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Abstract: This paper considers a single-machine scheduling problem with past-sequence-dependent
delivery times and the truncated sum-of-processing-times-based learning effect. The goal is to
minimize the total costs that comprise the number of early jobs, the number of tardy jobs and due
date. The due date is a decision variable. There will be corresponding penalties for jobs that are not
completed on time. Under the common due date, slack due date and different due date, we prove
that these problems are polynomial time solvable. Three polynomial time algorithms are proposed to
obtain the optimal sequence.

Keywords: scheduling; delivery times; learning effect; common due date; slack due date; different
due date

1. Introduction

Scheduling problems are widely used in manufacturing, logistics, and other practical
applications. For a real-word example of our scheduling problems, consider a processing
enterprise that has no inventory capacity. As the processing time increases, the processing
technology improves. The processing time of the product becomes shorter. The pick-up
time of each product is determined by the customer. If the product is produced before the
pick-up time or after the pick-up time, an additional delivery fee will be incurred. The
delivery price of each early (tardy) job is a fixed charge.

The following three forms of pick-up time are often considered:

(1) All products have a uniform delivery time;
(2) The pick-up time of each product is related to its own processing time and a constant;
(3) Each product has its own independent pick-up time.

The scheduling problem is a very classic discrete combinatorial optimization prob-
lem. The methods to solve the scheduling problem mainly include two types: the exact
algorithm and approximate algorithm. Exact algorithms mainly include mathematical
programming methods, dynamic programming, and branch and bound algorithms. Ap-
proximate algorithms mainly include heuristic algorithms and intelligent algorithms. For
large-scale non-polynomial time-solvable scheduling problems, intelligent algorithms and
machine learning algorithms can be used to solve them. In this paper, a single-machine
scheduling problem is considered that contains due dates, the delivery time and learning
effect. The actual processing time of a job is a learning function of the previous processing
time. The objective function is to minimize the number of early jobs, the number of tardy
jobs and due date. Under the common due date, slack due date and different due date,
three polynomial time algorithms are proposed to obtain the optimal sequence.

2. Literature Review

In traditional scheduling problems, it is considered that the processing time of jobs
is constant. However, in reality, the processing time is often reduced with the increase in
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workers’ skills and abilities. That means the processing time is no longer a constant. In
2011, Cheng et al. developed the branch-and-bound algorithm and simulated an annealing
algorithm in order to study the single-machine scheduling problem with a learning effect
and truncation processing time [1]. In 2013, Li et al. analyzed the polynomial time algorithm
of the single-machine scheduling problem with a truncation processing time [2]. In 2013,
Cheng et al. used a genetic algorithm and branch-and-bound algorithm to solve the two-
machine flow-shop scheduling problem with a truncated learning function [3]. In 2016, Wu
and Wang studied a single-machine scheduling problem with a learning effect and delivery
times [4]. In 2017, Wang et al. solved the single-machine scheduling problem with resource
allocation and deterioration effects by using the polynomial time algorithm [5]. In 2018,
Wu et al. studied a two-stage scheduling problem with a position-based learning effect [6].
In 2018, Yin studied a single-scheduling problem with resource allocation and a learning
effect [7]. In 2020, Zhang studied the scheduling problem with the sum-of-processing-
times-based learning effect [8]. In 2020, Qian et al. designed a heuristic algorithm to study
the single-scheduling problem with release times and a learning factor [9]. In 2020, Zou et
al. studied a multi-machine scheduling problem with the sum-of-processing-times-based
learning effect [10]. In 2021, Wu et al. studied a flow-shop scheduling problem with a
truncated learning function [11].

In the field of scheduling, the delivery time has attracted extensive attention. The
extra time required for a completed job to be delivered to the customer is called the p
ast-sequence-dependent (psd) delivery time. In 2011, Yang et al. studied a single-machine
scheduling problem with delivery times and a learning effect [12]. In 2012, Yang et al.
studied a single-machine scheduling problem with delivery times and position-dependent
processing times [13]. In 2013, Liu studied a scheduling problem with delivery times
and deteriorating jobs [14]. In 2014, Zhao et al. studied a single-machine scheduling
problem with delivery times and general position-dependent processing times [15]. In
2021, Qian et al. studied a single-machine scheduling problem with delivery times and
deteriorating jobs [16].

In actual production scheduling, the jobs often have due dates. If a job is completed
ahead of the due date, it will have an earliness cost; if a job is completed behind the due date,
it will have a tardiness cost. In 2013, Yin et al. studied a single-machine scheduling problem
with a due date, delivery times and learning effect [17]. In 2014, Lu et al. studied a single-
machine scheduling problem with a due date, learning effect and resource allocation [18].
In 2015, Li et al. studied a single-machine scheduling problem with a slack due window,
learning effect and resource allocation [19]. In 2016, Sun et al. studied a single-machine
scheduling problem with a due date and convex resource allocation [20]. In 2019, Geng et
al. studied a flow-shop scheduling problem with a common due date, resource allocation
and learning effect [21]. In 2020, Liu et al. studied a single-machine scheduling problem
with a due date, learning effect and resource allocation [22]. In 2021, Tian studied a
single-machine scheduling problem with resource allocation and generalized earliness–
tardiness penalties [23]. In 2021, Wang studied a single-machine scheduling problem with
proportional setup times and earliness–tardiness penalties [24]. In 1996, Lann et al. studied
a single-machine scheduling problem whose goal was to minimize the number of early and
tardy jobs [25]. In 2017, Yuan studied a single-machine scheduling problem to minimize the
number of tardy jobs [26]. In 2021, Hermelin studied a single-machine scheduling problem
to minimize the weighted number of tardy jobs [27].

The problem is described in the Section 3. The research methods are discussed in the
Section 4. Discussion of results is in the Section 5. The conclusion is given in the Section 6.

3. Notation and Problem Statement

Some notations used in this paper are introduced in Table 1.
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Table 1. Symbol definition.

Symbol Meaning

n the number of jobs
pj the normal processing time of Jj
p[j] the normal processing time for the jth position
pA
[j] the actual processing time of J[j]

w[j] the waiting time of J[j]
C[j] the completion time of J[j]

Cmax the makespan
q[j] the delivery time of J[j]
d the due date
a the learning index, a < 0
r the delivery rate, r > 0
β the truncation parameter, 0 < β < 1

α, δ, η the weights
[j] the job arranged at the jth position

CON the common due date
SLK the slack due date
DIF the different due date

Suppose there were n independent jobs J = {J1, · · · Jn} continuously processed on a
single machine. The machine can handle one job at a time. The actual processing time of Jj
at the kth position was:

pA
j[k] = pj max{(1 +

k−1

∑
i=1

p[i])
a, β}. (1)

The delivery time q[j] of J[j] was:

q[j] = rw[j] = r
j−1

∑
i=1

pA
[i], (2)

where w[j] =
j−1
∑

i=1
pA
[i]. The completion time of J[j]:

C[j] = w[j] + pA
[j] + q[j]. (3)

The common due date, slack due date and different due date were considered in this
paper. For the CON model, the due date of each job was the same. For the SLK model, the
due date was the sum of the processing time and certain parameter q. For the DIF model,
each job had its own due date. The due date was a decision variable. If Jj was an early job,
Uj = 1, Vj = 0. If Jj was a tardy job, Uj = 0, Vj = 1. By the three-field notation [28], the
models could be defined as:

1|pA
j[k] = pj max{(1 +

k−1

∑
i=1

p[i])
a, β}, qpsd, CON|

n

∑
j=1

(αUj + δVj + ηd), (4)

1|pA
j[k] = pj max{(1 +

k−1

∑
i=1

p[i])
a, β}, qpsd, SLK|

n

∑
j=1

(αUj + δVj + ηq), (5)

1|pA
j[k] = pj max{(1 +

k−1

∑
i=1

p[i])
a, β}, qpsd, DIF|

n

∑
j=1

(αUj + δVj + ηdj), (6)

where qpsd represents the past-sequence-dependent delivery times. The following Figure 1
shows the just-in-time common due date scheduling model.
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Figure 1. The just-in-time CON scheduling model.

4. Research Method

Lemma 1. For the 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}|Cmax problem, an optimal schedule could

be obtained by the SPT rule [4].

Lemma 2. For the 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd|Cmax problem, an optimal schedule

could be obtained by the SPT rule [4].

4.1. The Problem 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, CON|

n
∑

j=1
(αUj + δVj + ηd)

Lemma 3. For any job sequence, the due date d of the optimal scheduling was the completion time
of some job.

Proof. Suppose that the due date d of the optimal scheduling was not equal to the com-
pletion time of some job, i.e., C[h] < d < C[h+1], 0 ≤ h < n, C[0] = 0. The objective
function was:

Z = hα + (n− h)δ + nηd. (7)

When d was equal to C[h], the objective function was:

Z1 = (h− 1)α + (n− h)δ + nηC[h], (8)

Z− Z1 = α + nη(d− C[h]) > 0. (9)

Therefore, d was the completion time of some job.

Lemma 4. When α ≥ δ, the due date d was equal to 0.

Proof. When the due date d was equal to C[h], the objective function was:

Z = (h− 1)α + (n− h)δ + nηC[h]. (10)

(1) When d was equal to C[h−1], the objective function was:

Z1 = (h− 2)α + (n− h + 1)δ + nηC[h−1]. (11)

(2) When d was equal to C[h+1], the objective function was:

Z2 = hα + (n− h− 1)δ + nηC[h+1].

when α ≥ δ,

Z− Z1 = α− δ + nη(C[h] − C[h−1]) = α− δ + nη(p[h] + rp[h−1]) > 0, (12)

Z− Z2 = −α + δ + nη(C[h] − C[h+1]) = −α + δ− nη(p[h+1] + rp[h]) < 0, (13)
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Z2 > Z > Z1. Therefore, the due date d was equal to the start time of the first job.

For the convenience of proof, we defined two sets: G1 = {Jj|1 ≤ j ≤ h}, G2 =
{Jj|h + 1 ≤ j ≤ n}, d = C[h].

Lemma 5. In the optimal scheduling, the jobs of set G1 were arranged in an ascending order of
normal processing time.

Proof. There were two adjacent jobs Ju and Jv in the G1, and Ju was in front of Jv which
was at the (k + 1)th position, S1 = {J1, · · · , Ju, Jv, · · · , Jn}. Suppose that the starting time
of J1 was 0, d = C[h], 1 ≤ k < h ≤ n. The objective function of S1 was:

Z1 = (h− 1)α + (n− h)δ + nηC[h](S1). (14)

when Ju and Jv were swapped, the sequence of jobs was S2 = {J1, · · · , Jv, Ju, · · · , Jn}. The
objective function of S2 was:

Z2 = (h− 1)α + (n− h)δ + nηC[h](S2). (15)

Z1 − Z2 = nη(C[h](S1)− C[h](S2)). (16)

From pu ≤ pv and Lemma 2, Z1 ≤ Z2, i.e., the jobs of set G1 were arranged in an
ascending order of normal processing time.

Lemma 6. In the optimal scheduling, the jobs of set G2 were arranged in any order of normal
processing time.

Proof. There were two adjacent jobs Ju and Jv in the G2, and Ju was in front of Jv which was
at the (k + 1)th position, S1 = {J1, · · · , Ju, Jv, · · · , Jn}, h < k < n. The objective function of
S1 was:

Z1 = (h− 1)α + (n− h)δ + nηC[h](S1). (17)

when Ju and Jv were swapped, the sequence of jobs was S2 = {J1, · · · , Jv, Ju, · · · , Jn}. The
objective function of S2 was:

Z2 = (h− 1)α + (n− h)δ + nηC[h](S2). (18)

Z1 = Z2. (19)

Therefore, the jobs of set G2 were arranged in any order of normal processing time.

Lemma 7. In the optimal scheduling, the processing time of any job in the G1 was less than the
processing time of any job in the G2.

Proof. There were two adjacent jobs Ju and Jv, Ju was at the hth position in the G1, and Jv
was at the (h + 1)th position in the G2, S1 = {J1, · · · , Ju, Jv, · · · , Jn}. The objective function
of S1 was:

Z1 = (h− 1)α + (n− h)δ + nηC[h](S1). (20)

when Ju and Jv were swapped, the sequence of jobs was S2 = {J1, · · · , Jv, Ju, · · · , Jn}. The
objective function of S2 was:

Z2 = (h− 1)α + (n− h)δ + nηC[h](S2). (21)

Z1 − Z2 = nη(pu − pv)max{(1 +
h−1

∑
k=1

p[k])
a, β}. (22)

If pu ≤ pv, Z1 ≤ Z2, i.e., the processing time of any job in the G1 was less than the
processing time of any job in the G2.
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The Algorithm 1 was summarized as follows:

Algorithm 1 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, CON|

n
∑

j=1
(αUj + δVj + ηd)

Require: α, β, δ, η, a, r, pj, n
Ensure: The optimal sequence, d

1: First step: All jobs were sorted by increasing processing time, i.e., p1 ≤ · · · ≤ pn.
2: Second step: When h was from 0 to n, the objective function values were calculated,

respectively.
3: Last step: The optimal position of h was determined by the smallest value of the

objective function, and the optimal sequence was arrangedn an ascending order of
normal processing time.

Theorem 1. For the problem 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, CON|

n
∑

j=1
(αUj + δVj +

ηd), the complexity of the algorithm was O(nlogn).

Proof. The first step required O(nlogn) time. The second step required O(n) time. The
third step was completed in a constant time. Therefore, the complexity of the algorithm
was O(nlogn).

4.2. The Problem 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, SLK|

n
∑

j=1
(αUj + δVj + ηq)

Lemma 8. For the optimal scheduling, q was equal to (1 + r) times the sum of actual processing
time for some jobs.

Proof. Suppose that q was not equal to (1 + r) times the sum of the actual processing time

for some jobs, i.e., (1 + r)
h−1
∑

j=1
pA
[j] < q < (1 + r)

h
∑

j=1
pA
[j], 1 ≤ h ≤ n, p[0] = 0. The objective

function was:
Z = hα + (n− h)δ + nηq. (23)

when q = (1 + r)
h−1
∑

j=1
pA
[j], the objective function was:

Z1 = (h− 1)α + (n− h)δ + nη(1 + r)
h−1

∑
j=1

pA
[j], (24)

Z− Z1 = α + nη[q− (1 + r)
h−1

∑
j=1

pA
[j]] > 0. (25)

Therefore, q was equal to (1 + r) times the sum of the actual processing time for some
jobs.

Lemma 9. When α ≥ δ, q was equal to 0.

Proof. When q was equal to (1 + r)
h−1
∑

j=1
pA
[j] for the optimal scheduling, the objective func-

tion was:

Z = (h− 1)α + (n− h)δ + nη(1 + r)
h−1

∑
j=1

pA
[j]. (26)
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(1) When q = (1 + r)
h−2
∑

j=1
pA
[j], the objective function was

Z1 = (h− 2)α + (n− h + 1)δ + nη(1 + r)
h−2

∑
j=1

pA
[j]. (27)

(2) When q = (1 + r)
h
∑

j=1
pA
[j], the objective function was

Z2 = hα + (n− h− 1)δ + nη(1 + r)
h

∑
j=1

pA
[j]. (28)

Z− Z1 = α− δ + nη(1 + r)pA
[h−1], (29)

Z− Z2 = −α + δ− nη(1 + r)pA
[h]. (30)

when α ≥ δ, Z2 > Z > Z1. Therefore, q was equal to 0.

For the convenience of proof, we defined two sets: G3 = {Jj|1 ≤ j ≤ h− 1}, G4 =

{Jj|h ≤ j ≤ n}, q = (1 + r)
h−1
∑

j=1
pA
[j].

Lemma 10. In the optimal scheduling, the jobs of set G3 were arranged in an ascending order of
normal processing time.

Proof. There were two adjacent jobs Ju and Jv in the G3, and Ju was in front of Jv which
was at the (k + 1)th position, S1 = {J1, · · · , Ju, Jv, · · · , Jn}. Suppose that the starting time

of J1 was 0, q = (1 + r)
h−1
∑

j=1
pA
[j], 1 ≤ k ≤ h− 2. The objective function of S1 was:

Z1 = (h− 1)α + (n− h)δ + nη(1 + r)
h−1

∑
j=1

pA
[j](S1). (31)

when Ju and Jv were swapped, the sequence of jobs was S2 = {J1, · · · , Jv, Ju, · · · , Jn}. The
objective function of S2 was:

Z2 = (h− 1)α + (n− h)δ + nη(1 + r)
h−1

∑
j=1

pA
[j](S2). (32)

Z1 − Z2 = nη(1 + r)(
h−1

∑
j=1

pA
[j](S1)−

h−1

∑
j=1

pA
[j](S2)). (33)

From pu ≤ pv and Lemma 1, Z1 ≤ Z2, i.e., the jobs of set G3 were arranged in an
ascending order of normal processing time.

Lemma 11. In the optimal scheduling, the jobs of set G4 were arranged in an ascending order of
normal processing time.

Proof. There were two adjacent jobs Ju and Jv in the G4, and Ju was in front of Jv which was
at the (k + 1)th position, S1 = {J1, · · · , Ju, Jv, · · · , Jn}, h ≤ k < n. The objective function of
S1 was:

Z1 = (h− 1)α + (n− h)δ + nη(1 + r)
h−1

∑
j=1

pA
[j](S1). (34)
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when Ju and Jv were swapped, the sequence of jobs was S2 = {J1, · · · , Jv, Ju, · · · , Jn}. The
objective function of S2 was:

Z2 = (h− 1)α + (n− h)δ + nη(1 + r)
h−1

∑
j=1

pA
[j](S2). (35)

Z1 = Z2. (36)

Therefore, the jobs of set G4 were arranged in any order of normal processing time.

Lemma 12. In the optimal scheduling, the processing time of any job in the G3 was less than the
processing time of any job in the G4.

Proof. There were two adjacent jobs Ju and Jv, and Ju was at the (h− 1)th position in the
G3, and Jv was at the hth position in the G4, S1 = {J1, · · · , Ju, Jv, · · · , Jn}. The objective
function of S1 was:

Z1 = (h− 1)α + (n− h)δ + nη(1 + r)
h−1

∑
j=1

pA
[j](S1). (37)

when Ju and Jv were swapped, the sequence of jobs was S2 = {J1, · · · , Jv, Ju, · · · , Jn}. The
objective function of S2 was:

Z2 = (h− 1)α + (n− h)δ + nη(1 + r)
h−1

∑
j=1

pA
[j](S2). (38)

Z1 − Z2 = nη(1 + r)(pu − pv)max{(1 +
h−2

∑
k=1

p[k])
a, β}. (39)

If pu ≤ pv, Z1 ≤ Z2, i.e., the processing time of any job in the G3 was less than the
processing time of any job in the G4.

The Algorithm 2 was summarized as follows:

Algorithm 2 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, SLK|

n
∑

j=1
(αUj + δVj + ηq)

Require: α, β, δ, η, a, r, pj, n
Ensure: The optimal sequence, q

1: First step: All jobs were sorted by the increasing processing time, i.e., p1 ≤ · · · ≤ pn.
2: Second step: When h was from 0 to n, the objective function values were calculated,

respectively.
3: Last step: The optimal position of h was determines by the smallest value of the

objective function, and the optimal sequence was arranged in an ascending order of
the normal processing time.

Theorem 2. For the problem 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, SLK|

n
∑

j=1
(αUj + δVj +

ηq), the complexity of the algorithm was O(nlogn).

Proof. The first step required O(nlogn) time. The second step required O(n) time. The
third step was completed in a constant time. Therefore, the complexity of the algorithm
was O(nlogn).
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4.3. The Problem 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, DIF|

n
∑

j=1
(αUj + δVj + ηdj)

Lemma 13. In the optimal scheduling, if ηCj ≥ δ, the due date dj of Jj was equal to 0; otherwise,
dj was equal to the completion time of Jj.

Proof. The objective function was:

Z =
n

∑
j=1

Zj =
n

∑
j=1

(αUj + δVj + ηdj), (40)

Zj = αUj + δVj + ηdj. (41)

(1) When Cj > dj,
Zj = δ + ηdj. (42)

(2) When Cj = dj,
Zj = ηCj. (43)

(3) When Cj < dj,
Zj = α + ηdj > ηCj. (44)

Zj = min{δ, ηCj}. (45)

when ηCj ≥ δ, dj was equal to 0; otherwise, dj was equal to Cj.

Lemma 14. In the optimal scheduling, the jobs were sequenced in an increasing order of normal
processing time.

Proof. We considered the job sequence S1 = {J1, · · · , Ju, Jv, · · · , Jn}. There were two
adjacent jobs Ju and Jv. Ju was at the kth position in the S1 and Jv was at the (k + 1)th
position in the S1, 1 ≤ k < n. Z1 was the objective function of S1. When Ju and Jv were
swapped, the sequence of jobs was S2 = {J1, · · · , Jv, Ju, · · · , Jn}. Z2 was the objective
function of S2.

Z1 − Z2 = min{δ, ηC[k](S1)}+ min{δ, ηC[k+1](S1)} −min{δ, ηC[k](S2)} −min{δ, ηC[k+1](S2)}. (46)

C[k](S1) = (1 + r)
k−1

∑
j=1

pA
[j] + pu max{(1 +

k−1

∑
i=1

p[j])
a, β}, (47)

C[k](S2) = (1 + r)
k−1

∑
j=1

pA
[j] + pv max{(1 +

k−1

∑
i=1

p[j])
a, β}, (48)

C[k+1](S1) = (1 + r)
k−1

∑
j=1

pA
[j] + (1 + r)pu max{(1 +

k−1

∑
i=1

p[j])
a, β}+ pv max{(1 +

k−1

∑
i=1

p[j] + pu)
a, β}, (49)

C[k+1](S2) = (1 + r)
k−1

∑
j=1

pA
[j] + (1 + r)pv max{(1 +

k−1

∑
i=1

p[j])
a, β}+ pu max{(1 +

k−1

∑
i=1

p[j] + pv)
a, β}. (50)

From pu ≤ pv and Lemma 1, C[k](S1) ≤ C[k](S2), C[k+1](S1) ≤ C[k+1](S2), Z1 ≤ Z2.
Therefore, the jobs were sequenced in an increasing order of normal processing time in the
optimal scheduling.

The Algorithm 3 was summarized as follows:
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Algorithm 3 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, DIF|

n
∑

j=1
(αUj + δVj + ηdj)

Require: α, β, δ, η, a, r, pj, n
Ensure: The optimal sequence, dj

1: First step: The optimal sequence was sequenced by an increasing order of normal
processing time, i.e., p1 ≤ · · · ≤ pn.

2: Last step: The due date dj was determined by the relationship between ηCj and δ.

Theorem 3. For the problem 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, DIF|

n
∑

j=1
(αUj + δVj +

ηdj), the complexity of the algorithm was O(nlogn).

Proof. The first step required O(nlogn) time. The second step required O(n) time. There-
fore, the complexity of the algorithm was O(nlogn).

5. Discussion of Results
5.1. Numerical Discussion

In this section, we used an example to show the calculation process for three different
due dates.

Example 1. There were five jobs processed sequentially on the same machine. The processing time
of each job is shown in the Tables 2–20 below:

α = 1, δ = 2, η = 0.2, a = −1, β = 0.5, r = 0.1.

Table 2. Normal processing time.

Job J1 J2 J3 J4 J5

pj 4 3 5 2 1

Solution 1: 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, CON|

n
∑

j=1
(αUj + δVj + ηd)

First step: p5 < p4 < p2 < p1 < p3. The processing sequence of jobs: J5 → J4 → J2 →
J1 → J3.

Second step:

(1) When h = 0, d = 0, Z = 10;
(2) When h = 1, d = 1, Z = 9;
(3) When h = 2, d = 2.1, Z = 9.1;
(4) When h = 3, d = 3.7, Z = 9.7;
(5) When h = 4, d = 5.85, Z = 10.85;
(6) When h = 5, d = 8.55, Z = 12.55.

Third step: The optimal due date was 1.

Table 3. Actual processing time.

pA
[j] pA

[1] pA
[2] pA

[3] pA
[4] pA

[5]

Value 1 1 1.5 2 2.5

Table 4. Waiting time.

w[j] w[1] w[2] w[3] w[4] w[5]

Value 0 1 2 3.5 5.5
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Table 5. Delivery time.

q[j] q[1] q[2] q[3] q[4] q[5]

Value 0 0.1 0.2 0.35 0.55

Table 6. Completion time.

C[j] C[1] C[2] C[3] C[4] C[5]

Value 1 2.1 3.7 5.85 8.55

Solution 2: 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, SLK|

n
∑

j=1
(αUj + δVj + ηq)

First step: p5 < p4 < p2 < p1 < p3. The processing sequence of jobs: J5 → J4 → J2 →
J1 → J3.

Second step:

(1) When h = 0, q = 0, Z = 8;
(2) When h = 1, q = 1.1, Z = 8.1;
(3) When h = 2, q = 2.2, Z = 8.2;
(4) When h = 3, q = 3.85, Z = 8.85;
(5) When h = 4, q = 6.05, Z = 10.05,

Third step: The optimal q was 0.

Table 7. Actual processing time.

pA
[j] pA

[1] pA
[2] pA

[3] pA
[4] pA

[5]

Value 1 1 1.5 2 2.5

Table 8. Waiting time.

w[j] w[1] w[2] w[3] w[4] w[5]

Value 0 1 2 3.5 5.5

Table 9. Delivery time.

q[j] q[1] q[2] q[3] q[4] q[5]

Value 0 0.1 0.2 0.35 0.55

Table 10. Completion time.

C[j] C[1] C[2] C[3] C[4] C[5]

Value 1 2.1 3.7 5.85 8.55

Table 11. Due date.

d[j] d[1] d[2] d[3] d[4] d[5]

Value 1 1 1.5 2 2.5

Table 12. Due date.

d[j] d[1] d[2] d[3] d[4] d[5]

Value 2.1 2.1 2.6 3.1 3.6
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Table 13. Due date.

d[j] d[1] d[2] d[3] d[4] d[5]

Value 3.2 3.2 3.7 4.2 4.7

Table 14. Due date.

d[j] d[1] d[2] d[3] d[4] d[5]

Value 4.85 4.85 5.35 5.85 6.35

Table 15. Due date.

d[j] d[1] d[2] d[3] d[4] d[5]

Value 7.05 7.05 7.55 8.05 8.55

Solution 3: 1|pA
j[k] = pj max{(1 +

k−1
∑

i=1
p[i])a, β}, qpsd, DIF|

n
∑

j=1
(αUj + δVj + ηdj)

First step: p5 < p4 < p2 < p1 < p3. The processing sequence of jobs: J5 → J4 → J2 →
J1 → J3.

Second step: Z = 2.12.

Table 16. Due date.

d[j] d[1] d[2] d[3] d[4] d[5]

Value 1 2.1 3.7 5.85 8.55

5.2. Extension

In the learning effect scheduling model, the learning index a was less than 0. If a > 0,
it became the forgetting effect scheduling model.

1|pA
j[k] = pj(1 +

k−1

∑
i=1

p[i])
a, qpsd, CON(SLK, DIF)|

n

∑
j=1

(αUj + δVj + ηd), (51)

where a > 0. The same method could prove the following conclusions. When 0 < a ≤ 1,
the optimal sequence was obtained by the longest processing time order. When a > 1, the
optimal sequence was obtained by the shortest processing time order. Take Example 1
above as an example to show the algorithmic process of the forgetting effect scheduling
model (CON).

Solution 4: 1|pA
j[k] = pj(1 +

k−1
∑

i=1
p[i])a, qpsd, CON|

n
∑

j=1
(αUj + δVj + ηd), where a = 0.5.

First step: p3 > p1 > p2 > p4 > p5. The processing sequence of jobs: J3 → J1 → J2 →
J4 → J5.

Second step:

(1) When h = 0, d = 0, Z = 10;
(2) When h = 1, d = 5, Z = 13;
(3) When h = 2, d = 15.3, Z = 22.3;
(4) When h = 3, d = 25.76, Z = 31.76;
(5) When h = 4, d = 33.929, Z = 38.929;
(6) When h = 5, d = 38.52, Z = 42.52.

Third step: The optimal due date was 0.
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Table 17. Actual processing time.

pA
[j] pA

[1] pA
[2] pA

[3] pA
[4] pA

[5]

Value 5 9.8 9.49 7.21 3.87

Table 18. Waiting time.

w[j] w[1] w[2] w[3] w[4] w[5]

Value 0 5 14.8 24.29 31.5

Table 19. Delivery time.

q[j] q[1] q[2] q[3] q[4] q[5]

Value 0 0.5 1.48 2.429 3.15

Table 20. Completion time.

C[j] C[1] C[2] C[3] C[4] C[5]

Value 5 15.3 25.76 33.929 38.52

6. Conclusions

Under the common due date, slack due date and different due date, a single-machine
scheduling problem with delivery times and the truncated sum-of-processing-times-based
learning effect was studied in this paper. The goal was to minimize the total costs that
comprised the number of early jobs, the number of tardy jobs and the due date. Under
different due dates, three polynomial time algorithms were proposed to obtain the optimal
sequence and due dates, whose complexity was O(nlogn). The optimal sequence was
arranged in an ascending order of processing time. We gave three examples to show
the calculation process of the algorithms. In the future, the multi-machine environment
could be considered to expand the research, i.e., a flow-shop scheduling problem with a
delivery time, truncated sum-of-processing-times-based learning effect and due dates could
be considered whether there were polynomial time algorithms. The truncated sum-of-
processing-times-based forgetting effect was also studied in the single-machine scheduling
environment.
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