead of
neighborhood search.

As for the TS, it is another widely used stochastic search method designed to find the
optimal solution. The tabu search algorithm imitates human memory and uses a tabu list
to forbid certain moves to avoid cycling search [40]. The tabu search adopts neighborhood
optimization. In order to transcend the local optimal solution, the algorithm can accept
inferior solutions. In this algorithm, we use the same representation scheme in the HGA
and we employ the neighborhood generation method of the mutation operator in the HGA.
The objective function of the TTP is used as the evaluation function to evaluate the quality
of neighbor solutions.

Then, we conducted five experiments with different parameters. Due to the random-
ness of the search process, we ran each experiment 10 times and calculated the average
value of the best five solutions as the final result. The experimental parameters and results
are shown in Tables 5–7.
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Table 5. The parameters and results of the GA.

Index Population
Size Generations Crossover

Rate
Mutation

Rate

Total Operation
Time

(car–hours)

1 30 150 0.90 0.05 5735
2 50 200 0.80 0.1 5531
3 50 150 0.80 0.15 5623
4 80 250 0.75 0.15 5703
5 100 250 0.85 0.15 5537

Table 6. The parameters and results of the HGA.

Index Population
Size Generations Crossover

Rate
Mutation

Rate

Total Operation
Time

(car–hours)

1 30 150 0.90 0.05 4867
2 50 200 0.80 0.1 4855
3 50 150 0.80 0.15 4818
4 80 250 0.75 0.15 4770
5 100 250 0.85 0.15 4727

Table 7. The parameters and results of the TS.

Index Number of
Neighbors Tabu Length Iterations Total Operation Time

(car–hours)

1 20 15 200 5032
2 40 15 200 4993
3 40 10 200 5057

The search process of the two algorithms is shown in Figures 12–14. All algorithms
have made some progress in reducing the objective value. In the experimental group of
the GA, experiment GA-3 obtained the best objective value, which was 5531 car–hours.
In the experimental group of the HGA, the best objective function value was obtained
in experiment HGA-4, which was 4727 car–hours. In the experimental group of the TS,
the best objective function value was obtained in experiment TS-2, which was 4993 car–
hours. In comparing Figure 12 with Figure 13, it is obvious that the HGA achieves better
optimization values than the GA on the whole. As shown in Figure 14, compared with
the TS, the HGA obtains a better initial solution and has a high convergence speed. The
above experiments showed that, compared to the GA and TS, the HGA obtains a better
initial solution because we solve the CPP model to improve the initial solution in the HGA.
Additionally, the HGA achieves a high convergence speed. These experiments demonstrate
the effectiveness of the designed HGA.
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5.2. Large-Scale Experiments
5.2.1. Description of the Experimental Setting

To further show the effectiveness of the proposed approach, we select the Datong-
Qinhuangdao Heavy-haul Railway (DQHR) as a large-scale study case. The DQHR, with
a total length of 653 km, is China’s first double-line electrified heavy-haul railway and
it is an important coal transportation corridor from Shanxi, Shaanxi, and western Inner
Mongolia [41].

In these experiments, the DQHR contains 6 loading stations and 11 unloading stations.
A simplified schematic is shown in Figure 15. Some important train operation parameters
are listed in Tables 8 and 9. Table 8 shows the capacity and demand of the loading and
unloading stations in the DQHR. Table 8 shows the running cost and operating time of
each type of combined train.
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Table 8. Parameters of the loading stations and unloading stations.

Parameters of Loading Stations Parameters of Unloading Stations

Loading Station
Daily Loading

Capacity
(cars/day)

Unloading
Station

Daily
Unloading
Capacity
(cars/day)

Cargo Demand
(cars/day)

Hanyuan 15,058 Gaogezhuang 382 300
Beitongpu 18,888 Duanjialing 870 500
Yungang 2365 Jixian 403 300
Kouquan 1134 Cuipingshan 960 600

Dabao 6845 Zunhuabei 1296 1000
Dahuai 7289 Qiananbei 480 300

Caofeidian 4992 3000
Donggang 1944 1500
Luannan 4584 3500
Houying 2544 1500

Liucunnan 6720 4000
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Table 9. The running cost and operating time of each type of combined train.

Index Type of Combined
Trains

Type and Number
of Unit Trains

Cost of
Train

Operating Time of
Combination (min)

1 10 kt combined train 2 × 5 kt unit train 1.3 126
2 10 kt combined train 1 × 10 kt unit train 1 93
3 15 kt combined train 3 × 5 kt unit train 1.4 152
4 20 kt combined train 2 × 10 kt unit train 1.5 135
5 20 kt combined train 4 × 5 kt unit train 1.8 182
6 30 kt combined train 3 × 10 kt unit train 2 168

5.2.2. Computational Results of the Large-Scale Experiment

The solution of the TSPP in the large-scale experiment is shown in Table 10. Subsequent
TTP will be further solved based on this solution.

Table 10. Solution of the TSPP in the large-scale experiment.

Unloading
Stations

Unit Train
Type

Number of
Trains

Loading
Stations

Combined Train
Type

Number of
Trains

Hanyuan 10 kt 24 Chawu 30 kt (3 × 10 kt) 1
Beitongpu 5 kt 114 Duanjialing 15 kt (3 × 5 kt) 3

Dahuai 5 kt 121 Jixian 30 kt (3 × 10 kt) 1
Zunhua 15 kt (3 × 5 kt) 3
Zunhua 20 kt (4 × 5 kt) 2

Cuipingshan 15 kt (3 × 5 kt) 2
Cuipingshan 20 kt (4 × 5 kt) 1

Qianan 30 kt (3 × 10 kt) 1
Caofeidian 15 kt (3 × 5 kt) 14
Caofeidian 20 kt (4 × 5 kt) 2
Donggang 15 kt (3 × 5 kt) 3
Donggang 20 kt (4 × 5 kt) 4
Luannan 15 kt (3 × 5 kt) 16
Luannan 30 kt (3 × 10 kt) 2
Houying 15 kt (3 × 5 kt) 7
Houying 20 kt (4 × 5 kt) 1

Liucunnan 15 kt (3 × 5 kt) 5
Liucunnan 20 kt (4 × 5 kt) 9
Liucunnan 30 kt (3 × 10 kt) 3

In this large-scale experiment, the crossover rate was set to 0.85 and the mutation rate
was set to 0.15. The number of elements in the neighborhood set of mutation chromosomes
was set as 20. The maximum number of iterations was set to 200.

Figure 16 shows the iterative process of the HGA when used to solve the TTP in the
large-scale experiment. As shown in Figure 16, the total combined operation time in the
system was 98,848 car–hours. This example provides an illustration of the usefulness and
application of our proposed approach.
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6. Conclusions

Based on the actual demand of the heavy-haul railway, this paper proposes a schedul-
ing approach to optimize the heavy-haul railway transportation plan, including the com-
bination scheme and train timetable. This approach can satisfy the freight transportation
demands, improve the utilization of the CBS operation, and reduce the cost of the whole
transportation process, thus improving rail operators’ profits.

First, the train service plan problem (TSPP) model was proposed based on the loading
stations’ capacity and the unloading stations’ demands. We solved the TSPP to determine
the type and number of unit trains that need to be loaded at each loading station, as well
as the type and number of combined trains that need to arrive and unload at unloading
stations. On this basis, we put forward the train timetabling problem (TTP) model. The
TTP model can solve the combination scheme in the CBS and the train timetable of the
heavy-haul railway. Then, we applied a hybrid genetic algorithm (HGA) to solve the TTP
model. In a small case study using the TTP model, we obtained a solution that reduces
the total dwell time of unit trains by 40.8% compared to a manual scheduling simulation
method. The comparison experiments with the unimproved genetic algorithm (GA) and
tabu search (TS) demonstrate that the HGA can obtain better solutions and achieve a
high convergence speed. By applying the approach into a large-scale case of DQHR, we
demonstrated the practicability of the method in the real world.

In this paper, we assumed that the combined capacity of the CBS is large enough to
deal with the unit trains. However, in practice, when the freight volume of the heavy-
haul railway is too big, the CBS may not be able to combine many unit trains at once. In
future studies, we will consider the combined capacity of the CBS as one of the constraints
to determine a more feasible combination scheme. At the same time, the return and
decomposed operation of the empty trains after the unloading operation is also a critical
part of trains circulating in the heavy-haul railway system. Thus, the transportation
organization of the empty trains will also be considered in future research.
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