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Abstract: The subject of the present paper is the investigation of a new type of solitons, called
η-∗-Ricci solitons in (k, µ)-almost co-Kähler manifold (briefly, ackm), which generalizes the notion
of the η-Ricci soliton introduced by Cho and Kimura . First, the expression of the ∗-Ricci tensor on
ackm is obtained. Additionally, we classify the η-∗-Ricci solitons in (k, µ)-ackms. Next, we investigate
(k, µ)-ackms admitting gradient η-∗-Ricci solitons. Finally, we construct two examples to illustrate
our results.
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1. Introduction

The investigation of Ricci solitons on Riemannian and semi-Riemannian manifolds
is an important topic in the area of differential geometry and in physics as well. Over the
last few years, Ricci solitons and their generalizations have been enjoying quick growth by
providing new techniques in understanding the geometry and topology of Riemannian
manifolds. Interest in studying Ricci solitons and their generalizations in different geomet-
rical contexts has also considerably increased due to their connection to general relativity.

The Ricci soliton generalizes the notion of the Einstein metric. A Ricci soliton of a
Riemannian metric g on a manifold N is defined as follows:

£V g + 2αg + 2S = 0, (1)

where £, V, and α indicate the Lie-derivative operator, a smooth vector field, and a constant,
respectively, and S is the Ricci tensor. Ricci solitons are the special solutions of the Ricci
flow equation:

∂

∂t
g = −2S , (2)

which was introduced by Hamilton [1]. Kumara and Venkatesha [2] investigated Ricci
solitons in perfect fluid spacetime with the torse-forming vector field. Several authors [3–7]
and many others have investigated Ricci solitons.

Cho and Kimura [8] studied real hypersurfaces in a complex space form and extended
the idea of Ricci solitons to η-Ricci solitons. These solitons on a Riemannian manifold
(N, g) satisfy the following equation:

£V g + 2αg + 2βη ⊗ η + 2S = 0, (3)

where β is a constant. If β = 0, then this soliton becomes a Ricci soliton, and for β 6= 0, it is
called proper.
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The soliton is reduced to a gradient η-Ricci soliton if V is the gradient of a smooth
function f : N → R (called the potential function). Then, Equation (3) becomes the following:

Hess f + S + αg + βη ⊗ η = 0, (4)

where Hess f is the Hessian of f . The soliton is named shrinking, steady, or expanding
when α < 0, α = 0, or α > 0, respectively.

Recently, many works have been dedicated to η-Ricci solitons and gradient η-Ricci
solitons in the context of Riemannian and contact manifolds. Furthermore, geometric flows
have been initiated in the investigation of the cosmological model such as perfect fluid
spacetimes. In [9], Blaga studied the η-Ricci soliton in perfect fluid spacetimes and obtained
the Poisson equation from the soliton equation when the potential vector field ξ was of the
gradient type. In [10], the η-Ricci solitons have also been studied in generalized Robertson–
Walker spacetimes. The η-Ricci solitons have been investigated by many authors such
as [11–16] and many others.

Tachibana [17] introduced the concept of the ∗-Ricci tensor in almost Hermitian
manifolds, and this idea was applied to the almost contact manifold by Hamada [18],
which was defined by the following equation:

S∗(G, H) =
1
2

trace(K → R̃(G, ϕH)ϕK), (5)

for any G, H, K.
In 2014, Kaimakamis and Panagiotidou [19] introduced the concept of the ∗-Ricci

soliton within the background of real hypersurfaces of a complex space form, and given by
the following equation:

£V g + 2αg + 2S∗ = 0. (6)

In this article, we are interested in investigating a new type of soliton that combines
the η-Ricci soliton and the ∗-Ricci soliton, which is named the η-∗-Ricci soliton.

Definition 1. g, the Riemannian metric is named the η-∗-Ricci soliton if

£V g + 2αg + 2βη ⊗ η + 2S∗ = 0. (7)

The above-mentioned soliton is called gradient if V is the gradient of f , while
Equation (7) becomes:

Hess f + 2S∗ + 2αg + 2βη ⊗ η = 0. (8)

Very recently, Majhi, De, and Suh [20] undertook the study of ∗-Ricci solitons on
Sasakian manifolds. Here, they proved that if the metric of a Sasakian manifold is a ∗-
Ricci soliton, then it has a constant scalar curvature. The case of a ∗-Ricci soliton in the
(ε)-Kenmotsu manifold was treated by De, Blaga, and De in [21]. In this line, it is suitable
to mention that Venkatesha, Naik, and Kumara studied the ∗-Ricci soliton on η-Einstein
Kenmotsu and three-dimensional Kenmotsu manifolds; they proved that if the metric of a
η-Einstein Kenmotsu manifold is a ∗-Ricci soliton, then it is Einstein (see [22], Theorem 3.2).
For the three-dimensional case, it was proved that if M admits a ∗-Ricci soliton, then it is of
a constant sectional curvature -1 (see [22], Theorem 3.3).

In a recent paper Wang [23] studied Ricci solitons and gradient Ricci solitons in (k, µ)-
ackms. In recent years, some researchers have also studied ∗-Ricci solitons in the frame
work of contact and paracontact manifolds [21,24–26]. To our knowledge, there are no
results in the literature regarding ∗-Ricci solitons in ackms or (k, µ)-ackms in particular, nor
in perfect fluid spacetimes.

Motivated by the studies above, in this article, we are interested in investigating
η-∗-Ricci solitons and gradient η-∗-Ricci solitons in (k, µ)-ackms.

The rest of the article is organized as follows:
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In Section 2, after preliminaries, we obtain the ∗-Ricci tensor on (k, µ)-ackms. We
then classify the η-∗-Ricci solitons in (2m + 1)-dimensional (k, µ)-ackms in Section 3. Next,
we investigate (k, µ)-ackms that admit gradient η-∗-Ricci solitons. Finally, we provide an
example to illustrate our result.

2. Preliminaries

A smooth manifold N2m+1 together with the triple (ϕ, ρ, η), where η, ρ, and ϕ indicate
a 1-form, a global vector field, and a (1, 1)-tensor field, is said to be an almost contact
manifold [27] if:

ϕ2 = −I + η ⊗ ρ, η(ρ) = 1, (9)

where I is the identity automorphism. From (9), we can obtain ϕρ = 0 and η ◦ ϕ = 0. An al-
most contact structure (ϕ, ρ, η) is called normal [27] if the Nijenhuis tensor of ϕ vanishes.

An almost contact manifold N2m+1 is called an almost contact metric manifold if the
metric g obeys the following equation:

g(ϕG, ϕH) = g(G, H)− η(G)η(H) (10)

for any vector fields G, H ∈ χ(N). Φ, the fundamental 2-form on N2m+1, is defined by
Φ(G, H) = g(G, ϕH) for all G, H ∈ χ(N).

An almost contact metric manifold N2m+1 is named an ackm if both Φ and η are closed,
that is, dΦ = 0 and dη = 0. In addition, if N2m+1 is normal, then the manifold N2m+1 is
called a co-Kähler manifold. An ackm is the same as an almost cosymplectic manifold [28]
and investigated by several geometers [7,23,29–40].

On any ackm, we can define a (1,1)-tensor field h = £ρ ϕ. According to [41–43], it is
known that h and h′(= h ◦ ϕ) are symmetric tensors and satisfy the following equations:

hρ = 0, hϕ + ϕh = 0, trh = trh′ = 0, (11)

∇ρ ϕ = 0, ∇ρ = h′, (12)

ϕlϕ− l = 2h2, (13)

∇ρh = −h2 ϕ− ϕl, (14)

S(ρ, ρ) + trh2 = 0, (15)

where l = R̃(., ρ)ρ indicates the Jacobi operator along the Reeb vector field, R̃ is the
Riemannian curvature tensor, tr denotes trace, and ∇ is the Riemannian connection.

The relation (£ρg)(G, H) = 2g(h′G, H), which holds on an ackm can be obtained
by the Lie-derivative of g along the Reeb vector ρ and (12). This shows that the Reeb
vector field ρ of N2m+1 is Killing if and only if h vanishes on N2m+1. Hence, we get the
subsequent definition.

Definition 2. An ackm is named a K-ackm if ρ is Killing.

In [42], Olszak established that an associated almost Kähler structure is integrable if
and only if

(∇G ϕ)(H) = g(hG, H)ρ− η(H)hG (16)

for all vector fields G, H ∈ χ(N). From the equation above, it follows that an ackm is
co-Kahler if and only if it is K-ackm. Moreover, a 3-dimensional ackm is co-Kähler if and
only if it is K-ackm.

A (k, µ)-ackm N2m+1, introduced by Endo [44], is an ackm whose structure vector field
ρ belongs to the (k, µ)-nullity distribution, that is, R̃ obeys the equation below:

R̃(G, H)ρ = k(η(H)G− η(G)H) + µ(η(H)hG− η(G)hH) (17)
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for any G, H ∈ χ(N) and k, µ ∈ R. Taking ρ instead of ϕ in (17), we have l = −kϕ2 + µh.
Using this value of l in (13), it follows that:

h2 = kϕ2. (18)

Equation (18) infers that k ≤ 0 and k = 0 if and only if N2m+1 is a K-ackm. In particular,
if µ = 0, then the manifold is said to be N(k)-ackm [45]. Any co-Kähler manifold satisfies (17)
with k = µ = 0. Dacko and Olszak [46] defined almost co-Kähler (k, µ, v)-spaces. An ackm is
named a (k, µ, v)-space if R̃ obeys the following:

R̃(G, H)ρ = k(η(H)G− η(G)H) + µ(η(H)hG− η(G)hH)

−v(η(H)h′G− η(G)h′H)

for all G, H ∈ χ(N).
In a (k, µ)-ackm, the subsequent relations hold [47]:

∇ρh = µh′, (19)

∇ρh2 = 0, (20)

lϕ− ϕl = 2µh′. (21)

Lemma 1 ([38]). The Ricci operator Q of a (2m + 1)-dimensional (k, µ)-ackm, m ≥ 1, is written
as follows:

Q = µh + 2mkη ⊗ ρ. (22)

Lemma 2. In a (k, µ)-ackm, the subsequent relations hold:

(∇Gh)H − (∇Hh)G = k[η(H)ϕG− η(G)ϕH + 2g(ϕG, H)ρ] (23)

+µ[η(H)ϕhG− η(G)ϕhH].

R̃(ρ, G)H = k[g(G, H)ρ− η(H)G] + µ[g(hG, H)ρ− η(H)hG], (24)

S(G, ρ) = 2mkη(G), (25)

Lemma 3. In a (k, µ)-ackm, the ∗-Ricci tensor is written as follows:

S∗(H, K) = 2µg(hH, K)− k[g(H, K)− η(H)η(K)]. (26)

Proof. From (16), we have the following equation:

∇H ϕK = g(hH, K)ρ− η(K)hH + ϕ∇HK. (27)

Taking the covariant derivative of (27), we infer the following:

∇G∇H ϕK = ∇Gg(hH, K)ρ + g(hH, K)hϕG−∇Hη(K)hG (28)

−η(K)∇HhG + g(hH,∇GK)ρ− η(∇GK)hH

+ϕ∇H∇GK.

The foregoing equation entails that:

∇H∇G ϕK = ∇H g(hG, K)ρ + g(hG, K)hϕH −∇Gη(K)hH (29)

−η(K)∇GhH + g(hG,∇HK)ρ− η(∇HK)hG

+ϕ∇G∇HK.
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Equation (27) implies the following:

∇[G,H]ϕK = g(h([G, H]), K)ρ− η(K)h([G, H]) + ϕ∇[G,H]K. (30)

In view of (28)–(30), we get the equations below:

R̃(G, H)ϕK = g((∇Gh)H − (∇Hh)G, K)ρ + g(hH, K)hϕG (31)

−g(hG, K)hϕH − g(hϕG, K)hH + g(hϕH, K)hG

−η(K)[(∇Gh)H − (∇Hh)G] + ϕR̃(G, H)K.

Using (23) in (31) gives the following:

R̃(G, H)ϕK = k[g(ϕG, K)η(H)− g(ϕH, K)η(G) + 2g(ϕG, H)η(K)]ρ (32)

+µ[g(ϕhG, K)η(H)− g(ϕhH, K)η(G)]ρ + g(hH, K)hϕG

−g(hG, K)hϕH − g(hϕG, K)hH + g(hϕH, K)hG

−k[η(H)η(K)ϕG− η(G)η(K)ϕH + 2g(ϕG, H)η(K)ρ]

−µ[η(H)η(K)ϕhG− η(G)η(K)ϕhH] + ϕR̃(G, H)K.

From the equation above, we obtain:

g(R̃(G, H)ϕK, ϕL) = −g(hH, K)g(ϕhG, ϕL) + g(hG, K)g(ϕhH, ϕL) (33)

−g(ϕhG, K)g(ϕhH, L) + g(ϕhH, K)g(ϕhG, L)

−k[η(H)η(K)g(ϕG, ϕL)− η(G)η(K)g(ϕH, ϕL)]

−µ[η(H)η(K)g(hG, L)− η(G)η(K)g(hH, L)]

+g(R̃(G, H)K, L)− η(R̃(G, H)K)η(L).

Contracting G and L in (33) gives the following equation:

S∗(H, K) = S(H, K)− kg(H, K)− (2m− 1)kη(H)η(K) + µg(hH, K). (34)

Using Lemma 3 in (34), we then get:

S∗(H, K) = 2µg(hH, K)− k[g(H, K)− η(H)η(K)]. (35)

3. η-∗-Ricci Solitons on (k, µ)-ackms

Let us assume that N2m+1 admit an η-∗-Ricci soliton (g, ρ, α, β). Hence, from (7), we
get the following:

(£ρg)(G, H) + 2S∗(G, H) + 2αg(G, H) + 2βη(G)η(H) = 0, (36)

which implies

g(∇Gρ, H) + g(G,∇Hρ) + 2S∗(G, H) + 2αg(G, H) + 2βη(G)η(H) = 0. (37)

Using (12) and (26) in (37) reveals that

g(hϕG, H) + 2µg(hG, H) + (α− k)g(G, H) + (β + k)η(G)η(H) = 0. (38)

Substituting H by ρ in (38), we infer the following:

(α + β)η(G) = 0, (39)

which implies that α + β = 0. Hence, we have:
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Theorem 1. If a (k, µ)-ackm admits an η-∗-Ricci soliton, then the constants α and β are related
by α + β = 0.

In particular, if β = 0, then α = 0. Therefore, we have:

Corollary 1. If a (k, µ)-ackm admits a ∗-Ricci soliton, then the constant α = 0; hence, the soliton
is steady.

Let V be pointwise collinear with ρ, that is, V = bρ, where b is a smooth function.
Then (7) implies the following:

(Gb)η(H) + (Hb)η(G) + b[g(∇Gρ, H) + g(G,∇Hρ)] (40)

+2S∗(G, H) + 2αg(G, H) + 2βη(G)η(H) = 0.

Using (12) and (26) in (40) reveals that

(Gb)η(H) + (Hb)η(G) + 2bg(hϕG, H) + 4µg(hG, H) (41)

+2(α− k)g(G, H) + 2(β + k)η(G)η(H) = 0.

Setting H = ρ in the foregoing equation entails that

Gb + (ρb)η(G) = −2(α + β)η(G). (42)

Putting G = ρ in (42), we obtain the following equation:

ρb = −(α + β). (43)

With the help of (42) and (43), we infer that

Gb = −(α + β)η(G), (44)

which implies that grad b is a constant multiple of ρ.
If we take α + β = 0, then (44) implies the following:

Gb = 0, (45)

which implies that b is constant. Hence, we have:

Theorem 2. In a (k, µ)-ackm admitting an η-∗-Ricci soliton, if V is pointwise collinear with ρ,
then grad b is a constant multiple of ρ, and for α + β = 0, V is a constant multiple of ρ.

In particular, if β = 0, then α = 0. Hence, we have:

Corollary 2. In a (k, µ)-ackm admitting a steady ∗-Ricci soliton, if V is pointwise collinear with
ρ, then V is a constant multiple of ρ.

4. Gradient η-∗-Ricci Solitons on (k, µ)-ackms

We consider a (k, µ)-ackm that admits a gradient η-∗-Ricci soliton. Then (8) implies
the following:

∇GD f +Q∗G + αG + βη(G)ρ = 0. (46)

Using Lemma 5 in (46) reveals that

∇GD f = −2µhG + (k− α)G− (k + β)η(G)ρ. (47)
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Taking the covariant derivative of (47), we obtain the following:

∇H∇GD f = −2µ∇HhG + (k− α)∇HG (48)

−(k + β)[∇Hη(G)ρ + η(G)hϕH].

Interchanging G and H in (48) gives the equations below:

∇G∇HD f = −2µ∇GhH + (k− α)∇G H (49)

−(k + β)[∇Gη(H)ρ + η(H)hϕG].

Equation (47) implies:

∇[G,H]D f = −2µh([G, H]) + (k− α)([G, H])− (k + β)η([G, H])ρ. (50)

In view of (48)–(50), we infer the following:

R̃(G, H)D f = −2µ[(∇Gh)H − (∇Hh)G] (51)

−(k + β)[(∇Gη)H − (∇Hη)G]ρ

−(k + β)[η(H)hϕG− η(G)hϕH].

Using Lemma 4 in (51) entails that

R̃(G, H)D f = −2µk[η(H)ϕG− η(G)ϕH + 2g(ϕG, H)ρ] (52)

+(2µ2 − k− β)[η(H)hϕG− η(G)hϕH].

Taking the inner product of (52) with ρ and using (17), we get the following:

k[η(G)H f − η(H)G f ] + µ[η(G)hH f − η(H)hG f ] (53)

= −4µkg(ϕG, H).

Contracting G from Equation (52), we infer the following:

S(H, D f ) = 0. (54)

With the help of (22) and (54), we obtain the equation below:

µg(hD f , H) + 2mk(ρ f )η(H) = 0. (55)

Substituting H with ρ in (55) gives:

k(ρ f ) = 0, (56)

which entails either k = 0 or ρ f = 0.
Case I: If k = 0, then it is a K-ackm.
Case II: If ρ f = 0, then by putting G = ρ in (53) we get the following equation:

k(H f ) + µ(hH f ) = 0. (57)

Once again, Equation (55) with ρ f = 0 implies the following:

µ(hH f ) = 0, (58)

which entails either µ = 0 or hH f = 0. If µ = 0, the manifold is reduced to an N(k)-ackm.
If hH f = 0, then either it is a K-ackm or f is constant. Therefore, we provide the following:

Theorem 3. If a (k, µ)-ackm admits a gradient η-∗-Ricci soliton, then one of the subsequent
cases occur:
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(i) The manifold is an N(k)-ackm;
(ii) Either the manifold is a K-ackm or the potential function is constant.

5. Examples

Example 1. We consider a 3-dimensional manifold N3 = {(x, y, z) ∈ R3, z 6= 0}, where (x, y, z)
are the standard coordinate of R3. Let {w1, w2, w3} be a linearly independent vector fields on N3

given by

w1 = ez ∂

∂x
+ e−z ∂

∂y
, w2 = −ez ∂

∂x
+ e−z ∂

∂y
, w3 =

∂

∂z
.

Let the metric g be defined by

g(w1, w1) = g(w2, w2) = g(w3, w3) = 1

and
g(w1, w2) = g(w1, w3) = g(w2, w3) = 0.

Let the one-form η, the Reeb vector field ρ and the (1,1)-tensor field ϕ are defined by

η = dz, ρ = w3, ϕw1 = w2, ϕw2 = −w1, ϕw3 = 0.

From the above, we get
η(w3) = 1, ϕ2G = −G + η(G)w3

and
g(ϕG, ϕH) = g(G, H)− η(G)η(H)

for any G, H. Also, we have

hw1 = w1, hw2 = −w2, hw3 = 0.

The 2-form Φ is given by
Φ = −dx ∧ dy.

Since dη = 0 and dΦ = 0, N3 is an almost co-Kähler manifold.

The Riemannian connection ∇ is given by

∇w1 w1 = 0, ∇w1 w2 = −w3, ∇w1 w3 = w2,

∇w2 w1 = −w3, ∇w2 w2 = 0, ∇w2 w3 = w1,

∇w3 w1 = 0, ∇w3 w2 = 0, ∇w3 w3 = 0.

From the above expressions, the following components of the Riemannian curvature tensor R̃ are
obtained

R̃(w1, w2)w3 = 0, R̃(w2, w3)w3 = −w2, R̃(w1, w3)w3 = w1,

R̃(w1, w2)w2 = w1, R̃(w2, w3)w2 = w3, R̃(w1, w3)w2 = 0,

R̃(w1, w2)w1 = −w2, R̃(w2, w3)w1 = 0, R̃(w1, w3)w1 = w3.

Using the above expressions of the curvature tensor R̃, we have

R̃(G, H)ρ = −[η(H)G− η(G)H]

for any G, H. Therefore N3 is a N(−1)-almost co-Kähler manifold.
The Ricci tensor are given by

S(w1, w1) = 0, S(w2, w2) = 0, S(w3, w3) = −2.
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Suppose that f = constant and α = −1, β = 1. Hence Equation (47) is satisfied. Thus g is a
gradient η-∗-Ricci soliton with the soliton vector field V = D f , where f = constant and α = −1,
β = 1. Thus, Theorem 3 is verified.

Example 2. Let us consider N3 = {(x, y, z) ∈ R3, z 6= 0}, where (x, y, z) are the standard
coordinates of R3.

Let v1 = ∂
∂x , v2 = ∂

∂y , v3 = 2y ∂
∂x + 2x ∂

∂y + ez ∂
∂z be three linearly independent vector

fields in N3.
Let the metric g be defined by the following:

g(v1, v1) = g(v2, v2) = g(v3, v3) = 1

and
g(v1, v2) = g(v1, v3) = g(v2, v3) = 0.

Let the 1-form η, the Reeb vector field ρ, and (1, 1)-tensor field ϕ be defined by the following:

η = e−zdz, ρ = v3, ϕv1 = v2, ϕv2 = −v1, ϕv3 = 0.

Moreover, the (1,1)-tensor field h is defined by the following equation:

hv1 = v2, hv2 = −v1, hv3 = 0.

The 2-form Φ is given by the following:

Φ = −2dx ∧ dy− 4ye−zdy ∧ dz− 4xe−zdz ∧ dx.

Since dη = 0 and dΦ = 0, N3 is an almost co-Kähler manifold.
The Riemannian connection ∇ is given by the following:

∇v1 v1 = 0, ∇v1 v2 = −2v3, ∇v1 v3 = 2v2,

∇v2 v1 = −2v3, ∇v2 v2 = 0, ∇v2 v3 = 2v1,

∇v3 v1 = 0, ∇v3 v2 = 0, ∇v3 v3 = 0.

From the expressions above, the following components of the Riemannian curvature tensor R̃
are obtained:

R̃(v1, v2)v1 = −4v2, R̃(v1, v2)v2 = 4v1, R̃(v1, v2)v3 = 0,

R̃(v1, v3)v1 = 4v3, R̃(v1, v3)v2 = 0, R̃(v1, v3)v3 = −4v1,

R̃(v2, v3)v1 = 0, R̃(v2, v3)v2 = 4v3, R̃(v2, v3)v3 = −4v2.

Using the expressions of the curvature tensor R̃ above, it follows that

R̃(G, H)ρ = −4{η(H)G− η(G)H}

for all G, H ∈ χ(N). Hence, N3 is an N(−4)-almost co-Kähler manifold.
The components of the Ricci tensor S are given by the following:

S(v1, v1) = S(v2, v2) = 0, S(v3, v3) = −8.

In Equation (38), by substituting G = H = vi(i = 1, 2) and using the above results,
we have α = k + 1; similarly, if we take G = H = v3, we get α + β = 0. Since k = −4, we
then infer that α = −3, and from α + β = 0, we get β = 3. Therefore, the data (g, ρ, α, β)
for α = −3 and β = 3 define an η-∗-Ricci soliton on (N, ϕ, ρ, η, g).
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Again, suppose that f = e−z and α = k, α + β = −1. Therefore, D f = −e−zv3. Hence,
we get the following equations:

∇v1D f = −2e−zv2,

∇v2D f = −2e−zv1,

∇v3D f = v3.

Therefore, for α = k, α + β = −1, Equation (47) is satisfied. Thus, g is a gradient η-∗-Ricci
soliton with the soliton vector field V = D f , where f = e−z and α = k, α + β = −1. Hence,
Theorem 3 is verified.

6. Discussion

In reality, solitons are physically the waves that propagate with little loss of energy
and hold their shape and speed after colliding with another such wave. Solitons are signifi-
cant in the insightful treatment of initial-value problems for nonlinear partial differential
equations that describe wave propagation. They additionally clarify the recurrence in the
Fermi–Pasta–Ulam system.

In this current investigation, η-∗-Ricci solitons and gradient η-∗-Ricci solitons in (k, µ)-
ackms are studied. As far as our knowledge goes, the properties of ∗-Ricci solitons and
η-∗-Ricci solitons in perfect fluid spacetimes have not been studied by researchers. To fill
this gap, in the near future, we or perhaps other authors could study the properties of
η-∗-Ricci solitons and gradient η-∗-Ricci solitons in the general theory of relativity and
cosmology, or in particular, in perfect fluid spacetimes.
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