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Abstract: The notion of a semiring-valued fuzzy set is introduced for special commutative partially
pre-ordered semirings, including basic operations with these fuzzy structures. It is showed that
many standard MV-algebra-valued fuzzy type structures with standard operations, such as hesitant,
intuitionistic, neutrosophic or fuzzy soft sets are, for appropriate semirings, isomorphic to semiring-
valued fuzzy sets with operations defined. F-transform and inverse F-transform are introduced
for semiring-valued fuzzy sets and properties of these transformations are investigated. Using
the transformation of MV-algebra-valued fuzzy type structures to semiring-valued fuzzy sets, the
F-transforms for these fuzzy type structures is introduced. The advantage of this procedure is, among
other things, that the properties of this F-transform are analogous to the properties of the classical
F-transform and because these properties are proven for any semiring-valued fuzzy sets, it is not
necessary to prove them for individual fuzzy type structures.

Keywords: partially pre-ordered semiring; semiring-valued fuzzy set; adjoint pair of semirings;
F-transform

1. Introduction

Shortly after the introduction of fuzzy sets and their lattice-valued variants by
L. A. Zadeh, two new tendencies appear, the development of which continues to this
day. The first of these tendencies consists in creating various generalizations of fuzzy sets
and their lattice-valued variants, motivated mainly by the application possibilities of these
new structures. In that way, new fuzzy type structures are created, which include, for exam-
ple, intuitionistic fuzzy sets, neutrosophic fuzzy sets, hesitant fuzzy sets or fuzzy soft sets.
For basic information about these structures and their possible applications see, e.g., [1–6]
for intuitionistic fuzzy sets, refs. [7–14] for fuzzy soft sets, refs. [15–18] for hesitant fuzzy
sets and [19–21] for neutrosophic sets. Some of these structures can be relatively easily
approximated using classical fuzzy sets, others create completely new structures with their
own theory. In addition to these “primary” new structures, their various clones, formed
by mutual combinations of different structures, very often begin to appear. These new
structures include, for example, intuitionistic hesitant fuzzy sets [22–24], intuitionistic fuzzy
soft sets [25,26], hesitant fuzzy soft sets [27–30] and many others. In most cases, only a
very minimal theory is developed for these new fuzzy type structures, but their application
possibilities are very extensive, as evidenced by, among other things, the extensive citation
of these structures on Google Scholar.

Simultaneously with the development of new fuzzy type structures and their applica-
tions, for classical fuzzy sets and lattice-valued fuzzy sets new methods simplifying calcu-
lations with these structures are also being developed. This trend is related, among other
things, to the expansion of the use of fuzzy sets both for applications using large data sets,
such as image processing, and for applications working in real time. In order to use these
applications effectively, either powerful computing technology or simplification of the task
is needed.

A natural response to these requirements was the introduction of a number of theo-
retical tools in fuzzy set theory, which deal with the transformation of a given fuzzy sets
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space. If we consider, for example, fuzzy sets with a lattice L as the value-set structure,
most of these transformations can be characterized as a special mapping T : LX → LY

of fuzzy sets spaces, where X and Y are basic sets and Y ⊆ X. An important feature of
these transformations is, in particular, that for each of these transformations T there is a
so-called inverse transformation T∗ : LY → LX, such that the composition T∗T( f ) is an
approximation of f ∈ LX .

One of the important transformation methods for both classical [0, 1]-valued fuzzy sets
and for fuzzy sets with complete residuated lattices as value set is the so-called F-transform
method, which was defined by I. Perfilieva [31]. Fuzzy transform (F-transform, shortly)
represents a method in fuzzy set theory, which is used in many applications in signal and
image processing [32–34], signal compressions [35,36], numerical solutions of ordinary and
partial differential equations [37–39], data analysis [40–42] and many other applications.
The F-transform method represents a special transformation map based on a system of
fuzzy sets defined on a given universe, which is called a fuzzy partition. F-transform defined
by a fuzzy partition A significantly reduces the computational complexity of operations
with fuzzy sets, because instead of fuzzy sets defined on the original set X, it allows to
work with fuzzy sets on the index set of the fuzzy partitionA and then transform the result
using the inverse F-transform to the original fuzzy sets space LX .

Typical tasks of this type are algorithms used in image processing, time series analysis,
or even the solutions of differential equations with uncertainties. For many of these tasks,
methods that use other fuzzy type structures, including hesitant, intuitionistic, or fuzzy
soft sets, have also been used successfully. For illustration of these methods in fuzzy type
structures see [43–47]. To extend the application potential of these new fuzzy type methods,
it is therefore natural to address the issue of reducing the computational complexity of
operations with these new fuzzy type structures. One of the possible approaches to
reduce this complexity seems to be the use of the F-transform analogy for these new fuzzy
type structures.

The lattice-based F-transform is defined by default for fuzzy sets with a complete
residuated lattices L as value-sets. This lattice allows both the construction of F-transform
and the inverse F-transform. The key assumption of these constructions is the fact that
the F-transform concerns standard fuzzy sets, i.e., mappings X → L. Unfortunately, many
of the new fuzzy type structures cannot be easily transformed into mappings of this type.
For example, if we consider fuzzy soft sets in the space (X, K), where X is the basic set and K
is the set of criteria, a fuzzy soft set is a pair (E, s), where E ⊆ K and s : E→ LX . In that case
(E, s) is not expressed as the mapping X → L′, where L′ is a complete residuated lattice.

This problem led, among other things, to the gradual use of values structures other
than complete residuated lattices and, subsequently, the definition of transformation maps
associated with these new structures. An example of these modified transformation
maps are the so called Q-module transforms, where Q stands for unitale quantale [48,49].
From the algebraic point of view, this structure is a bit more general than that of a residuated
lattice and it allows to express the lattice-based F-transforms with the help of two residuated
homomorphisms between Q-modules. Another approach we use in our previous paper [50],
where the F-transform is defined as a semimodule homomorphism of free semimodules
defined over special semirings, based on the residuated lattice L.

Although the F-transform method is very successful in applications, it is surprising
that no full analogy of the F-transform has yet been defined for other types of fuzzy
structures, which were mentioned in the introduction. In our previous paper [51] we tried
to fill this gap by introducing the concept of the F-transform for hesitant, intuitionistic and
fuzzy soft sets with special lattice-valued structures. However, for the possibility of the
use of this theory in applications, the theory of inverse F-transform was still missing in
these structures.

Our objective is to show how some of the methods successfully used for classical
L-fuzzy sets can be universally transformed to analogical methods used in new fuzzy type
structures, such as intutionistic, hesitant, neutrosophic of L-fuzzy soft sets and their mutual
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combinatons. Even if these fuzzy type structures have a completely different forms than the
standard mappings X → L typical for L-fuzzy sets and, therefore, the methods of classical
L-fuzzy sets cannot be applied directly to them. An integral part of this transformation
must be the fact that these transformed methods applied in fuzzy type structures have,
as far as possible, properties analogous to the original methods.

In this paper, we try to meet this goal for the direct and inverse F-transform methods,
which are one of the most commonly used methods for L-valued fuzzy sets, both in theory
and in applications. We adapted this method to use for a large part of the new L-fuzzy type
structures, including intuitionistic, hesitant, neutrosophic or L-fuzzy soft sets. Although a
large part of the new fuzzy type structures deal with, among other things, the issue of
image and signal processing and data analysis, the F-transform methods have not yet been
used for these L-fuzzy type structures, in contrast to classical fuzzy sets, where for these
tasks the F-transform methods are often used. The advantage of such adapted method is
its universal use in various fuzzy type structures, including the above mentioned L-fuzzy
type structures. Moreover, the properties of this adapted F-transform method in these new
L-fuzzy type structures will be analogous to the properties of the F-transform for classical
L-fuzzy sets and it will not be necessary to prove them separately for individual fuzzy
type structures. Hence, it seems natural that this adapted F-transform method can be used
for improving the present applications of new L-fuzzy type structures in image and signal
processing and data analysis.

This method is based on a simple principle: we transform each of the mentioned
L-valued fuzzy type structures in a set X into mappings X → R, where R is a suitable
partially ordered semiring. Moreover, we suppose that for the ringR there exists another
ring R∗ with the same underlying set R and with non-trivial involutorial isomorphism
Φ : R → R∗. In that case we say that a new L-fuzzy type structure is transformable to
R-fuzzy set

The F-transform for theseR-fuzzy sets is then the special mappingRX → RY from
the set of allR-fuzzy sets in X to the set of allR-fuzzy sets in Y and it can be defined as a
formal transcription of the classical L-valued F-transform formulas using operations of
semiringsR andR∗ instead of lattice operations. The advantage of this procedure is also
that it allows to introduce the concept of the inverse F-transform for fuzzy type structures
and thus expand the application possibilities of these fuzzy type structures.

In summary, the aim of our paper is as follows:

• To introduce the notion of R-fuzzy sets and to show that a significant part of L-
fuzzy type structures, where L is the complete MV-algebra, can be transformed into
R-fuzzy sets,

• To show that forR-fuzzy sets it is possible to define analogies of concepts and trans-
formations with analogous properties known from the classical L-fuzzy sets,

• To show that these new concepts and transformations forR-fuzzy sets can be trans-
formed back into concepts and transformations of the original L-fuzzy type structures.

The content of the paper is as follows. After the introductory section, where we
repeat some basic definitions from the theory of MV-algebras and pre-ordered semirings,
in Section 3.1 we introduce the notion of the R-fuzzy set, where R is a commutative po-
semiring. This notion will be based on the notion of the adjoint pair (R,R∗) of po-semirings
with the same underlying set R and such that there exists an involutorial isomorphism
Φ : R → R∗ of po-semirings. We also show that for any MV-algebra L, the above L-valued
fuzzy type structures such as hesitant fuzzy sets, intuitionistic fuzzy sets, neutrosophic
fuzzy sets and soft fuzzy sets and their mutual combinations can be transformed toR-fuzzy
sets, whereR are suitable po-semirings. On the setRX ofR-fuzzy sets we defined basic
operations with R-fuzzy sets and we prove some basic properties of these operations.
We also prove that the above mentioned L-fuzzy type structures in a set X with special
operations defined for these structures are isomorphic toRX with defined operations.

In Section 3.2 we deal with the F-transform theory for R-fuzzy sets. It should be
emphasised that the investigation of applications of this theory is not the primary goal of
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the paper. Our primary goal is to show how the F-transform methods can be extend to
R-fuzzy sets and translated into the language of the respective L-fuzzy type structures.
We introduce the notions of upper and lower F-transform and upper and lower inverse
F-transform forR-fuzzy sets and using the transformation of L-fuzzy type structures to
R-fuzzy sets, we show how the F-transform can be defined in these fuzzy type structures.
We also investigate some properties of F-transforms for R-fuzzy sets and relationships
between direct an inverse F-transforms.

2. Methods and Basic Structures

A basic membership structure of fuzzy sets for lattice-valued F-transform is a complete
residuated lattice (see e.g., [52]), i.e., a structure L = (L,∧,∨,⊗,→, 0L, 1L) such that (L,∧,∨)
is a complete lattice, (L,⊗, 1L) is a commutative monoid with operation ⊗ isotone in both
arguments and→ is a binary operation which is residuated with respect to ⊗. Recall that a
negation of an element a in L is defined by ¬a = a→ 0L. By the order relation ≤ on L we
understand the order relation of the lattice (L,∧,∨).

For our purposes in the paper we use a special variant of residuated lattice, namely,
the MV-algebra [53], i.e., the structure L = (L,⊕,⊗,¬, 0L, 1L) satisfying the following
axioms for elements of L:

(i) (L,⊗, 1L) is a commutative monoid,
(ii) (L,⊕, 0L) is a commutative monoid,
(iii) ¬¬x = x, ¬0L = 1L,
(iv) x⊕ 1L = 1L, x⊕ 0L = x, x⊗ 0L = 0L,
(v) x⊕¬x = 1L, x⊗¬x = 0L,
(vi) ¬(x⊕ y) = ¬x⊗¬y, ¬(x⊗ y) = ¬x⊕¬y,
(vii) ¬(¬x⊕ y)⊕ y = ¬(¬y⊕ x)⊕ x.

If we put

x ∨ y = (x⊕¬y)⊗ y, x ∧ y = (x⊗¬y)⊕ y,

x → y = ¬x⊕ y,

then (L,∧,∨,⊗,→, 0L, 1L) is a residuated lattice. MV-algebra is called complete, if that
lattice is a complete lattice. The standard example of the MV-algebra is Łukasiewicz algebra
LL = ([0, 1],⊕,⊗,¬, 0, 1), where

x⊗ y = 0∨ (x + y− 1), ¬x = 1− x,

x⊕ y = 1∧ (x + y).

In the rest of the paper, L is the complete MV-algebra. The L-fuzzy set in a set X is a
map f : X → L. The set of all L-fuzzy sets in X is denoted by LX .

We recall a basic definition of the F-transform and inverse F-transform for L-fuzzy sets.

Definition 1 ([31]). Let X be a set and let A = {Ay : y ∈ Y} ⊆ LX . Then

1. A is called a fuzzy partition, if {core(Ay) : y ∈ Y} is a partition of X, where core(A) =
{x ∈ X : A(x) = 1L}, i.e.,

⋃
y∈Y core(Ay) = X, core(Ay) ∩ core(Az) = ∅, if y 6= z.

2. A mapping FX,A : LX → LY is called the upper F-transform based onA, if for s ∈ LX , y ∈ Y,
FX,A(s)(y) =

∨
x∈X s(x)⊗ Ay(x).

3. A mapping GX,A : LY → LX is called the inverse upper F-transform based on A, if for
g ∈ LY, x ∈ X, GX,A(g)(x) =

∧
y∈Y ¬Ay(x)⊕ g(y).

In our previous paper [51] we have shown that fuzzy type transformations for various
fuzzy type structures can be equivalently defined using two different tools, based on the
theory of monads and monadic relations and on the theory of semirings and semimodules.
In this paper, we extend this method based on the theory of semirings so that it can be used
to define the inverse F-transform, and special examples of this extended structure should
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be the fuzzy type of structure mentioned in the introduction, i.e., hesitant, intuitionistic or
soft fuzzy sets.

The semiring appears for the first time in [54] and this notion was elaborated in [55].
For our purposes, we need to use semirings in which a partially order or pre-order relation
is defined. This notion of a partially ordered semiring was first introduced in the [56]. For
more information about semimodules and their applications see, e.g., [57,58].

Definition 2 ([54,56]). A partially pre-ordered (or ordered) idempotent commutative semiring
R = (R,≤,+,×, 0R, 1R) (or, shortly, po-semiring) is an algebraic structure with the follow-
ing properties:

(i) (R,+, 0R) is an idempotent commutative monoid,
(ii) (R,×, 1R) is a commutative monoid,
(iii) x× (y + z) = x× y + x× z holds for all x, y, z ∈ R,
(iv) 0R × x = 0R holds for all x ∈ R.
(v) (R,≤) is a partially pre-ordered (or ordered) set such that for all a, b, c ∈ R the following hold

a ≤ b⇒ a +R c ≤ b +R c, a×R c ≤ b×R c,

a ≥ 0R.

If a structure R satisfies only axioms (i)–(iv), then R is called only the semiring.
An important example of a po-semiring which seems to be very useful for the F-transform
theory was published in the paper of Di Nola and Gerla [59].

Example 1 ([59]).

(1) Let L be a residuates lattice. Then the reduct L∨ = (L,≤,∨,⊗, 0L, 1L) is the po-semiring.
(2) Let L be a MV-algebra. Then the reduct L∧ = (L,≤,∧,⊕, 1L, 0L) is the po-semiring.

The notion of a semimodule over a semiring is taken from [55]. We use the commuta-
tive version of this notion only. Moreover, analogously as for semirings, we need to use the
notion of a partially pre-ordered (or ordered) semimodule which is introduced in [60].

Definition 3 ([55]). LetR = (R,≤R,+R,×R, 0R, 1R) be a po-semiring. A partially pre-ordered
R-semimodule (or, shortly, po-R-semimodule) is a structureM = (M,≤,�, ?, 0) defined by the
following axioms:

1. (M,�, 0) is a commutative monoid,
2. ? : M× R→ M is a mapping (called an external multiplication),
3. r, r′ ∈ R, m ∈ M, (r×R r′) ? m = r ? (r′ ? m),
4. r ∈ R, m, m′ ∈ M, r ? (m � m′) = r ? m � r ? m′,
5. r, r′ ∈ R, m ∈ M, (r +R r′) ? m = r ? m � r′ ? m,
6. 1R ? m = m, 0R ? m = r ? 0 = 0,
7. m, n, p ∈ M, m ≤ n⇒ m � p ≤ n � p,
8. m, n ∈ M, r ∈ R, r ≥R 0R, m ≤ n⇒ r ? m ≤ r ? n,
9. r, s ∈ R, m ∈ M, r ≤R s⇒ r ? m ≤ s ? m,

If the structureM satisfies only axioms 1.–6., it is called aR-semimodule. If there can
be no misunderstanding, for simplicity, we will sometimes use only the term semiring and
semimodule instead of a po-semiring and a po-semimodule, respectively.

If a semiringR andR-semimoduleM = (M,�M, 0M) are such that for any subsets
S ⊆ R and N ⊆ M, there exist sums of elements r ∈ S and x ∈ N, thenM is called a
complete R-semimodule. The sum of elements x ∈ N is denoted by �Mx∈N x and the sum
of elements r ∈ S is denoted by ∑Rr∈S r.

In the paper [61] the following examples of po-semimodules were presented.
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Example 2 ([61]).

(1) Let X 6= ∅, L be a complete residuated lattice and let L∨ = (L,≤,∨,⊗, 0L, 1L) be the
po-semiring from Example 1. For all f , g ∈ M = LX define

f ≤ g⇔ ∀x ∈ X, f (x) ≤ g(x) in L∨,

( f ⊕M g)(x) = f (x) ∨ g(x),

p ?1 f (x) = p⊗ f (x),

0M ∈ M, 0M(x) = 0L, x ∈ X, p ∈ L.

Then LX = (M,≤,⊕M, ?1, 0M) is the complete po-L∨-semimodule.
(2) Let X 6= ∅, L be a complete MV-algebra and let L∧ = (L,≤,∧,⊕, 1L, 0L) be the po-

semiring from Example 1. For all f , g ∈ M = LX define

f ≤ g⇔ ∀x ∈ X, f (x) ≥ g(x) in L∧,

( f ⊕M g)(x) = f (x) ∧ g(x),

p ?2 f (x) = p⊕ f (x),

0M ∈ M, 0M(x) = 1L, x ∈ X, p ∈ L.

Then LX = (M,≤,⊕M, ?2, 0M) is the complete po-L∧-semimodule.

The notion of a semiring homomorphism and R-semimodule homomorphism is
defined standardly as follows from the following definition.

Definition 4. LetR and S be po-semirings,M and N be po-R-semimodules.

1. A po-semiring homomorphism Φ : R → S is a mapping Φ : R→ S such that

(a) Φ is a homomorphism of semirings,
(b) Φ is order-preserving.

2. AR-semimodule homomorphism Ψ :M→ N is a mapping Ψ : M→ N such that

(a) Ψ :M→ N is an order preserving homomorphism of monoids,
(b) Ψ(r ?M m) = r ?N Ψ(m), for all m ∈ M, r ∈ R,

Let us consider the following example, which is very important for our purposes.

Example 3. Let LX = (M,≤,⊗M, 0M) be the po-L∨-semimodule from Example 2 (1), and let
LX = (M,≤,⊕M, 0M) be the po-L∧-semimodule from Example 2 (2). Let (G, Φ) : LX → LX be
defined by

Φ : L∨ → L∧, ∀α ∈ L, Φ(α) = ¬α,

G : LX → LX , ∀ f ∈ LX , G( f ) = ¬ f , (¬ f )(x) = Φ( f (x)).

Then, (G, Φ) is the (L∨,L∧)-semimodule homomorphism.

3. Results
3.1. R-Valued Fuzzy Sets

As we mentioned in the introduction, in order to be able to use analogies of construc-
tions and methods that are standardly used in classical L-fuzzy sets for new L-valued
fuzzy type structures, we will transform these L-valued fuzzy type structures in a set X into
mappings X → R, whereR is a suitable po-semiring. The specificity of these po-semirings,
which will be used as value sets of these new L-fuzzy type structures, lies in the fact that
instead of one po-semiring R we will use a pair of po-semirings (R,R∗) with the same
underlying sets, which are adjoint in a specific way. The value sets defined in that way for
new fuzzy type structures will allow us not only to transform them into X → R mappings,
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but also to introduce operations on a set ofR-fuzzy sets, analogous to existing operations
on L-valued fuzzy type structures.

We begin this section with the definition of the pair of adjoint po-semirings.

Definition 5. Let R = (R,≤,+,×, 0, 1) and R∗ = (R,≤∗,+∗,×∗, 0∗, 1∗) be complete po-
semirings with the same underlying set R. The po-semiring isomorphism Φ : R → R∗ is called
adjoint and the pair (R,R∗) is called the adjoint pair of semirings, if

1. Φ is an order-preserving isomorphism of po-semirings,
2. Φ is self-inverse, i.e., Φ.Φ = idR,
3. ∀a, b ∈ R, a ≤ b⇔ a ≥∗ b,
4. ∀a, b, c ∈ R, a×∗ (b + c) = (a×∗ b) + (a×∗ c),
5. ∀a, b, c ∈ R, a + (b +∗ c) = (a + b) +∗ (a + c),

Remark 1.

1. In the rest of the paper, if (R,R∗) will be the adjoint pair of semirings with the adjoint
isomorphism Φ, then R and R∗ are supposed to be complete po-semirings with the same
operations as in Definition 5.

2. It should be observed that the following statements dual to statements from Definition 5
also holds:

4′. ∀a, b, c ∈ R, a× (b +∗ c) = (a× b) +∗ (a× c),
5′. ∀a, b, c ∈ R, a +∗ (b + c) = (a +∗ b) + (a +∗ c).

In the next examples we show some non-trivial examples of adjoint pairs of po-
semirings which, as we will see later, are closely related to mentioned L-fuzzy type
structures. All these examples are based on the complete MV-algebra L = (L,⊗,⊕,¬, 0, 1)
with sup ∨ and inf ∧ defined by these operations..

Example 4. LetL be the MV-algebra and let us consider the semiringsL∨ andL∧ from Example 1.
Then (L∨,L∧) is the adjoint pair of po-semirings and Φ : L∨ → L∧ is the adjoint po-semiring
isomorphism, where

Φ : L∨ → L∧, Φ(α) = ¬α,

Example 5.

1. The partially pre-ordered semiringR1 = (R1,≤1,+1,×1, 01, 11) is defined by

(a) R1 = {A : A ⊆ L} = 2L,
(b) A, B ∈ R1, A +1 B = A ∪ B,
(c) A, B ∈ R1, A×1 B := A⊗ B = {a⊗ b : a ∈ A, b ∈ B}, A×1 ∅ = ∅,
(d) 01 = ∅, 11 = {1L},
(e) A, B ∈ R1, we set

A ≤1 B⇔ (∀α ∈ A)(∃β ∈ B)α ≤ β.

2. The partially pre-ordered semiringR∗1 = (R1,≤∗1 ,+∗1 ,×∗1 , 0∗1 , 1∗1) is defined by

(a) A, B ∈ R1, A +∗1 B = A ∩ B,
(b) For A, B ∈ R1, A, B 6= L, A ×∗1 B := A ⊕ B = {a ⊕ b : a ∈ A, b ∈ B},

A×∗1 L = L×∗1 L = L,
(c) 0∗1 = L, 1∗1 = {0L}.
(d) A ≤∗1 B⇔ B ≤1 A.

Let Φ : R1 → R∗1 be defined by

A ∈ R1, A 6= ∅, L, Φ(A) = {¬α : α ∈ A},
Φ(∅) = L, Φ(L) = ∅.
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Then (R1,R∗1) is the adjoint pair of po-semirings and Φ is the adjoint po-semiring isomorphism.

Example 6.

1. The po-semiringR2 = (R2,≤2,+2,×2, 02, 12) is defined by

(a) R2 = {(α, β) ∈ L2 : ¬α ≥ β} ⊆ L2,
(b) (α, β) +2 (α1, β1) := (α ∨ α1, β ∧ β1),
(c) (α, β)×2 (α1, β1) := (α⊗ α1, β⊕ β1),
(d) 02 = (0L, 1L), 12 = (1L, 0L),
(e) (α, β) ≤2 (α′, β′)⇔ α ≤ α′, β ≥ β′.

2. The po-semiringR∗2 = (R2,≤∗2 ,+∗2 ,×∗2 , 0∗2 , 1∗2) is defined by

(a) (α, β) +∗2 (α1, β1) := (α ∧ α1, β ∨ β1),
(b) (α, β)×∗2 (α1, β1) := (α⊕ α1, β⊗ β1),
(c) 0∗2 = (1L, 0L), 1∗2 = (0L, 1L),
(d) (α, β) ≤∗2 (α′, β′)⇔ (α, β) ≥2 (α′, β′).

Let Φ : R2 → R∗2 be defined by

(α, β) ∈ R2, Φ(α, β) = (β, α).

Then (R2,R∗2) is the adjoint pair of po-semirings and Φ is the adjoint po-semiring isomor-
phism.

Example 7.

1. Let K be the fixed set of criteria. The po-semiringR3 = (R3,≤3,+3,×3, 03, 13) is defined by

(a) R3 = {(E, ψ) : E ⊆ K, ψ ∈ LK} ⊆ LK, where (E, ψ) ∈ LK is defined by

k ∈ K, (E, ψ)(k) =

{
ψ(k), k ∈ E,
0L, k 6∈ E

.

(b) (E, ϕ), (F, ψ) ∈ R3, (E, ϕ) +3 (F, ψ) := (E ∩ F, ϕ ∨ ψ), where ϕ ∨ ψ is the supre-
mum in LK,

(c) (E, ϕ), (F, ψ) ∈ R3, (E, ϕ) ×3 (F, ψ) = (E ∩ F, ϕ × ψ), where ϕ × ψ ∈ LK is
defined by ϕ× ψ(k) = ϕ(k)⊗ ψ(k),

(d) 03 = (K, 0L), 13 = (K, 1L), where α(k) = α for arbitrary k ∈ K, α ∈ L,
(e) (E, ϕ) ≤3 (F, ψ)⇔ (E, ϕ)(k) ≤ (F, ψ)(k), ∀k ∈ E ∩ F.

2. The po-semiringR∗3 = (R3,≤∗3 ,+∗3 ,×∗3 , 0∗3 , 1∗3) is defined by

(a) (E, ϕ), (F, ψ) ∈ R3, (E, ϕ)+∗3 (F, ψ) := (E∩ F, ϕ∧ψ), where ϕ∧ψ is the infimum
in LK,

(b) (E, ϕ), (F, ψ) ∈ R3, (E, ϕ)×∗3 (F, ψ) = (E ∩ F, ϕ⊕ ψ), where ⊕ in LK is defined
component-wise.

(c) 0∗3 = (K, 1L), 1∗3 = (K, 0L), where α(k) = α for arbitrary k ∈ K, α ∈ L,
(d) (E, ϕ) ≤∗3 (F, ψ)⇔ (E, ϕ) ≥3 (F, ψ).

Let Φ : R3 → R∗3 be defined by

(E, ψ) ∈ R3, Φ(E, ψ) = (E,¬ψ),

where ¬ψ is defined component-wise. Then (R3,R∗3) is the adjoint pair of po-semirings and Φ is
the adjoint po-semiring isomorphism.

Example 8.

1. The po-semiringR4 = (R4,≤4,+4,×4, 04, 10) is defined by

(a) R4 = L3,
(b) (α, β, γ) +4 (α1, β1, γ1) := (α ∨ α1, β ∧ β1, γ ∧ γ1),
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(c) (α, β, γ)×2 (α1, β1, γ1) := (α⊗ α1, β ∧ β1, γ⊕ γ1),
(d) 04 = (0L, 1L, 1L), 14 = (1L, 1L, 0L),
(e) (α, β, γ) ≤4 (α′, β′, γ′)⇔ α ≤ α′, β ≥ β′, γ ≥ γ′.

2. The po-semiringR∗4 = (R4,≤∗4 ,+∗4 ,×∗4 , 0∗4 , 1∗4) is defined by

(a) (α, β, γ) +∗4 (α1, β1, γ1) := (α ∧ α1, β ∨ β1, γ ∨ γ1),
(b) (α, β, γ)×∗4 (α1, β1, γ1) := (α⊕ α1, β ∨ β1, γ⊗ γ1),
(c) 0∗4 = (1L, 0L, 0L), 1∗4 = (0L, 0L, 1L),
(d) (α, β, γ) ≤∗4 (α′, β′, γ′)⇔ (α, β, γ) ≥4 (α′, β′, γ′).

Let Φ : R4 → R∗4 be defined by

(α, β, γ) ∈ R4, Φ(α, β, γ) = (γ,¬β, α).

Then (R4,R∗4) is the adjoint pair of po-semirings and Φ is the adjoint po-semiring isomorphism.

It is clear from the above examples that the pair (R,R∗) represents a certain general-
ization of the pair (L∨,L∧), where (L,⊕,⊗,¬, 0, 1) is the MV-algebra. It would therefore
be possible to expect that just as the original MV-algebra L can be derived from the pair
(L∨,L∧) by operations ⊕, ⊗, ¬, 0 and 1, another MV-algebra L′ can be analogously de-
rived from the pair (R,R∗), i.e., L′ = (R,×,×∗, Φ, 0R, 1R). Unfortunately, it is not true,
as the following example shows.

Example 9. Let (R1,R∗1) be adjoint pair of po-semirings with adjoint isomorphism Φ from
Example 5 and let L be the Łukasiewicz algera. Then (R1,×1,×∗1 , Φ, 01, 11) is not an MV-algebra.
In fact, it is easy to see that, in general, we have

A×1 Φ(A) 6= {1L} = 11, A×∗1 Φ(A) 6= 01, Φ(01) 6= 11,

A×∗1 (Φ(A)×1 B) 6≥1 B,

and it follows that R1 is not a MV-algebra. In fact, to prove the first row is trivial. Let A =
{0.5, 0.4}, B = {0.6}. Then

A×∗1 (Φ(A)×1 B) = {0.5; 0.6, 0.7} 6≥1 {0.6} = B,

as follows from the definition of ≤1, because 0.5 6≥ 0.6.

Using the adjoint pair (R,R∗) of po-semirings we can now define the notion of R-
fuzzy sets and we can also introduce basic operations withR-fuzzy sets. Finally, using this
definition, we show that mentioned L-fuzzy type structures, such as hesitant, intuitionists,
neutrosophic or soft L-fuzzy sets and also their mutual combinations are R-fuzzy sets
where operations with theseR-fuzzy sets are identical to operations defined on these fuzzy
type structures.

Definition 6. Let (R,R∗) be adjoint pair of po-semirings with adjoint isomorphism Φ. Let X be
a set.

1. A mapping s : X → R is called the R-fuzzy set in X. For x ∈ X, s(x) ∈ R is called the
R-membership value of s in x.

2. The operations withR-fuzzy sets s, t in X and elements a ∈ R are defined by

(a) The intersection s u t is defined by (s u t)(x) = s(x) +∗ t(x), x ∈ X,
(b) The union s t t is defined by (s t t)(x) = s(x) + t(x), x ∈ X,
(c) The complement ¬s is defined by ¬s(x) = Φ(s(x)),
(d) The external multiplication ? by elements fromR is defined by

(a ? s)(x) = a× s(x),
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(e) The pre-order relation ⊆ betweenR-fuzzy sets is defined by

s ⊆ t⇔ (∀x ∈ X)s(x) ≤ t(x).

3. For arbitrary x ∈ X, by ηX(x) we denote theR-fuzzy set in X such that

y ∈ X, ηX(x)(y) =

{
1R, x = y,
0R, otherwise.

In the following simple lemma we show some basic properties of operations with
R-fuzzy sets. On the other hand, because R-fuzzy sets represent a relatively strong
generalization of standard L-fuzzy sets, it cannot be expected that the same properties of
operations will apply to them as for classical L-fuzzy sets. We will show these differences
in the following examples.

Lemma 1. Let (R,R∗) be adjoint pair of po-semirings with adjoint isomorphism Φ. Let X be a
set and s, t, w beR-fuzzy sets in X. Then the following statements hold.

1. s u s = s, s t s = s,
2. s u t ⊆ s,
3. s u (t t w) = (s u t) t (s u w),
4. s t (t u w) = (s t t) u (s t w),
5. a ? (t t w) = (a ? t) t (a ? w),
6. a ? (t u w) = (a ? t) u (a ? w),
7. ¬(s t t) = ¬s u ¬t, ¬(s u t) = ¬s t ¬t,
8. s ⊆ t⇒ s t w ⊆ t t w, s u w ⊆ t u w,

Proof. For illustration we show only the proof of 2, 4 and 7. The rest of the proof can
be done analogously. According to Definition 5, for x ∈ X we have (s u t)(x) = s(x) +∗

t(x) ≥∗ s(x) +∗ 0∗ = s(x). Therefore, s(x) +∗ t(x) ≤ s(x) and s u t ⊆ s. Further,

¬(s t t)(x) = Φ((s t t)(x)) = Φ(s(x) + t(x)) =

Φ(s(x)) +∗ Φ(t(x)) = (¬s u ¬t)(x).

Finally, we have

(s t (t u w))(x) = s(x) + (t(x) +∗ w(x)) = (s(x) + t(x)) +∗ (s(x) + w(x)) =

((s t t) u (s t w))(x).

From the definition ofR-fuzzy sets in a set X it follows that the set of allR-fuzzy sets
in a set X is the freeR-semimoduleRX . For convenience of readers we recall the definition
of this structure.

Definition 7. Let R = (R,≤R,+R,×R, 0R, 1R) be a po-semiring. By the free R-semimodule
over a set X we understand the po-R-semimoduleRX = (RX ,≤,�, 0, ?) defined by

1. For arbitrary f , g ∈ RX , x ∈ X, ( f � g)(x) = f (x) +R g(x),
2. For arbitrary f ∈ RX , r ∈ R, x ∈ X, (r ? f )(x) = r×R f (x),
3. 0X(x) = 0R,
4. f ≤ g⇔ ∀x ∈ X, f (x) ≤R g(x).

Remark 2. If (R,R∗) is an adjoint pair, the operations ?,�,≤ for po-semiringR∗ are denoted
by ?∗,�∗,≤∗.
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It is clear that any po-semiring homomorphism Φ : R1 → R2 can be extended to the
semimodule homomorphism Φe : RX

1 → RX
2 of corresponding free semimodules, where

f ∈ RX
1 , x ∈ X, Φe( f )(x) = Φ( f (x)).

In the next part we show that the mentioned hesitant, intuitionistic, neutrosophic or
soft L-fuzzy sets are, in fact,R-fuzzy sets for appropriate po-semiringR. For convenience
of the readers, we repeat firstly the definitions of these structures. As we mentioned in the
Introduction, as the value-lattice in the paper we use the MV-algebra L.

Definition 8 ([2,9,17,20]).

1. A hesitant L-fuzzy set in a set X is a mapping h : X → 2L, i.e., for x ∈ X, h(x) ⊆ L.
By H(X) we denote the set of all hesitant fuzzy sets in X.

2. An intuitionistic L-fuzzy set in a set X is a pair (u, v) of L-fuzzy sets on X, such that
¬u ≥ v. By J(X) we denote the set of all intuitionistic fuzzy sets in X.

3. A neutrosophic L-fuzzy set in a set X is a triple (u, v, w) of L-fuzzy sets on X, called a truth
membership function u, an indeterminancy membership function v and a falsity membership
function w. By N(X) we denote the set of all neutrosophis fuzzy sets in X.

4. Let K be the fixed set of criteria. A pair (E, s) is called an L-fuzzy soft set in the set X,
if ∅ 6= E ⊆ K and s : E→ LX . By S(X) we denote the set of all fuzzy soft sets in X.

Remark 3. For a fuzzy soft set (E, s), a mapping s can be extended to the mapping s : K → LX

such that s(e)(x) = 0L for e ∈ K \ E. In that case (E, s) can be identified with the mapping
(E, s) : X → LK, such that (E, s)(x) ∈ LK is defined by

(E, s)(x)(e) :=

{
s(e)(x), e ∈ E
0L, e ∈ K \ E

.

In what follows we use this interpretation of L-fuzzy soft sets.

In the following proposition we show that the elements of sets H(X), J(X), N(X)
and S(X) can be represented as R-fuzzy sets in a set X for appropriate po-semirings R
and sets H(X), J(X), N(X) and S(X) are isomorphic to the freeR-semimodulesRX of all
R-fuzzy sets in a set X. This result allows us to interpret the above mentioned L-fuzzy
type structures in the universal way as the R-fuzzy sets and to use common tools and
methods from the theory ofR-fuzzy sets for these structures. In the next Section we will
illustrate this procedure on the issue of the F-transform for these fuzzy type structures.

For arbitrary po-semiringR, by (RX ,t,u,¬, ?) we denote the algebraic structure of
all R-fuzzy sets with operations from Definition 6. If T(X) is an arbitrary from the sets
H(X), J(X), N(X) and S(X), by (T(X),∪,∩,¬, ◦) we denote this set with operations of
union, intersection, negation and external multiplication by element from L defined on
these fuzzy type structure. These operations for intuitionistic, neutrosophis and soft fuzzy
sets are defined in [2,9,20]. The original definition [16] of these operations for hesitant
L-fuzzy sets is very atypical in comparison with other fuzzy type structures, because,
for example, it does not guarantee distributivity between ∪ and ∩ operations, as is the case
of other fuzzy type structures. For our purposes we use a modified definition, where for
hesitant L-fuzzy set s, t we define (s ∪ t)(x) = s(x) ∪ t(x), (s ∪ t)(x) = s(x) ∪ t(x).

We use the following notation.

Notation 1. Let F (X) = (F(X),∪,∩,¬, ◦) be a fuzzy type structure in a set X with the basic
operations union, intersection, negation and external product. F (X) is called to be transformable
to R-fuzzy sets, if F (X) is isomorphic to the structure (RX,t,u,¬, ?), where (R,R∗) is the
adjoint pair of po-semirings with adjoint isomorphism Φ.
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Proposition 1. Let X be a set.

1. The algebraic structure (H(X),∩,∪,¬, ◦) of all hesitant L-fuzzy sets in X is transformable
toR1-fuzzy sets.

2. The algebraic structure (J(X),∩,∪,¬, ◦) of all intuitionistic L-fuzzy sets is transformable
toR2-fuzzy sets.

3. The algebraic structure (S(X),∩,∪,¬, ◦) of all L-fuzzy soft sets in X is transformable
R3-fuzzy sets.

4. The algebraic structure (N(X),∩,∪,¬, ◦) of all neutrosophic L-fuzzy sets in X is trans-
formable toR4-fuzzy sets.

Proof.

(1) Any hesitant L-fuzzy set is a mapping X → 2L and it follows that H(X) = RX
1 .

The isomorphism of operations follows directly from the definitions of operations in
RX

1 and in H(X).
(2) Any intuitionistic L-fuzzy set is a mapping X → {(α, β) ∈ L2 : ¬α ≥ β} and it

follows that J(X) = RX
2 . The isomorphism of operations follows directly from the

definitions of operations inRX
2 and in J(X).

(3) According to Remark 3, any L-fuzzy soft set (E, s) ∈ S(X) is a mapping (E, s) : X →
LK, where E ⊆ K, s : K → LX and

k ∈ K, x ∈ X, (E, s)(x)(k) =

{
s(k)(x), k ∈ E,
0L, k 6∈ E

.

We define the mapping Λ : S(X)→ RX
3 such that

(E, s) ∈ S(X), Λ(E, s) : X → R3,

x ∈ X, Λ(E, s)(x) := (E, sx) ∈ R3,

sx : K → L, sx(k) := s(k)(x) for k ∈ K,

(E, sx) : K → L, (E, sx)(k) :=

{
s(k)(x), k ∈ E,
0L, k 6∈ E.

We prove that Λ(S(X)) = RX
3 . Because Λ(E, s) ∈ RX

3 , we have Λ(S(X)) ⊆ RX
3 and

we need to prove only the inverse inclusion. Let g ∈ RX
3 , g(x) = (Ex, ψx) ∈ R3 for

x ∈ X. Let the element (E, s) ∈ S(X) be defined by

E =
⋃

x∈X
Ex,

s : K → LX , s(k)(x) =

{
ψx(k), k ∈ Ex,
0L, k 6∈ Ex.

For x ∈ X we have Λ(E, s)(x) = (E, sx) and we show that Λ(E, s)(x) and g(x) are
equal as mappings K → L. For k ∈ K we have

(E, sx)(k) =

{
s(k)(x), k ∈ E,
0L, k 6∈ E

=
ψx(k), k ∈ Ex,
0L, k ∈ E \ Ex

0L, k 6∈ E

=

{
ψx(k), k ∈ Ex,
0L, k 6∈ Ex

= g(x)(k).

Therefore, Λ(E, s) = g and Λ(S(X)) = RX
3 . It is easy to see that Λ is the injective

map. The isomorphism of operations in RX
3 and in S(X) follows directly from
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definitions of these operations in RX
3 and S(X). Therefore, the algebraic structure

S(X) is isomorphic to the algebraic structureRX
3 .

(4) Any neutrosphic L-fuzzy set is a mapping X → L3 and it follows that N(X) = RX
4 .

The isomorphism of operations follows directly from the definitions of operations in
RX

4 and in N(X).

FreeR-semimodulesRX have specificR-base, which will be essential for F-transform
constructions.

Lemma 2. Let (R,R∗) be the adjoint pair of complete semirings with adjoin isomorphism Φ and
let X be a set.

1. The set B = {ηX(x) : x ∈ X} is theR-base of the freeR-semimoduleRX .
2. The set ¬B = {¬ηX(x) : x ∈ X} is the R∗-base of the free R∗-semimodule (R∗)X, where

¬(ηX(x))(z) = Φ(ηX(x)(z)), for z ∈ X.

Proof.

(1) We show firstly that the following identity holds for arbitrary f ∈ RX :

f =
RX

�
x∈X

f (x) ? ηX(x). (1)

In fact, according to Definition 7, for a ∈ X we obtain

(
RX

�
x∈X

f (x) ? ηX(x))(a) =
R
∑

x∈X
f (x)×R ηX(x)(a) = f (a)×R 1R = f (a)

and the identity (1) holds. If for some elements {rx ∈ R : x ∈ X} the identity

RX

�
x∈X

rx ? ηX(x) = 0

holds, according to Definition 7, for arbitrary a ∈ X we obtain

0R = (
RX

�
x∈X

rx ? ηX(x))(a) =
R
∑

x∈X
rx ×R ηX(x)(a) = ra.

Therefore, B is theR-base ofRX .
(2) We show that for arbitrary f ∈ (R∗)X we have

f =
(R∗)X

�
x∈X

f (x) ?∗ (¬ηX(x)). (2)

In fact, according to Definition 5 and Definition 7, for a ∈ X we have

(
(R∗)X

�
x∈X

f (x) ?∗ (¬ηX(x)))(a) =
R∗

∑
x∈X

f (x)×∗ Φ(ηX(x)(a)) =

f (a)×∗ Φ(1R) = f (a)×∗ 1∗R = f (a)

and the identity (2) holds. The rest is similar to the previous case.
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3.2. F-Transform forR-Fuzzy Sets

The F-transform method for L-fuzzy sets is one of the very effective tools for reducing
the difficulty of uncertainties tasks requiring operations with large sets of this uncertain
data. Typical tasks of this type are algorithms used in image processing, time series analysis,
or even the solutions of differential equations with uncertainties. For many of these tasks,
methods that use other fuzzy type structures, including hesitant, intuitionistic, or fuzzy
soft sets, have also been used successfully. For illustration of these methods in these fuzzy
type structures see [43–47].

A large part of new fuzzy type methods are used, among others, in applications
related to image processing. In these applications, individual images are transformed into
objects of these fuzzy type structures, for example, intuitionistic fuzzy sets or hesitant fuzzy
sets, which are defined on pixels of individual images. Due to the value-sets of these new
fuzzy type structures, this in turn leads to the fact that the computational complexity of
operations with these objects is higher than in the case of classical fuzzy sets.

It is therefore natural to create a certain F-transform analogy for these fuzzy type struc-
tures, which would subsequently make it possible to reduce the computational complexity
of these tasks and thus expand the application possibilities of these methods.

The classical theory of F-transform for L-fuzzy sets deals with two types of this
transformation, namely with upper and lower F-transforms [31], which represent the upper
and lower variant (in terms of ordering) of the transformed function. Since both of these
transformations preserve the order relation defined on fuzzy sets, the possibility of choosing
from two variants of the transformed function expands, among other things, the application
possibilities of this theory. The resulting upper or lower transformations of the original
function thus represent a significant simplification of the original L-fuzzy set f and thus
simplify the overall processing and operations with the original function. However, in order
to take full advantage of these transformations of the original function, there must be a
possibility to reproduce the original function from these simplified functions, i.e., there
must be so-called inverse F-transform.

In this section we introduce both these types of the transforms and their inverse
variants for R-fuzzy sets, which allows the use of these terms for general fuzzy type
structures, including hesitant, intuitionistic, neutrosophic or fuzzy soft sets and their
possible combinations and we show some relationships among these structures.

Analogously as for classical L-fuzzy sets, the F-transform for R-fuzzy sets is also
based on analogies of fuzzy partitions. Unlike the classic concept of L-fuzzy partition
originally defined in [31], fuzzy type partitions for R-fuzzy sets will be defined more
generally. The definition chosen in this way then allows to choose different types of fuzzy
partitions according to the conditions of a particular task.

Definition 9. LetR be a complete po-semiring. A subset A = {py : y ∈ Y} ⊆ RX is called the
R-partition of X if there exists a binary relation u ⊆ X × Y such that the following conditions
are satisfies:

dom(u) = X, codom(u) = Y,

(x, y) ∈ u⇒ py(x) = 1R.

In the following definition we introduce both basic types of the F-transform for R-
fuzzy sets, i.e., upper and lower F-transform. This notion can be introduced for arbitrary
adjoint pair of po-semirings with adjoint isomorphism.

Definition 10. Let (R,R∗) be adjoint pair of po-semirings with adjoint isomorphism Φ, R =
(R,≤,+,×, 0, 1),R∗ = (R,≤∗,+∗,×∗, 0∗, 1∗) and let A = {py : y ∈ Y} be aR-partition of a
set X.
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1. The upper F-transform ofR-fuzzy sets in X is a mapping F↑A,X : RX → RY defined by

f ∈ RX , y ∈ Y, F↑A,X( f )(y) =
R
∑

x∈X
py(x)× f (x).

2. The lower F-transform ofR-fuzzy sets in X is a mapping F↓A,X : RX → RY defined by

f ∈ RX , y ∈ Y, F↓A,X( f )(y) =
R∗

∑
x∈X

Φ(py(x))×∗ f (x).

In the following example we illustrate how the F-transform can be defined also
for mutual combinations of various fuzzy type structures. As an example we consider
intuitionistic fuzzy soft sets which were introduced in [62]. We use an extended variant
of intuitionistic fuzzy soft sets, where membership values are from the complete MV-
algebra L.

Example 10. Recall the definition of the intuitionistic L-fuzzy soft set. Let K be the fixed set of
criteria and let X be a set. An intuitionistic L-fuzzy soft set in a set X is a pair (E, s), where
E ⊆ K and s : K → J (X) = RX

2 is such that s(k) = 0R2
, if k ∈ K \ E, where 0R2

: X → R2
is the constant function with the valued 0R2 . We show that any intuitionistic L-fuzzy soft set
is a R5-fuzzy set for appropriate po-semiring R5. To define the F-transform for intuitionistic
L-fuzzy soft sets we need the adjoint pair (R5,R∗5) of po-semirings and adjoint isomorphism
Φ5 : R5 → R∗5 . We set

R5 = RK
2 , R∗5 = (R∗2)K,

whereR2 andR∗2 are from Example 6. Let the operations inR5 andR∗5 be defined point-wise from
operations inR2 andR∗2 , respectively.

Let the mapping Φ5 : R5 → R∗5 be defined by

f ∈ R5, k ∈ K, Φ5( f )(k) = Φ2( f (k)).

It is easy to see that (R5,R∗5) is the adjoint pair of po-semirings and Φ5 is the adjoint
isomorphism. We show the there exists the isomorphism between the structure IFS(X) =
(IFS(X),∪,∩,¬) of all intuitionistic L-fuzzy soft sets in a set X with standard operations ∪,∩,¬
defined in [62] and the free R5-po-semimodule RX

5 with the point-wise operations defined from
+2,×2 and Φ2.

In fact, let us defined the map Γ : IFS(X)→ RX
5 = (RK

2 )
X by

(E, s) ∈ IFS(X), x ∈ X, k ∈ K, Γ(E, s)(x)(k) =

{
s(k)(x) ∈ R2, k ∈ E,
0R2 , k ∈ K \ E.

Γ is the surjective map. In fact, for f ∈ RX
5 , we set

x ∈ X, Ex = {k ∈ K : f (x)(k) 6= 0R2},
E =

⋃
x∈X

Ex, s : K → RX
2 ,

k ∈ K, x ∈ X, s(k)(x) =

{
f (x)(k), k ∈ Ex,
0R2 , k ∈ K \ Ex.

It follows that Γ(E, s) = f and it is easy to see that Γ is the isomorphism.
Finally, we show how the formula for lower F-transform looks for intuitionistic L-fuzzy soft

sets. Using the above isomorphism Γ between IFS(X) andRX
5 , instead of elements from IFS(X)

we use elements ofRX
5 . Let A = {py : y ∈ Y} ⊆ RX

5 be aR5-partition of X. For x ∈ X, k ∈ K,
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let py(x)(k) = (αyxk, βyxk) ∈ R2. According to Definition 10, for arbitrary f ∈ RX
5 , f (x)(k) =

( f1,xk, f2,xk), x ∈ X, k ∈ k, we obtain the lower F-transform F↓A,X : RX
5 → RY

5 by

y ∈ Y, k ∈ K, F↓A,X( f )(y)(k) = (
R∗5
∑

x∈X
Φ5(py(x))×∗5 f (x))(k) =

R∗2
∑

x∈X
Φ2(py(x)(k))×∗2 f (x)(k) =

R∗2
∑

x∈X
Φ2(αyxk, βyxk)×∗2 ( f1,xk, f2,xk) =

R∗2
∑

x∈X
(βyxk, αyxk)×∗2 ( f1,xk, f2,xk) =

R∗2
∑

x∈X
(βyxk ⊕ f1,xk, αyxk ⊗ f2,xk) =

(
∧

x∈X
βyxk ⊕ f1,xk,

∨
x∈X

αyxk ⊗ f2,xk).

In the following theorem we will show how to characterize the lower and upper
F-transforms forR-fuzzy sets also without the use of a fuzzy partition.

Theorem 1. Let (R,R∗) be adjoint pair of po-semirings with adjoint isomorphism Φ. Let F :
RX → RY be an arbitrary mapping.

1. The following statements are equivalent.

(a) F is theR-po-semimodule homomorphism and there exists a relation u ⊆ X×Y with
dom(u) = X, codom(u) = Y and such that

∀(x, y) ∈ u, F(ηX(x))(y) = 1R.

(b) There exists aR-partition A = {py : y ∈ Y} such that F = F↑A,X .

2. The following statements are equivalent.

(a) F is the R∗-po-semimodule homomorphism (R∗)X → (R∗)Y and there exists a
relation u ⊆ X×Y with dom(u) = X, codom(u) = Y and such that

∀(x, y) ∈ u, F(¬(ηX(x))(y)) = 1∗R,

where ¬(χX(x))(x′) = Φ(χX(x)(x′)) for x′ ∈ X.
(b) There exists aR-partition A = {py : y ∈ Y} such that F = F↓A,X .

Proof.

(1) Let the condition (b) holds. We set (x, y) ∈ u⇔ Ay(x) = 1R. It is easy to that F↑A,X is
theR-po-semimodule homomorphism and that the additional condition holds.
Let the condition (a) holds. According to Lemma 2, for arbitrary element f ∈ RX

we obtain f = �R
X

x∈X f (x) ? ηX(x). Because F is a R-semimodule homomorphism,
according to Definition 7, we obtain

F( f )(y) = F(
RX

�
x∈X

f (x) ? ηX(x))(y) =
R
∑

x∈X
f (x)× F(ηX(x))(y) =

R
∑

x∈X
f (x)× py(x),

where we set py(x) = F(ηX(x))(y). Therefore, A = {py : y ∈ Y} is aR-partition and
the statement 2. holds.
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(2) Let the condition (b) holds. For r ∈ R∗, f , g ∈ (R∗)X and y ∈ Y we obtain

F↓A,X(r ?
∗ f +∗ g)(y) =

R∗

∑
x∈X

Φ(py(x))×∗ (r ?∗ f +∗ g)(x) =

R∗

∑
x∈X

r×∗ Φ(py(x))×∗ f (x) +∗ Φ(py(x))×∗ g(x) =

r×∗ F↓A,X( f )(y) +∗ F↓A,X(g)(y),

and F↓A,X is theR∗-po-semimodule homomorphism. Moreover, for (x, y) ∈ u we have

F↓A,X(¬(ηX(x))(y) =
R∗

∑
z∈X

Φ(py(z))×∗ Φ(ηX(x)(z))) = Φ(py(x))×∗ Φ(1R) =

Φ(py(x))×∗ 1∗R = Φ(py(x)) = Φ(1R) = 1∗R.

Let the condition (a) holds. According to Lemma 2, we have

F( f )(y) = F(
(R∗)X

�
x∈X

f (x) ?∗ ¬(ηX(x)))(y) =

R∗

∑
x∈X

f (x)×∗ F(¬(ηX(x)))(y) =
R∗

∑
x∈X

f (x)×∗ Φ(py(x)) = F↓A,X( f )(y),

where we set py(x) = Φ(F(¬(ηX(x)))(y)) and A = {py : y ∈ Y}.

As we mentioned in the introduction, one of the main advantages of the classical
F-transform for L-fuzzy sets is the existence of the inverse F-transform, which allows to
reconstruct with some accuracy the original function from its F-transform image. It is
therefore natural to try to define a similar inverse transformation for the F-transform of
R-fuzzy sets and to determine its basic properties. We introduce the inverse F-transform
forR-fuzzy sets in the following definition.

Definition 11. Let (R,R∗) be adjoint pair of po-semirings with adjoint isomorphism Φ and let
X be a set. Let A = {py : y ∈ Y} be aR-partition of X.

1. The upper inverse F-transform ofR-fuzzy sets defined byA is a mapping G↑A,X : RY → RX ,
defined by

g ∈ RY, x ∈ X, G↑A,X(g)(x) =
R∗

∑
y∈Y

Φ(py(x))×∗ g(y).

2. The lower inverse F-transform ofR-fuzzy sets defined by A is a mapping G↓A,X : RY → RX ,
defined by

g ∈ RY, x ∈ X, G↓A,X(g)(x) =
R
∑
y∈Y

py(x)× g(y).

There are simple relationships between the transformations F↑, F↓ and G↑, G↓, respec-
tively, as can be seen from the following proposition.

Proposition 2. Let (R,R∗) be adjoint pair of po-semirings with adjoint isomorphism Φ and let X
be a set. Let A = {py : y ∈ Y} be aR-partition of X. The following statements hold for arbitrary
a ∈ R, f , g ∈ RX , h, k ∈ RY, x ∈ X, y ∈ Y.

1. F↑A,X(a ? f � g) = a ? F↑A,X( f )� F↑A,X(g),
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2. F↓A,X(a ?∗ f �∗ g) = a ?∗ F↓A,X( f )�∗ F↓A,X(g),

3. G↑A,X(a ?∗ h �∗ k) = a ?∗ G↑A,X(h)�
∗ G↑A,X(k),

4. G↓A,X(a ? h � k) = a ? G↓A,X(h)� G↓A,X(k),

5. F↓A,X( f )(y) = Φ(F↑A,X(¬ f )(y)),

6. G↓A,X(g)(x) = Φ(G↑A,X(¬g)(x)),

7. G↓A,X F↓A,X( f )(x) = Φ(G↑A,X F↑A,X(¬ f )(x)).

8. F↑A,X( f )(y) ≥R F↓A,X( f )(y)

9. G↑A,X(g)(x) ≤R G↓A,X(g)(x),

10. (x, y) ∈ u⇒ F↑A,X( f )(y) ≥R f (x), G↑A,X(g)(x) ≤R g(y),

11. (x, y) ∈ u⇒ F↓A,X( f )(y) ≤R f (x), G↓A,X(g)(x) ≥R g(y),

where¬ f for f ∈ RX or¬g for g ∈ RY are defined by (¬ f )(x) = Φ( f (x)), x ∈ X, or (¬g)(y) =
Φ(g(y)), y ∈ Y.

Proof. To prove (1), (2), (3), (4) is straightforward and it will be omitted.
(5) We have

F↓A,X( f )(y) =
R∗

∑
x∈X

Φ(py(x))×∗ f (x) = Φ(
R
∑

x∈X
py(x)×Φ( f (x))) =

Φ(F↑A,X(¬ f )(y)).

The proof of (6) can be done analogously and it will be omitted.
(7) We have

G↓A,X F↓A,X( f )(x) = Φ(G↑(¬F↓A,X( f ))(x)) =

Φ(G↑A,X(¬¬F↑A,X(¬ f ))(x) = Φ(G↑A,X F↑A,X(¬ f )(x)).

(8) Let y ∈ Y be arbitrary and let x ∈ X be such that (x, y) ∈ u. We have

F↑A,X( f )(y) =
R
∑

z∈X
py(z)×R f (z) ≥ py(x)×R f (x) = f (x)

and, analogously,

F↓A,X( f )(y) =
R∗

∑
z∈X

Φ(py(z))×∗R f (z) ≥∗ Φ(py(x))×∗R f (x) = 1∗R ×∗ f (x) = f (x).

Therefore, F↓A,X( f )(y) ≤ f (x) and it follows F↑A,X( f )(y) ≥ f (x) ≥ F↓A,X( f )(y).
(9) The proof is similar to the proof of (8) and it will be omitted.
The rest of the proof can be done easily and it will be omitted.

Analogously as for direct F-transform, the inverse F-transform can be characterised
without the notion of R-partition. It is not surprising that these characterisations are,
in some aspects, dual to the characterisations of direct F-transforms and that the proofs of
these characterisations are analogical to the proofs for direct F-transforms. It follows from
the following lemma.

Lemma 3. Let (R,R∗) be adjoint pair of po-semirings with adjoint isomorphism Φ and let X, Y
be sets. Let A = {py : y ∈ Y} be aR-partition of X and let B = {qx : x ∈ X} be aR-partition
of Y, such that

∀x ∈ X, ∀y ∈ Y, py(x) = qx(y).
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Then for any s ∈ RY hold

F↑Y,B(s) = G↓X,A(s), F↓Y,B(s) = G↑X,A(s).

The proof of Lemma is trivial and it will be omitted.
Using Lemma 3 and Theorem 1 it is easy to see that the following characterisations of

lower and upper inverse F-transforms without the notion ofR-partition hold.

Theorem 2. Let (R,R∗) be adjoint pair of po-semirings with adjoint isomorphism Φ and let X
be a set. Let G : RY → RX be an arbitrary mapping.

1. The following statements are equivalent.

(a) G is the R∗-po-semimodule homomorphism (R∗)Y → (R∗)X and there exists a
relation u ⊆ X×Y with dom(u) = X, codom(u) = Y and such that

∀(x, y) ∈ u, G(¬ηY(y))(x) = 1∗R.

where ¬(ηY(y))(y′) = Φ(ηY(y)(y′)) for y′ ∈ Y.
(b) There exists aR-partition A = {py : y ∈ Y} such that G = G↑A,X .

2. The following statements are equivalent.

(a) G is the R-po-semimodule homomorphism RY → RX and there exists a relation
u ⊆ X×Y with dom(u) = X, codom(u) = Y and such that

∀(x, y) ∈ u, G(ηY(y))(x) = 1R.

(b) There exists aR-partition A = {py : y ∈ Y} such that G = G↓A,X .

The proof follows directly from Theorem 2 and Lemma 3 and it will be omitted.

Notation 2. Let F (X) = (F(X),∪,∩,¬, ◦) be a fuzzy type structure in a set X which is trans-
formable toR-fuzzy sets.

1. The mappings F↑X,A, F↓X,A from Definition 10 are called upper and lower F-transform of this
fuzzy type structure F (X).

2. The mapping G↑Y,A, G↓X,A from Definition 11 are called the upper and lower inverse F-
transform of this fuzzy type structure F (X).

For the classical L-valued F-transform and its inversion more properties hold than
stated in Proposition 2. Because R-fuzzy sets comprise a lot of fuzzy type structures
and some of them could be very different from L-fuzzy sets, we cannot expect that the
F-transforms for arbitraryR-fuzzy sets will have the same properties as F-transforms for
L-fuzzy sets. On the other hand, many R-fuzzy sets defined for particular fuzzy type
structures have additional properties that imply other important properties of F-transforms
and their inversions. Let us consider the following example of these additional properties.

Definition 12. Let (R,R∗) be adjoint pair of po-semirings with adjoint isomorphism Φ. We say
that (R,R∗) satisfies the axiom (+), if the following condition holds.

∀a, b ∈ R, Φ(a)×∗ (a× b) ≥ b.

Remark 4. It should be observed that the following dual condition is equivalent to the axiom (+):

∀a, b ∈ R, a× (Φ(a)×∗ b) ≥∗ b.

In the following examples we show that the adjoint pair (R3,R∗3) satisfy the axiom
(+), but (R1,R∗1), (R2,R∗2), (R5,R∗5) and (R4,R∗4) do not satisfy the axiom (+).



Mathematics 2021, 9, 3107 20 of 24

Example 11. Let (R3,R∗3) be the adjoint pair from Example 7. For (E, φ), (F, ψ) ∈ R3 and
k ∈ K we have

Φ(E, φ)×∗3 ((E, φ)×3 (F, ψ))(k) = (E,¬φ)×∗3 (E ∩ F, φ⊗ ψ)(k) =

(E ∩ F,¬φ⊕ (φ⊗ ψ))(k) =

{
¬φ(k)⊕ (φ(k)⊗ ψ(k)) ≥ ψ(k), k ∈ E ∩ F
0L, k 6∈ E ∩ F

≥ (F, ψ)(k),

according to the definition of the pre-order inR3. Therefore, (R3,R∗3) satisfies the axiom (+).

Example 12. Let (R2,R∗2) be the adjoint pair from Example 6 and let L be the Lukasiewicz
algebra. We set (α, β) = (0.4, 0.5), (γ, δ) = (0.8, 0.1) ∈ R2. We have

Φ(α, β)×∗2 ((α, β)×2 (γ, δ)) = (0.5, 0.4)×∗2 (0.4⊗ 0.8, 0.5⊕ 0.1) =

(0.7, 0) 6≥ (0.8, 0.1) = (γ, δ)

and it follows that (R2,R∗2) does not satisfy the axiom (+).

Example 13. Let (R1,R∗1) be the adjoint pair from Example 5. Let L be the Łukasiewicz algebra
and let A = {0.7, 0.5}, B = {0.4}. Then 0.3 = ¬0.7⊕ (0.5⊗ 0.4) ∈ Φ(A) ×∗1 (A ×1 B),
but 0.3 6≥L 0.4. Therefore, Φ(A)×∗1 (A×1 B) 6≥1 B and (+) does not hold.

To show that axiom (+) does not hold for other adjoint pairs can be done analogously
as in Example 12.

As we can see from the following proposition, for adjoint pairs of po-semirigs (R,R∗)
which satisfy the axiom (+), many analogies properties of direct and inverse F-transforms
well known for classical F-transform for L-valued fuzzy sets also hold.

Proposition 3. Let (R,R∗) be adjoint pair of po-semirings with adjoint isomorphism Φ, which
satisfies the axiom (+). LetA = {py : y ∈ Y} be aR-partition of X. The following statements hold.

1. G↑A,X F↑A,X( f ) ≥ f ,

2. G↓A,X F↓A,X( f ) ≤ f ,

3. F↑A,XG↑A,X(g) ≤ g,

4. F↓A,XG↓A,X(g) ≥ g,

5. F↑A,XG↑A,X F↑A,X( f ) = F↑A,X( f ),

6. G↓A,X F↓A,XG↓A,X(g) = G↓A,X(g).

7. F↑A,X( f ) ≤Y g⇒ f ≤X G↑A,X(g),

8. G↓A,X(g) ≤X f ⇒ g ≤Y F↓A,X( f ).

Proof. For simplicity, instead of F↑A,X we use only F↑ and similarly for other F-transforms.

(1) According to axiom (+) we have

G↑F↑( f )(x) =
R∗

∑
y∈Y

(Φ(py(x))×∗ F↑( f )(y)) = (3)

R∗

∑
y∈Y

(Φ(py(x))×∗ (
R
∑

z∈X
py(z)× f (z))) = (4)

R∗

∑
y∈Y

R
∑

z∈X
Φ(py(x))×∗ (py(z)× f (z)). (5)
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Because Φ(py(x))×∗ (py(z)× f (z) ∈ R, according to Definition 2(v) we have Φ(py(x))
×∗(py(z)× f (z) ≥ 0 and, according to axiom (+), for arbitrary y ∈ Y it follows

R
∑

z∈X
(Φ(py(x))×∗ (py(z)× f (z))) ≥ Φ(py(x))×∗ (py(x)× f (x)) ≥ f (x). (6)

According to Definition 5, for arbitrary y ∈ Y we have

R
∑

z∈X
(Φ(py(x))×∗ (py(z)× f (z))) ≤∗ Φ(py(x))×∗ (py(x)× f (x)) ≤∗ f (x).

Therefore, using inequalities (3), (4), (5) and (6), we have

G↑F↑( f )(x) ≤∗
R∗

∑
y∈Y

Φ(py(x))×∗ (py(x)× f (x)) ≤∗

R∗

∑
y∈Y

f (x) = f (x)×∗ (∑
y∈Y

1∗) = f (x)×∗ 1∗ = f (x).

and we obtain G↑F↑( f )(x) ≥ f (x).
(2) According to Proposition 2 and previous part (1), we have

G↓F↓( f )(x) = Φ(G↑F↑(¬ f ))(x) ≥∗ Φ(Φ( f (x))) = f (x),

and it follows that G↓F↓( f )(x) ≤ f (x).
(3) From the axiom (+) and its dual version, analogously as in (1), it follows

F↑G↑(g)(y) =
R
∑

x∈X
py(x)× G↑(g)(x) =

R
∑

x∈X

R∗

∑
t∈Y

py(x)× (Φ(pt(x))×∗ g(t)) ≤

R
∑

x∈X
py(x)× (Φ(py(x))×∗ g(y)) ≤

R
∑

x∈X
g(y) = g(y).

(4) The proof can be analogously as in (2) and it will be omitted.
(5) From (3) it follows F↑G↑F↑( f ) ≤ F↑( f ) and because F↑ is order preserving, from

G↑F↑( f ) ≥ f we obtain the other inequality.
(6) From the property (3) it follows G↓F↓(G↓(g)) ≤ G↓(g). Because G↓ preserves the

ordering ≤, from the property (4) it follows G↓(F↓G↓(g)) ≥ G↓(g).
(7) From F↑( f ) ≤Y g it follows F↑( f ) ≥∗Y g and because G↑ preserves ≤∗Y-ordering, from

(3) we obtain f ≥∗X G↑F↑( f ) ≥∗X G↑(g). Hence, G↑(g) ≥X f .
(8) The proof can be done analogously as in (7) and it will be omitted.

From Propositions 2 and 3 and from Example 11 the following Corollary follows,
which is important for possible applications of the F-transform theory for other fuzzy
type structures.

Corollary 1.

1. For arbitrary fuzzy type structure which is transformable toR-fuzzy sets, the F-transform
and inverse F-transform of this fuzzy type structure satisfy all properties from Proposition 2.

2. The F-transform and inverse F-transform of L-fuzzy soft sets satisfy all properties of Proposi-
tion 3.
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4. Discussion and Conclusions

In lattice-valued fuzzy set theory, there are a number of fuzzy type structures that
represent either generalisations of classical lattice-valued fuzzy sets or are built on these
fuzzy sets using special constructions. A common feature of these new fuzzy type structures
is especially their usability in specific applications, as evidenced by a number of research
publications related to these structures. Although these new fuzzy type structures are in
some way based on the classical theory of lattice-valued fuzzy sets, for the theory and
methods used in these fuzzy type structures, own procedures are developed that often
represent procedures modified in one or another way from the classical fuzzy set theory. It
is therefore natural to ask the following question. Is it possible to develop a new general theory
based on methods or theories from classical lattice-valued fuzzy sets, which could be directly applied
to a large part of new fuzzy type structures and at the same time had as many properties similar to the
original theory as possible? In this paper, we have tried to answer this question at least in part
and to present one possible variant of such a general theory that could be successfully used
to create new methods in new lattice-valued fuzzy type structures in a unified way. This
method is based on the use of the so-calledR-fuzzy sets, i.e., fuzzy sets with commutative
pre-ordered semiringsR as value sets and with operations defined by operations of these
semirings. In the paper, we have shown that many of new L-fuzzy type structures, where L
is a complete MV-algebra, including hesitant, intuitionistic, neutrosophic or fuzzy soft sets,
including their mutual combinations are transformable toR-fuzzy sets for suitable semirings
R. This allows us to “copy” the classical methods used in L-fuzzy sets and simply transfer
these methods to these new fuzzy type structures in a unified way. In addition, if a given
fuzzy type structure is transformable to R-fuzzy sets, we can determine in advance what
properties the possible application of a new method to this fuzzy type structure will have.

As an illustrative example of such a procedure, we chose the F-transform method,
which is often used in L-fuzzy sets and their applications but so far was not used in
these new fuzzy type structures. For this purpose, we defined the F-transform method for
general R-fuzzy sets in the way formally similar to the classical F-transform, and using
the transformation of new L-fuzzy type structures to R-fuzzy sets, we introduced the
F-transform for these new fuzzy type structures. The advantage of this procedure is,
among other things, that the properties of these F-transforms in new fuzzy type structures
are known in advance, because these properties are proven for anyR-fuzzy set.

Like any method, the use of R-fuzzy sets has its limitations. One limitation is that
to transform a given L-fuzzy type structure to R-fuzzy sets, L is required to be a MV-
algebra. However, since a large part of applications using L-fuzzy type structures is based
on Łukasiewicz algebra L, which is the MV-algebra, this is not a fundamental limitation.
A certain limitation of this method results from its ability to cover a number of fuzzy
type structures. Due to the differences of individual structures, it is not expected that all
these structures will have the same properties. As a result, generalR-fuzzy sets have only
properties that apply to all L-fuzzy type structures that can be transformed into R-fuzzy sets.
On the other hand, R-fuzzy sets have not properties which are special properties only for some
transformable fuzzy type structures. An example of a property that does not apply to general
R-fuzzy sets is the axiom (+) from Definition 12. This axiom applies only to some types of
R-fuzzy sets and therefore only to some types of new L-fuzzy type structures.

We must emphasise that this paper is intended to be a theoretical basis for the possible
transformation of methods which are standardly used in classical fuzzy sets to applications
in various fuzzy type structures. For further development of methods based on the theory
of R-fuzzy sets, we will deal with, among other things, rough R-fuzzy sets and their
applications to various new fuzzy type structures. Although fuzzy type structures are
often used in both theory and some applications, most real applications of these structures
are based on the use of [0, 1] value set with specific operations instead of MV-algebra L. It
is therefore appropriate to focus on the transformation of these fuzzy type structures into
R-fuzzy set, whereR will be appropriate semirings, or their generalisations with specific
operations and properties.
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