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Abstract: A rectifying curve is a twisted curve with the property that all of its rectifying planes
pass through a fixed point. If this point is the origin of the Cartesian coordinate system, then the
position vector of the rectifying curve always lies in the rectifying plane. A remarkable property
of these curves is that the ratio between torsion and curvature is a nonconstant linear function of
the arc-length parameter. In this paper, we give a new characterization of rectifying curves, namely,
we prove that a curve is a rectifying curve if and only if it has a spherical involute. Consequently,
rectifying curves can be constructed as evolutes of spherical twisted curves; we present an illustrative
example of a rectifying curve obtained as the evolute of a spherical helix. We also express the
curvature and the torsion of a rectifying spherical curve and give necessary and sufficient conditions
for a curve and its involute to be both rectifying curves.

Keywords: rectifying curves; involutes; evolutes

1. Introduction

The term rectifying curve was introduced by Chen in [1] to designate a curve whose
position vector always lies in its rectifying plane. Kim et al. [2] also studied the properties
of the “space curves satisfying τ/κ = as + b”. They proved that a curve has this property
if and only if there exists a point such that all of the rectifying planes to the curve pass
through this point. By a translation, any curve of this type turns out to be a rectifying curve
in the restricted sense of [1]. In this paper, we consider, for a rectifying curve, the definition
from [2] because it employs only the intrinsic properties of the curve.

The geometric properties of rectifying curves are presented in detail in [1,3]. It is
shown that any rectifying curve has a parametrization of the form x(t) = a sec(t + t0)y(t),
where y is a unit speed curve on the unit sphere S2, a > 0 and t0 are some constants.
Chen [4] proved that a geodesic on a conical surface is either a rectifying curve or an open
portion of a ruling.

The relationship between rectifying curves and the notion of centrodes in mechanics
is pointed out in [3] and developed in [5]. The centrode of a curve is the curve defined by
the Darboux vector d = τt + κb. Chen and Dillen showed in [3] that the centrode of a unit
speed curve with constant (nonzero) curvature and nonconstant torsion is a rectifying curve
(and the same result holds for a curve with constant (nonzero) torsion and nonconstant
curvature). A generalization of these results is given in [5], where it is proven that the
centrode of a twisted nonhelical curve is a rectifying curve if and only if the curvature κ
and torsion τ are not both constants and if they satisfy a nonhomogeneous linear equation
of the form aκ − bτ = c, where a2 + b2 6= 0 and c 6= 0. In the same paper, Deshmukh et al.
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show that, for any twisted nonhelical curve, the dilated centrode d̄ = 1
κ d = τ

κ t + b is a
rectifying curve.

In this paper, we give a new characterization of rectifying curves based on the rela-
tionship with their evolutes/involutes. An involute of a curve x is a curve y that lies on
the tangent surface to x and intersects the tangent lines orthogonally. If the curve y is an
involute of x, then x is said to be an evolute of y. We prove that a curve is a rectifying curve
if and only if it has a spherical involute (see Corollary 2). We also express the curvature and
the torsion of a spherical rectifying curve (in Theorem 3) and give necessary and sufficient
conditions for a curve and its involute to be both rectifying curves (in Theorem 5). A
direct consequence of Theorem 6 is that rectifying curves can be constructed as evolutes of
spherical non-planar curves.

The outline of the paper is as follows. Section 2 contains some basic notions and
formulas needed for our work. In Section 3, we briefly present the main features of
rectifying curves and give (in Theorem 3) necessary and sufficient conditions for a rectifying
curve to lie on a sphere. Section 4 is devoted to the involute of a rectifying curve and
establishes in which conditions an involute of a rectifying curve is also a rectifying curve.
In Section 5, we state and prove a new defining feature of rectifying curves: a curve is a
rectifying curve if and only if its involutes are spherical curves. This result (Theorem 6)
allows us to develop a new method of constructing rectifying curves: as evolutes of
spherical twisted curves. The method is applied in Section 6 to construct rectifying curves
as evolutes of a spherical helix.

2. Preliminaries

We denote by E3 the Euclidean 3-space with its inner product 〈 , 〉.
Let I be a real interval and x : I → E3 be a space curve of class C∞, parametrized

by the arc-length s (a unit-speed curve). The unit vector field t = x′ is called the tangent
vector field. The curvature of the curve x is the positive function κ(s) = ‖t′(s)‖. We assume

that κ(s) > 0 for any s ∈ I and define the principal normal vector field as n =
t′

κ
. Since

〈t(s), t(s)〉 = 1 for all s ∈ I, it follows that 〈t′, t〉 = 0; hence, n is orthogonal to t. The
binormal vector field is defined by the cross product b = t × n. It is a unit vector field
orthogonal to both t and n. The torsion of the curve is the function τ(s) by the equation
b′ = −τn. The orthogonal unit vectors t, n and b form the well-known Frenet frame or
Frenet trihedron.

The vector fields t, n and b satisfy the following Frenet–Serret formulas (see, for
instance, [6] or [7]):

t′ = κn
n′ = −κt + τb
b′ = −τn .

(1)

At each point of the curve, the planes determined by {t, n}, {t, b} and {n, b} are
known as the osculating plane, the rectifying plane and the normal plane, respectively. A curve
in E3 is called twisted if it has nonzero curvature and torsion.

3. Rectifying Curves

In the following, we consider x : I → E3 to be a unit speed curve of class C∞ with
κ(s) 6= 0 for all s ∈ I.

Definition 1. A curve x is a rectifying curve if there exists a point x0 ∈ E3 that belongs to all of
the rectifying planes to the curve. The point x0 (uniquely determined) is said to be the reference
point of the rectifying curve (see [4]).

By Definition 1, a rectifying curve can be written as:

x(s) = x0 + λ(s)t(s) + µ(s)b(s), (2)
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for any s ∈ I, where λ, µ : I → R are functions of class C∞. These functions cannot be
arbitrary; they have a well-defined form established by the following theorem (see [1,2]):

Theorem 1. The unit speed curve x : I → E3 is a rectifying curve if and only if there exist x0 ∈ E3

and the constants ν, µ ∈ R, µ 6= 0, such that

x(s) = x0 + (s + ν)t(s) + µb(s), s ∈ I. (3)

A rectifying curve can also be defined by the ratio τ/κ. It is known that a space curve
is said to be a a generalized helix if and only if the ratio τ/κ is a nonzero constant. For
rectifying curves, the ratio τ/κ must be a (nonconstant) linear function of the arc-length s.
Thus, by a simple differentiation of (3) and using Frenet–Serret Formula (1), we obtain that

x′(s) = t(s) = t(s) + (s + ν)κ(s)n(s)− µτ(s)n(s), (4)

so
τ(s)
κ(s)

=
1
µ

s +
ν

µ
(5)

and the next theorem follows (see also [1,2]):

Theorem 2. The unit speed curve x : I → E3 is a rectifying curve if and only if there exist the
constants α, β ∈ R, α 6= 0, such that

τ(s)
κ(s)

= αs + β, s ∈ I. (6)

The first main result of the paper is the following theorem, which gives necessary and
sufficient conditions for a rectifying curve to lie on a sphere.

Theorem 3. A unit speed rectifying curve lying on a sphere of radius r has the curvature and
torsion expressed by the following equations:

κ(s) =
1√

r2 −
(

1
2 αs2 + βs + γ

)2
, (7)

τ(s) =
αs + β√

r2 −
(

1
2 αs2 + βs + γ

)2
, (8)

where α, β, γ ∈ R and α 6= 0.
Conversely, if the curvature and the torsion of a curve are given by (7) and (8), then it is a

spherical rectifying curve.

Proof. Let x : I → E3 be a unit speed rectifying curve that lies on a sphere of radius r,
centered at c0. Thus,

‖x(s)− c0‖2 = 〈x(s)− c0, x(s)− c0〉 = r2, ∀ s ∈ I. (9)

By differentiating the relation above, we obtain that

〈x(s)− c0, t(s)〉 = 0, ∀ s ∈ I, (10)

so we can write
x− c0 = δn + ηb, (11)
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where δ = δ(s) and η = η(s) are two functions, such that

‖x− c0‖2 = δ2 + η2 = r2. (12)

We differentiate (11) and use Frenet–Serret Formula (1):

t = δ′n + δ(−κt + τb) + η′b− ητn, (13)

so we obtain:

1 + δκ = 0 (14)

δ′ − ητ = 0 (15)

η′ + δτ = 0. (16)

From (14), we have

δ = −1
κ

(17)

and, after replacing in (16), we obtain:

η′ =
τ

κ
. (18)

Since x is a rectifying curve, by Theorem 2, there exist α, β ∈ R with α 6= 0, such that
the ratio τ/κ satisfies Equation (6). Hence, Equation (18) is written η′ = αs + β and we
obtain by integration that

η = 1
2 αs2 + βs + γ, (19)

where γ ∈ R is a constant. From Equation (12), we obtain that

1
κ2 +

(
1
2 αs2 + βs + γ

)2
= r2, (20)

so the Formula (7) readily follows. For Equation (8), we simply apply (6).
Conversely, let x be a curve with the curvature κ and the torsion τ be given by the

Formulas (7) and (8). Then τ/κ = αs + β, hence x is a rectifying curve. It can also be
proven, by a straightforward calculation, that κ(s) and τ(s) satisfy the equation

1
κ2 +

[
1
τ

(
1
κ

)′]2

= r2, (21)

so the curve x lies on a sphere of radius r ([7], p. 32).

4. The Involute of a Rectifying Curve

An involute of a curve x : I → E3 is a curve y lying on the surface generated by the
tangent lines to x, and having the property that these tangent lines are orthogonal to the
corresponding tangent lines to y (see [6,7]). It can be proven that y : I → E3 is of the form:

y = x + (c− s)t, (22)

where c ∈ R is a constant.
If x : I → E3 is a rectifying curve defined by (3) and y : I → E3 is one of its involutes,

defined by (22), then
y(s) = x0 + (c + ν)t(s) + µb(s), s ∈ I, (23)

so
‖y(s)− x0‖ =

√
(c + ν)2 + µ2 = constant, ∀ s ∈ I (24)

and the following theorem is proven:
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Theorem 4. Any involute of a rectifying curve lies on a sphere centered at the reference point.

The next theorem establishes in which conditions an involute of a rectifying curve is
also a rectifying curve.

Theorem 5. Let x = x(s) be a rectifying curve (satisfying Equation (6)). Let

y = x(s) + (c− s)t(s), s ∈ I (25)

be an involute of x (c ∈ R is a constant). Then, y is also a rectifying curve if and only if the
curvature κ(s) of the curve x is expressed by:

κ(s) = γ
(

1 + (αs + β)2
)− 5

4
[

1 + (αc + β)(αs + β) + δ
√

1 + (αs + β)2
]− 1

2
(26)

where δ and γ are real constants, γ 6= 0.

Proof. Assume that c− s > 0 on I.
Let s̃ be the arc-length parameter of y. Then, since y′(s) = (c− s)κ(s)n(s),

s̃ =
∫ s

s0

‖y′(σ)‖dσ =
∫ s

s0

(c− σ)κ(σ)dσ, (27)

hence
ds̃
ds

= κ(s)(c− s). (28)

We can write the unit vectors of the Frenet trihedron of the curve y as follows. Obvi-
ously, t̃ = n, and we have:

ñ =
dt̃
ds̃∥∥∥ dt̃
ds̃

∥∥∥ =
n′

‖n′‖ =
−κt + τb√

κ2 + τ2
, (29)

b̃ = t̃× ñ =
κb + τt√

κ2 + τ2
. (30)

Thus, the relationship between the Frenet frames {t̃, ñ, b̃} and {t, n, b} can be written:

t̃ = n,

ñ = − 1√
1 +

(
τ
κ

)2
t +

τ
κ√

1 +
(

τ
κ

)2
b,

b̃ =
τ
κ√

1 +
(

τ
κ

)2
t +

1√
1 +

(
τ
κ

)2
b,

(31)

and the curvature κ̃ and the torsion τ̃ of y are given by the formulas (see also [8]):

κ̃ =
1

c− s

√
1 +

(τ

κ

)2
, (32)

τ̃ =
1

κ(c− s)

(
τ
κ

)′
1 +

(
τ
κ

)2 . (33)

Hence,
τ̃

κ̃
=

(
τ
κ

)′
κ
(

1 +
(

τ
κ

)2
) 3

2
. (34)
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However, x is a rectifying curve, so we can write, by Equation (6),

τ̃

κ̃
=

α

κ(s)[1 + (αs + β)2]
3
2

. (35)

The involute y is a rectifying curve if and only if

d
ds̃

(
τ̃

κ̃

)
= A = constant 6= 0. (36)

It follows that the curvature κ(s) must satisfy the following (Bernoulli) differen-
tial equation:

κ′ +
3α(αs + β)

1 + (αs + β)2 · κ +
A
α
(c− s)

(
1 + (αs + β)2

) 3
2 · κ3 = 0. (37)

The general solution of this equation is given by Formula (26), where γ =
√

α3

2A , and
so the proof is complete.

Remark 1. If we look at Formula (33), we can say that τ̃ 6= 0 (because τ
κ = α 6= 0), so we conclude

that the involute of a rectifying curve is always a non-planar curve.

Corollary 1. If a rectifying curve x has an involute y that is a rectifying curve, then any other
involute of x is not a rectifying curve.

Proof. Suppose that
y1 = x + (c1 − s)t (38)

and
y2 = x + (c2 − s)t (39)

are two involutes of the rectifying curve x, which are also rectifying curves. Then, the
differential Equation (37) must be satisfied for c = c1, A = A1 and for c = c2, A = A2,
respectively. It follows that

A1(c1 − s) = A2(c2 − s), ∀s ∈ I, (40)

hence A1 = A2 and c1 = c2 (the two curves coincide).

Remark 2. If the curve x and its involute y are both rectifying curves, they cannot have the same
reference point.

Indeed, if we suppose that x0 is the reference point of both curves, they could be written:

x = x0 + (s + ν)t + µb, (41)

y = x0 + (s̃ + ν̃)t̃ + µ̃b̃ = x + (c− s)t, (42)

where s̃ is the arc-length parameter of the curve y, and µ̃, ν̃ are constants. Thus, we could write:

(s̃ + ν̃)t̃ + µ̃b̃ = (c + ν)t + µb. (43)

However, since t̃ = n, the equation above implies that s̃ + ν̃ = 0, which is not possible.

5. The Evolute of a Rectifying Curve

Recall that an evolute of a curve y is a curve x with the property that y is an involute
of x.
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Let y = y(s), s ∈ I, be a unit speed curve with the Frenet frame {t̃, ñ, b̃}, the curvature
κ̃ and the torsion τ̃. If x is an evolute of y, then the vector x− y is orthogonal to t̃, so

x− y = λñ + θb̃, (44)

where λ = λ(s) and θ = θ(s) are two functions such that, for any s ∈ I, the vector x′ is
collinear to x− y. We differentiate (44) with respect to s, the arc-length parameter of the
curve y:

dx
ds
− t̃ = λ′ñ + λ(−κ̃ t̃ + τ̃b̃) + θ′b̃− θτ̃ñ. (45)

Thus, the vector dx
ds has the expression:

dx
ds

= (1− λκ̃)t̃ + (λ′ − θτ̃)ñ + (θ′ + λτ̃)b̃. (46)

Since x− y and dx
ds are collinear vectors, by (44) and (46), we obtain:

λ =
1
κ̃

(47)

and
λ′ − θτ̃

λ
=

θ′ + λτ̃

θ
. (48)

From the last equation we have

θ′λ− θλ′ = −(λ2 + θ2)τ̃, (49)

so (
θ
λ

)′
1 +

(
θ
λ

)2 = −τ̃. (50)

We integrate this equation and, using (47), we find:

arctan κ̃θ = −T(s), (51)

where T(s) is a primitive of the torsion τ̃(s). Thus, the expression of θ(s) is:

θ = −1
κ̃

tan T, (52)

so any evolute of the curve y has the expression:

x = y +
1
κ̃

(
ñ− tan Tb̃

)
. (53)

Remark 3. By Theorem 4 and Remark 1, if the evolute x of a curve y is a rectifying curve, then y
must be a non-planar curve that lies on a sphere centered at the reference point of x. We prove in the
next theorem that any evolute of any spherical non-planar curve is a rectifying curve.

Theorem 6. The evolutes of a spherical non-planar curve are rectifying curves with the reference
point at the center of the sphere.

Proof. Suppose that y = y(s) is a unit speed curve lying on a sphere centered at c0. If
{t̃, ñ, b̃} is the Frenet frame, κ̃ is the curvature and τ̃ is the torsion of y, then, by Equa-
tions (11), (14) and (15), we can write:

y− c0 = δñ + ηb̃, (54)
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where δ = − 1
κ̃ and η = δ′

τ̃ = κ̃′

κ̃2τ̃
. Thus, we have:

y = c0 −
1
κ̃

ñ +
κ̃′

κ̃2τ̃
b̃. (55)

Let x be an evolute of y. Then, by Equation (53), one can write:

x = c0 +
1
κ̃

(
κ̃′

κ̃τ̃
− tan T

)
b̃, (56)

where T = T(s) is a primitive of the torsion τ̃(s).
Let t, n, b denote the unit vectors of the Frenet frame and κ, τ denote the curvature

and the torsion of the curve x. By Formula (31), since y is an involute of x, we have:

b̃ =
τ
κ√

1 +
(

τ
κ

)2
t +

1√
1 +

(
τ
κ

)2
b, (57)

and so Equation (56) is written:

x− c0 =
1
κ̃

(
κ̃′

κ̃τ̃
− tan T

) τ
κ√

1 +
(

τ
κ

)2
t +

1√
1 +

(
τ
κ

)2
b

 = λt + θb. (58)

Hence, x is a rectifying curve with the reference point c0.

Following on from Theorems 4 and 6, the next corollary establishes a new defining
feature of rectifying curves:

Corollary 2. A curve x is a rectifying curve if and only if it has a spherical involute. In this case,
the reference point of x is the center of the sphere and all of the involutes of x lie on concentric
spheres centered at this point.

6. Construction of Rectifying Curves

To date, there exist two main sources for the construction of rectifying curves: as
dilations of unit speed, spherical curves (see Theorem 7), or as (dilated) centrodes of some
type of curves (see Theorems 8 and 9).

Theorem 7 ([3,5]). If y(t) is a unit speed curve that lies on the unit sphere S2 and is not an arc of
a great circle, then the curve is defined by

x(t) = a sec(t + t0)y(t), (59)

where a > 0, is a rectifying curve.

Theorem 8 ([5]). If y(t) is a unit speed curve that is neither a planar curve nor a helix, such that
the curvature κ and torsion τ are not both constants and satisfy a nonhomogeneous linear equation
of the form aκ − bτ = c, where a2 + b2 6= 0 and c 6= 0, then the centrode of y,

d = τt + κb, (60)

is a rectifying curve.

Theorem 9 ([5]). If y(t) is a unit speed curve that is neither a planar curve nor a helix, then the
dilated centrode

d̄ =
1
κ

d =
τ

κ
t + b (61)

is a rectifying curve.
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By Theorem 6, we introduce a new method for constructing rectifying curves: as
evolutes of spherical twisted curves. We illustrate this method with the following example:

Example 1. Consider the spherical helix y that lies on the unit sphere S2:

y =

(
cos t cos at +

1
a

sin t sin at, cos t sin at− 1
a

sin t cos at,

√
a2 − 1

a
sin t

)
, (62)

t ∈
(
−π

2 , π
2
)
, a > 1.

The unit vectors of the Frenet frame of the curve y are:

t̃ =

(
−
√

a2 − 1
a

sin at,

√
a2 − 1

a
cos at,

1
a

)
,

ñ = (− cos at,− sin at, 0),

b̃ =

(
1
a

sin at,−1
a

cos at,

√
a2 − 1

a

)
,

(63)

and the curvature κ̃ and the torsion τ̃ are given by the formulas:

κ̃ =
1

cos t
, τ̃ =

1√
a2 − 1 cos t

. (64)

Let s denote the arc-length parameter of y:

s(t) =
∫ t

− π
2

‖y′(σ)‖dσ =
√

a2 − 1(1 + sin t),
ds
dt

=
√

a2 − 1 cos t. (65)

We use the Formula (53) to construct an evolute of y, which is, by Theorem 6, a rectifying
curve. Let T(s) be a primitive of the torsion τ̃(s), T(s) =

∫
τ̃(s)ds. We have:

T(s(t)) =
∫

τ̃(s(t))
ds
dt

dt =
∫ 1√

a2 − 1 cos t

√
a2 − 1 cos tdt = t + C, (66)

where C is a constant. Thus, the following family of rectifying curves is obtained:

x(t) =

(
− sin C sin at

a cos(t + C)
,

sin C cos at
a cos(t + C)

,− sin C
√

a2 − 1
a cos(t + C)

)
. (67)

We remark that any rectifying curve defined by (67) can be written as a dilation of a unit speed
circle on the sphere S2,

z(t) =

(
−1

a
sin at,

1
a

cos at,−
√

a2 − 1
a

)
. (68)

Thus, if we denote sin C = c, we can write:

x(t) = c sec(t + C)z(t). (69)

We also note that all of the rectifying curves defined by (67) lie on the cone of equation

x2 + y2 =
z2

a2 − 1
. (70)

Moreover, as Chen proved in [4], they are geodesics on this cone.
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In Figure 1, we represented the spherical helix y defined by (62) (for a = 6) and three
rectifying curves (evolutes of y given by the Formula (67), obtained for C = 2, C = 2.2 and
C = 2.4, respectively).

Figure 1. Three rectifying curves constructed from a spherical curve: a spherical helix and three
evolutes of it.

7. Conclusions

In this paper, we state and prove some new properties of rectifying curves based on
the relationship with their involutes/evolutes. Thus, we express the curvature and the
torsion of a rectifying spherical curve and give necessary and sufficient conditions for a
curve and its involute to be both rectifying curves.

We also give a new characterization of rectifying curves: we prove that a necessary and
sufficient condition for a curve to be a rectifying curve is for it to posses a spherical involute.
Consequently, rectifying curves can be constructed as evolutes of spherical twisted curves.
We apply this method to construct the rectifying curves obtained as the evolutes of a
spherical helix.
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