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Abstract: This paper reports a simple three-dimensional autonomous system with a single stable
node equilibrium. The system has a constant controller which adjusts the dynamic of the system.
It is revealed that the system exhibits both chaotic and non-chaotic dynamics. Moreover, chaotic
or periodic attractors coexist with a single stable equilibrium for some control parameter based on
initial conditions. The system dynamics are studied by analyzing bifurcation diagrams, Lyapunov
exponents, and basins of attractions. Beyond a fixed-point analysis, a new analysis known as
connecting curves is provided. These curves are one-dimensional sets of the points that are more
informative than fixed points. These curves are the skeleton of the system, which shows the direction
of flow evolution.

Keywords: chaos; stable equilibrium; hidden attractor

1. Introduction

Finding chaotic systems with novel dynamics is still exciting [1,2]. For the first time,
a chaotic system with only one stable equilibrium was presented by Wang and Chen [3].
They added a constant control parameter to the Sprott E chaotic system [4] so that the
stability of its equilibrium changed while its chaotic dynamics were preserved. This
discovery opened up a new direction in the field of chaos. Recently studying chaotic
flows with special structural features and topological features of attractors has been a hot
topic [5,6]. For instance, in the category of special structural features, chaotic systems
with one stable equilibrium [7,8], with two stable equilibria [9,10], with an infinite number
of equilibria [11,12], and with no equilibria, have been studied [13,14]. Chaotic systems
with multi-scroll attractors is an example of flows with special topological features [15].
Multistability is an exciting behavior of chaotic flows [16]. Chaotic flows have a vital
application in random number generators and image encryption [17–19].

Recently amongst chaotic attractors, there has been an intensive study of hidden
attractors [20,21]. The emergence of hidden attractors does not correspond with systems
equilibria as their basin of attraction does not contain any equilibria [22,23]. Indeed, despite
the conventional studies on chaotic systems based on their equilibria, hidden attractors
require a new way of explanation [24,25]. To find the hidden attractors and explain how
they are constructed, the perpetual points were employed [2,26]. These points are critical
points with zero acceleration and non-zero velocity, introduced as candidates to localize
hidden attractors. Despite the importance of perpetual points, it was revealed that the idea
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of localizing hidden attractors by perpetual points could not be a general solution [27]. It
is possible that a higher-dimensional method, which is based on zero-dimensional sets of
points, helps localize hidden attractors [28]. Gilmore et al. introduced one-dimensional
sets of points known as connecting curves that connect fixed points [29]. These connecting
curves provide more global information than fixed points. Inspired by their work, the
connecting curves of the presented chaotic system are calculated.

In this paper, a new autonomous chaotic oscillator with only one stable equilibrium
is introduced. The system has a constant control parameter. The system dynamics and
the effect of changing the control parameter are studied by bifurcation analysis, Lyapunov
exponent analysis, representing the different basins of attraction, and the calculating
connecting curves of the system.

2. Proposed Systems Dynamics

The mathematical model of the new system with only one stable equilibrium is defined as,

.
x = y
.
y = z

.
z = −x− y− z− 2.3z2 + xy + k

(1)

The constant k is a control parameter for the system. To design a new chaotic flow, a
specific structure is defended to provide a unique feature. For example, a quadratic jerk
system is defined here, and some conditions are computed for the parametric system to
have a stable equilibrium. Then, a computer search is applied to find the parameters and
initial conditions of a chaotic attractor. Equalizing the left side of the system equations
with zero gives one fixed point, E (k, 0, 0). By linearizing System 1 at the equilibrium E, the
Jacobian matrix is

J =

 0 1 0
0 0 1
−1 k− 1 −1

 (2)

Therefore, the characteristic equation at the equilibrium point E is,

λ3 + λ2 + λ + 1− λk = 0 (3)

For different k values, solving Equation (3) gives the eigenvalues. Figure 1 shows
different dynamics of the system by changing the values of k. On the top of each panel,
corresponding eigenvalues are shown. The stability of the fixed-point changes by slightly
changing the k parameter. Both periodic and chaotic attractors can be seen by changing the
value of the constant controller. Especially for some negative k values, the system has only
one stable equilibrium. However, as shown in Figure 1, for k = −0.02 and k = −0.005, the
system has a strange attractor. As for these cases, the corresponding fixed points are stable;
and the attractors are hidden attractors. Figure 2 shows the real and imaginary parts of
eigenvalues of equilibrium point E (k, 0, 0) by changing parameter k. The zoomed view of
two larger real parts shows that the equilibrium point is stable in negative k and unstable
in positive ones.

Based on the initial condition and specific sets of the control parameter, the system
exhibits the coexistence of stable fixed points and chaotic or periodic attractors. In other
words, for non-positive k values, by changing initial conditions, the coexistence of one
stable equilibrium with a chaotic or periodic attractor is obtained.
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Figure 1. Attractors of System (1) with two different initial conditions. For the initial condition (0, −1, 0), the system tends 
to have chaotic or periodic attractors dependent on the parameter k. For non−positive k values, the initial condition (−0.01, 
0.01, 0.01) tends to the red dot equilibrium. At the top of each panel, the corresponding eigenvalues are presented. 

Figure 1. Attractors of System (1) with two different initial conditions. For the initial condition
(0, −1, 0), the system tends to have chaotic or periodic attractors dependent on the parameter k. For
non−positive k values, the initial condition (−0.01, 0.01, 0.01) tends to the red dot equilibrium. At
the top of each panel, the corresponding eigenvalues are presented.
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(0, −1, 0) is shown in Figure 3. Figure 3 shows that, based on the control parameter, the 
system dynamics change from periodic to chaotic. Specifically, period one, period-dou-
bling, and oscillations with higher periods are observed. It should be noted that periodic 
windows are observed in the bifurcation diagram. 

At the bottom of the bifurcation diagrams, the three Lyapunov exponents are plotted 
with three colors. The maximum Lyapunov exponent is shown in blue. This exponent 
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3. Bifurcation Diagram and Lyapunov Exponents

The bifurcation diagram of System (1) based on the k parameter for initial conditions
(0, −1, 0) is shown in Figure 3. Figure 3 shows that, based on the control parameter, the
system dynamics change from periodic to chaotic. Specifically, period one, period-doubling,
and oscillations with higher periods are observed. It should be noted that periodic windows
are observed in the bifurcation diagram.

At the bottom of the bifurcation diagrams, the three Lyapunov exponents are plotted
with three colors. The maximum Lyapunov exponent is shown in blue. This exponent
demonstrates the presence of chaotic regions in the bifurcation diagrams when it is a posi-
tive value. When the maximal Lyapunov exponent is zero, the periodic region is proved.
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Figure 3. The bifurcation diagrams of System (1) versus k parameter and corresponding Lyapunov
exponents for initial conditions (0, −1, 0).

4. Basins of Attractions

The parameter k controls the dynamics of the system to be in the different modes of
oscillations. Since the oscillator has an equilibrium point in E (k, 0, 0), different basins of
attraction for initial conditions in the plane x0 = k for various k are discussed. The panels
of Figure 4 are 2-D cross-sections of 3-D phase space in the y-z plane. Each color shows the
steady-state dynamics of the system based on the corresponding initial conditions. The
chaotic attractor, periodic attractor, stable fixed point, and unbounded state are shown in
green, red, yellow, and blue. For k = −0.04 and k = −0.03, each point on the y-z plane and
x = k tends to a periodic attractor, a stable fixed point, or an unbounded oscillation. In
both cases, the system’s fixed point is a stable equilibrium; the real parts of all eigenvalues
are negative. For k = −0.02 and k = −0.005, the equilibrium is still stable. For some points
on the y-z plane, the steady-state dynamics of the system is a stable fixed point, yellow
spots. For some other points, the target dynamics of the system are chaotic oscillations,
green dots. Since the equilibrium is stable in these cases and is not contained in the basins
of the chaotic attractor, the chaotic attractor is classified as a hidden attractor. It is observed
that for some k values, including k = 0 and k = +0.005, each point on the basins of attraction
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has only two destinies, chaotic or unbounded. Since, in this case, the chaotic attractor has
an unstable fixed point in its basin of attraction, the chaotic attractor is self-excited. There
is no coexistence of the chaotic and periodic attractors for any of the k values; that is why
no green spot coexists with red spots in any y-z planes.
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Figure 4. 2−D cross−sections of basins of attractions of System (1). Initial conditions belonging to
blue regions lead to unbounded oscillation. The yellow part contains initial conditions that show
the system to its stable equilibrium. Periodic and chaotic attractors emerge from the red and green
points in the y-z plane. The initial condition for the x variable is selected as x = k for all panels.

5. Connecting Curves

Connecting curves are one-dimensional invariant sets around which the flow swirls.
This one-dimensional set is more informative than zero-dimensional fixed points. Especially
in the case of hidden attractors, where there is no corresponding equilibrium, the connecting
curve is helpful to understand how the attractor is constructed.

For a dynamical system of differential equations defined as,

→
F = (x, y, z)t (4)

The velocity vector is

d
→
F

dt
= V(t) (5)
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The acceleration vector is
d
→
V

dt
=
→
γ(t) = J

→
V (6)

where J is the Jacobian matrix. Then, the connecting curves are sets of point which satisfies
the following equation [29],

J
→
V = λ

→
V (7)

There are points at which the velocity vector is parallel to the acceleration vector,
where the principal curvature is zero. Choosing y variable as the phase space coordination
and solving Equation (7), other variables are obtained as

x =
23λ2y2

10 +λ2y+λy+y
y−1

z = λy
(8)

Figure 5 shows the connecting curves of System (1) for k = 0 in 3-D space and 2-D
planes. The oscillator has a stable equilibrium point in k ≤ 0. Therefore, the attractor of
the oscillator is hidden for that interval of the parameter [8]. It should be noted that the
connecting curves are independent of attractors, as they are calculated based on the system
equations. As shown in Figure 5, the curve passes through the equilibrium; that is why
these curves were nominated as connecting curves. It means that the connecting curves
connect equilibria since fixed points satisfy Equation (7). As the figure demonstrates, these
curves are similar to a skeleton, showing a direction that the attractor evolves around it.
Figure 6 shows how the connecting curves depend on parameter k. It was shown that at
different k values, the dynamics of the system change from periodic to chaotic, but the
structure and direction of evolution remain the same. Accordingly, the connecting curves,
which are one-dimensional set of points indicating the evolution of the attractor, do not
change majorly when the k value is changed.
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Figure 6. The connecting curves of System (1) for different k values and associated attractors. It is shown
that the connecting curves represent the structure of the attractors, and since the structure of attractors
did not change majorly, with different k values, the curves remain approximately unchanged.

6. Conclusions

This study reported a new 3-D chaotic system with only one stable equilibrium. For
some control parameters, the system had a strange attractor while its equilibrium was
stable. Therefore, the chaotic attractor was hidden. For some other control parameters,
its strange attractor was self-excited as its equilibria were unstable. In addition, it was
observed that by changing the control parameter, the system exhibits a coexistence of
chaotic or periodic oscillations with a stable fixed point. The positive values of the maximal
Lyapunov exponent were considered as proof of the chaotic oscillations. Then, the basins
of attraction for different control parameters were presented. Finally, the connecting curves
of the system were calculated. The connecting curves provided more information than the
fixed point, i.e., the curves showed a direction around which the flow swirls and evolves.
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