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Abstract: In this paper, we provide a central limit theorem for the finite-dimensional marginal
distributions of empirical processes (Zn( f )) f∈F whose index set F is a family of cluster functionals
valued on blocks of values of a stationary random field. The practicality and applicability of the
result depend mainly on the usual Lindeberg condition and on a sequence Tn which summarizes the
dependence between the blocks of the random field values. Finally, in application, we use the previous
result in order to show the Gaussian asymptotic behavior of the proposed iso-extremogram estimator.
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1. Introduction

Recent developments in massive data processing lead us to think differently about
certain problems in statistics. In particular, it is interesting to develop the construction
of statistics as functions of data blocks and to study their inference. On the other hand,
in some applications, only very little data are relevant to the estimates, not to mention
that the estimates are also hidden among a large mass of “raw data”. We can refer the
reader to Davis and Mikosch [1] for examples in extremes and to Long and De Sousa [2]
for examples in astronomy. This leads us to think of clusters of data deemed “relevant”
(or extremal type, within the framework of extreme value theory), where we say that
two relevant values belong to two different clusters if they belong to two different blocks.
Moreover, these relevant values are in the cores of blocks, where the core of a block B
is defined as the smaller sub-block C(B) of B which contains all relevant values of B,
if they exist.

In this context, we consider functionals that act on these clusters of relevant values and
we develop useful lemmas in order to simplify the essential step to establish a Lindeberg
central limit theorem (CLT) for these “cluster functionals” on stationary random fields,
inspired by the definitions of Drees and Rootzén [3] and the approach of Bardet et al. [4]
and Gómez-García [5].

The mathematical background is as follows. Let d ∈ N := {1, 2, . . .}, and denote
n := (n1, . . . , nd), 1 := (1, . . . , 1) ∈ Nd and [j] := [1 : j], where [i : j] := {i, i + 1, . . . , j} ⊂ Z.
Let X =

{
Xt : t ∈ Nd

}
be a Rk−valued stationary random field and let X = {Xn,t : t ∈

[n1]× · · · × [nd]}n∈Nd be the corresponding normalized random observations from the
random field X, defined by Xn,t = Ln(Xt)IA(Ln(Xt)) for some measurable functions
Ln : Rk −→ Rk, such that
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P(Xn,1 ∈ · |Xn,1 ∈ A) −→
n→∞

G(·), (1)

where G is a non-degenerate distribution and A ⊆ Rk \ {0} is the so-called relevance set.
Here, IA(·) denotes the usual indicator function of a subset A and the tendency n → ∞
means that ni → ∞ for all i ∈ [d]. In particular, the convergence (1) is fulfilled if the random
vector X1 is regularly varying. For more details on regularly varying vectors, one can refer
to Resnick [6,7].

For each i ∈ [d], let ri := rni ,i be an integer value such that ri = o(ni) and mi :=
bni/ric := max{k ∈ N : k ≤ ni/ri}. We define the d-blocks (or simply blocks) of X by

Yn,j1 ...jd := (Xn,t)t∈∏d
i=1[(ji−1)ri+1 : jiri ]

, (2)

where (j1, . . . , jd) ∈ Dn,d := ∏d
i=1[mi]. Thus, we have m1m2 · · ·md complete blocks Yn,j1 ...jd ,

and no more than (m1 + 1)(m2 + 1) · · · (md + 1)−m1m2 · · ·md incomplete ones which we
ignore because we consider mi large enough. Moreover, as usual, ∏d

i=1 Ai denotes the

Cartesian product A1 × · · · × Ad and, by stationarity, we denote Yn
D
= Yn,1 as a generic

block of X.
We are now going to formally define the core of a block, cluster functional and

the empirical process of cluster functionals, which are generalizations of the definitions
of Yun [8], Segers [9] and Drees and Rootzén [3] to d-blocks.

Let y = (xt)t∈∏d
i=1[ri ]

be a d-block. The core of the block y with respect to the relevance
set A is defined as

C(y) =
{

(xt)t∈∏d
i=1[ri,I : ri,S ]

, if xt ∈ A for some t ∈ ∏d
i=1[ri];

0, otherwise,

where, for each i ∈ [d], ri,I := min Pi and ri,S := max Pi with

Pi =

ji ∈ [ri] : x(j1,...,ji ,...,jd) ∈ A, for some (j1, . . . , ji−1, ji+1, . . . , jd) ∈∏
k∈[d]\{i}

[rk]

.

Let (E, E) be a measurable subspace of (Rk,B(Rk)) for some k ≥ 1 such that 0 ∈
E and let Bl1,...,ld(E) be the set of E-valued blocks (or arrays) of size l1 × l2 × · · · × ld,
with l1, . . . , ld ∈ N. Consider now the set

E∪ :=
∞⋃

l1,...,ld=1

Bl1,...,ld(E),

which is equipped with the σ-field E∪ induced by the Borel-σ-fields on Bl1,...,ld(E), for
l1, . . . , ld ∈ N. A cluster functional is a measurable map f : (E∪, E∪) −→ (R,B(R))
such that

f (y) = f (C(y)), for all y ∈ E∪, and f (0) = 0. (3)

Let F be a class of cluster functionals and let
{

Yn,j1 j2 ...jd : (j1, . . . , jd) ∈ Dn,d
}

be the
family of blocks of size r1 × r2 × · · · × rd defined in (2). The empirical process Zn of cluster
functionals in F , is the process (Zn( f )) f∈F defined by

Zn( f ) :=
1√

nnvn
∑

(j1,...,jd)∈Dn,d

( f (Yn,j1 ...jd)−E f (Yn,j1 ...jd)), (4)

where nn = n1 · · · nd and vn := P(Xn,1 ∈ A) with A ⊆ E \ {0} denoting the relevance set.
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Under the Lindeberg condition and the convergence to zero of a sequence Tn that
summarizes the dependence between the blocks of values of the random field, we prove that
the finite-dimensional marginal distributions (fidis) of the empirical process (4) converge
to a Gaussian process. The proof basically consists of the “Lindeberg method” for a CLT of
stationary time series as in Bardet et al. [4], but adapted here to stationary random fields.

Since Bardet et al. [4] gave a Lindeberg CLT for time series, Gómez-García [5] used
this approach in order to obtain a Lindeberg CLT for cluster functionals on time series
whose convergence depends mainly on the Lindeberg condition and the convergence to
zero of Tn that summarizes the dependence. Moreover, Gómez-García [5] simplified Tn by
using the coefficients of weak-dependence of Doukhan and Louhichi [10]. This allowed
the attainment of partially more general results than Drees and Rootzén [3] which are
established under mixing. Note that the family of weakly dependent processes of Doukhan
and Louhichi [10] is more general that the family of mixing processes, see Andrews [11].

In the context of random fields, the approach is not very simple. In fact, we must first
generalize the results of Bardet et al. [4] within the framework of random fields, then we
could simplify the term of dependence by fixing short range dependence conditions on
the random field X like convenient conditions for the decay rates of the weak-dependence
coefficients of Doukhan and Louhichi [10]. In this work, we concentrate on the first
part and we introduce a measure (and its estimator) which motivates the choice of this
generalization: the iso-extremogram, which can be viewed as a correlogram for extreme
values of space–time processes.

The rest of the paper consists of three complementary sections. In Section 2, we pro-
vide useful lemmas in order to establish the CLT for the fidis of the cluster functionals
empirical process (4). Then, in Section 3, we introduce the iso-extremogram and we use the
CLT of Section 2 in order to show that, under appropriate additional conditions, the iso-
extremogram estimator has an asymptotically Gaussian behavior. Section 4 is dedicated to
the conclusions and perspectives of this approach.

2. Results

In this section, we provide useful lemmas which notably simplify the essential step to
establish a CLT for the fidis of the empirical process defined in (4). The proof consists of
the same techniques as Bardet et al. [4] used in the demonstrations of their dependent and
independent Lindeberg lemmas, but generalized here to random fields.

In order to establish the CLT, firstly, consider the following basic assumption:

(Bas) The vector r = (r1, . . . , rd) ∈ Nd is such that ri � ni for each i ∈ [d].
In addition, denoting rn = r1 · · · rd, we have rnvn −→ τ < ∞ and nnvn −→ ∞,
as n→ ∞.

Secondly, consider the following essential convergence assumptions:

(Lin) (rnvn)−1E
[
( f (Yn)−E f (Yn))

2I{| f (Yn)−E f (Yn)|>ε
√

nnvn}

]
= o(1), ∀ε > 0, ∀ f ∈ F ;

(Cov) (rnvn)−1 Cov( f (Yn), g(Yn)) −→ c( f , g), ∀ f , g ∈ F .

Consider now the random blocks Yn,j1 ...jd , with (j1, . . . , jd) ∈ Dn,d defined in (2).
For each k-tuple of cluster functionals fk = ( f1, . . . , fk) and each (j1, . . . , jd) ∈ Dn,d, we de-
fine the following random vector:

Wn,j1 ...jd :=
1√

nnvn

(
f1(Yn,j1 ...jd)−E f1(Yn,j1 ...jd), . . . , fk(Yn,j1 ...jd)−E fk(Yn,j1 ...jd)

)
. (5)

Without loss of generality and in order to simplify the writing, we consider d = 2 in
the rest of this section.

Let (W ′n,ij)(i,j)∈Dn,2
be a sequence of zero mean independent Rk-valued random vari-

ables, independent of the sequence (Wn,ij)(i,j)∈Dn,2
, such that W ′n,ij ∼ Nk

(
0, Cov(Wn,ij)

)
,

for all (i, j) ∈ Dn,2. Denote by C3
b the set of bounded functions h : Rk −→ R with bounded
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and continuous partial derivatives up to order 3 and, for h ∈ C3
b and n = (n1, n2) ∈ N2,

define

∆n :=

∣∣∣∣∣∣E
h

 ∑
(i,j)∈Dn,2

Wn,ij

− h

 ∑
(i,j)∈Dn,2

W ′n,ij

∣∣∣∣∣∣. (6)

The following assumption allows us to present, in a useful and simplified form,
lemmas of Lindeberg under independence and dependence.

(Lin’) There exists δ ∈ (0, 1] such that, for any (i, j) ∈ Dn,2, we have

E
∥∥Wn,ij

∥∥2+δ
< ∞

for all n ∈ N2 and all k−tuple of cluster functionals ( f1, . . . , fk) ∈ F k.

Moreover, denote
An := ∑

(i,j)∈Dn,2

E
∥∥Wn,ij

∥∥2+δ.

Lemma 1 (Lindeberg under independence). Suppose that the blocks (Yn,ij)(i,j)∈Dn,2
are inde-

pendent and that the random variables (Wn,ij)(i,j)∈Dn,2
defined in (5) satisfy Assumption (Lin’).

Then, for all n ∈ N2, we have

∆n ≤ 6 ‖h(2)‖1−δ
∞ ‖h(3)‖δ

∞ An.

Proof. First, notice that
∆n ≤ ∑

(i,j)∈Dn,2

∆n,ij, (7)

where

∆n,ij :=
∣∣∣E[hij(Vn,ij + Wn,ij)− hij(Vn,ij + W ′n,ij)

]∣∣∣, ∀(i, j) ∈ Dn,2 ;

Vn,ij := ∑
(u,v)∈Dn,2\

(⋃i−1
l=0 Lm2

l ∪Lj
i

)Wn,uv, ∀(i, j) ∈ Dn,2 \ {(m1, m2)},

Vn,m1m2 = 0 ; and

hij(x) := E
[

h

(
x +

i−1

∑
u=0

m2

∑
v=1

W ′n,uv +
j−1

∑
v=0

W ′n,iv

)]
.

Furthermore, we adopt the convention Wn,ij = 0, if either i = 0 or j = 0.
Now, we use some lines of the proof of Lemma 1 in Bardet et al. [4].

Let v, w ∈ Rk. From Taylor’s formula, there exist vectors v1,w, v2,w ∈ Rk such that

h(v + w) = h(v) + h(1)(v)(w) +
1
2

h(2)(v1,w)(w, w)

= h(v) + h(1)(v)(w) +
1
2

h(2)(v)(w, w) +
1
6

h(3)(v2,w)(w, w, w),

where, for j = 1, 2, 3, h(j)(v)(w1, w2, . . . , wj) stands for the value of the symmetric j−linear
form from h(j) of (w1, . . . , wj) at v. Moreover, denote

‖h(j)(v)‖1 = sup
‖w1‖,...,‖wj‖≤1

|h(j)(v)(w1, . . . , wj)| and ‖h(j)‖∞ = sup
v∈Rk
‖h(j)(v)‖1.
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Thus, for v, w, w′ ∈ Rk, there exist some suitable vectors v1,w, v2,w, v1,w′ , v2,w′ ∈ Rk

such that

h(v + w)− h(v + w′) = h(1)(v)(w− w′) +
1
2

(
h(2)(v)(w, w)− h(2)(v)(w′, w′)

)
+

1
2

((
h(2)(v1,w)− h(2)(v)

)
(w, w)−

(
h(2)(v1,w′)− h(2)(v)

)
(w′, w′)

)
,

by using the approximation of Taylor of order 2, and

h(v + w)− h(v + w′) = h(1)(v)(w− w′) +
1
2

(
h(2)(v)(w, w)− h(2)(v)(w′, w′)

)
+

1
6

(
h(3)(v2,w)(w, w, w)− h(3)(v2,w′)(w

′, w′, w′)
)

,

by using the approximation of Taylor of order 3.
Thus, γ = h(v+w)− h(v+w′)− h(1)(v)(w−w′)− 1

2

(
h(2)(v)(w, w)− h(2)(v)(w′, w′)

)
satisfies

|γ| ≤
((
‖w‖2 + ‖w′‖2

)
‖h(2)‖∞

)
∧
(

1
6

(
‖w‖3 + ‖w′‖3

)
‖h(3)‖∞

)
≤
(
‖w‖2‖h(2)‖∞

)
∧
(

1
6
‖w‖3‖h(3)‖∞

)
+
(
‖w‖2‖h(2)‖∞

)
∧
(

1
6
‖w′‖3‖h(3)‖∞

)
+
(
‖w′‖2‖h(2)‖∞

)
∧
(

1
6
‖w‖3‖h(3)‖∞

)
+
(
‖w′‖2‖h(2)‖∞

)
∧
(

1
6
‖w′‖3‖h(3)‖∞

)
≤ 1

6δ
‖h(2)‖1−δ

∞ ‖h(3)‖δ
∞

(
‖w‖2+δ + ‖w‖2(1−δ)‖w′‖3δ + ‖w‖3δ‖w′‖2(1−δ) + ‖w′‖2+δ

)
, (8)

where (8) is given by using the inequality 1∧ a ≤ aδ, with a ≥ 0 and δ ∈ [0, 1].
Substituting hij, Vn,ij, Wn,ij and W ′n,ij for h, v, w and w′ in the preceding inequality (8)

and taking expectations, we obtain a bound for ∆n,ij. Indeed, we have

E
[

hij(Vn,ij + Wn,ij)− hij(Vn,ij + W ′n,ij)
]

= E
[

hij(Vn,ij + Wn,ij)− hij(Vn,ij + W ′n,ij)
]
+ 0

= E
[

hij(Vn,ij + Wn,ij)− hij(Vn,ij + W ′n,ij)
]
−E

[
h(1)ij (Vn,ij)(Wn,ij −W ′n,ij)

]
− 1

2
E
[

h(2)ij (Vn,ij)(Wn,ij, Wn,ij)− h(2)ij (Vn,ij)(W ′n,ij, W ′n,ij)
]
,

because Vn,ij is independent of Wn,ij and W ′n,ij , and because EWn,ij = EW ′n,ij = 0 and
Cov(Wn,ij) = Cov(W ′n,ij) for all (i, j) ∈ Dn,2.

On the other hand, using Jensen’s inequality, we derive E‖W ′n,ij‖2+δ ≤
(
E‖W ′n,ij‖4

) 1
2+

δ
4 ,

and E‖W ′n,ij‖4 ≤ 3
(
E‖Wn,ij‖2)2 because W ′n,ij is a Gaussian random variable with the same

covariance as Wn,ij.
Therefore,

E‖W ′n,ij‖2+δ ≤
(

3
(
E‖Wn,ij‖2

)2
) 1

2+
δ
4
= 3

1
2+

δ
4

(
E‖Wn,ij‖2

)1+ δ
2 ≤ 3

1
2+

δ
4 E‖Wn,ij‖2+δ (9)
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and

E‖W ′n,ij‖2(1−δ)E‖Wn,ij‖3δ ≤
(
E‖W ′n,ij‖2

)1−δ
E‖Wn,ij‖3δ

≤
(
E‖Wn,ij‖2

)1−δ
E‖Wn,ij‖3δ ≤ E‖Wn,ij‖2+δ. (10)

In addition, for 3δ < 2,

E‖Wn,ij‖2(1−δ)E‖W ′n,ij‖3δ ≤ E‖Wn,ij‖2(1−δ)
(
E‖W ′n,ij‖2

) 3δ
2 ≤ E‖Wn,ij‖2+δ, (11)

else

E‖Wn,ij‖2(1−δ)E‖W ′n,ij‖3δ ≤ E‖Wn,ij‖2(1−δ)
(
E‖W ′n,ij‖4

) 3δ
4 , because 3δ ≤ 4

≤ 3
3δ
4 E‖Wn,ij‖2(1−δ)

(
E‖Wn,ij‖2

) 3δ
2 ≤ 3

1
2+

δ
4 E‖Wn,ij‖2+δ. (12)

The inequalities (9)–(12) allow to simplify the terms between parentheses in the last
inequality in (8). Recall that ‖h(k)ij ‖∞ ≤ ‖h(k)‖∞ for all (i, j) ∈ Dn,2 and 0 ≤ k ≤ 3.
Therefore, we obtain

∆n,ij ≤
2(1 + 3

1
2+

δ
4 )

6δ
‖h(2)‖1−δ

∞ ‖h(3)‖δ
∞E‖Wn,ij‖2+δ ≤ 6‖h(2)‖1−δ

∞ ‖h(3)‖δ
∞E‖Wn,ij‖2+δ,

because, for all δ ∈ [0, 1], C(δ) = 2(1+3
1
2 +

δ
4 )

6δ ≤ C(0) = 2(1 +
√

3) < 6.
As a consequence, from Assumption (Lin’), we obtain ∆n ≤ 6 ‖h(2)‖1−δ

∞ ‖h(3)‖δ
∞ An.

The proof of Lemma 1 ends.

Remark 1. By taking ε < 6‖h(2)‖∞ (‖h(3)‖∞)−1 and suitably using the second inequality of (8)
in the proof of Lemma 1, the classical Lindeberg conditions can be used:

∆n ≤ 2 ‖h(2)‖∞ Bn(ε) + ‖h(3)‖∞ an

(
4
3

ε +
√

Bn(ε)

)
, (13)

where

Bn(ε) = ∑
(i,j)∈Dn,2

E
[
‖Wn,ij‖2I{‖Wn,ij‖>ε}

]
, ε > 0, n ∈ N2 ;

an = ∑
(i.j)∈Dn,2

E‖Wn,ij‖2 < ∞, n ∈ N2.

Moreover, these classical Lindeberg conditions imply the conditions from Lemma 1. Indeed, we have

∆n ≤ 2 ‖h(2)‖∞ ε−δ An + ‖h(3)‖∞ an

(
4
3

ε + ε−δ/2
√

An

)
,

for δ ∈ (0, 1) and ε > 0.

The proof of this remark for general independent random vectors is given in
(Bardet et al. [4], p. 165) .

Remark 2. Observe that Assumptions (Lin) and (Cov) imply that Bn(ε) −→n→∞
0 and that an =

∑k
i=1(rnvn)−1 Cov( fi(Yn), fi(Yn)) −→n→∞

∑k
i=1 c( fi, fi) < ∞, respectively. Therefore, if the blocks

(Yn,ij)(i,j)∈Dn,2
are independent and if Assumptions (Lin) and (Cov) hold, then from Lemma 1 and
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Remark 1, the fidis of the empirical process (Zn( f )) f∈F of cluster functionals converges to the fidis
of a Gaussian process (Z( f )) f∈F with covariance function c.

For the dependent case, we need to consider more notations:
Let Lj

i := {(i, v) : v ∈ [j]} ⊂ Dn,2 , for all (i, j) ∈ Dn,2. We set L0
i = Lj

0 = ∅ for any
i ∈ [m1] and any j ∈ [m2]. For each k ∈ N, fk = ( f1, . . . , fk) ∈ F k, t ∈ Rk and n ∈ N2,
we define

Tn,t(fk) :=

∑
(j1,j2)∈Dn,2

∣∣∣∣∣∣∣Cov

exp

i〈t, ∑
(u1,u2)∈Dn,2\(

⋃j1−1
l=0 Lm2

l ∪Lj2
j1
)

Wn,u1u2〉

, exp
(
i〈t, Wn,j1 j2〉

)
∣∣∣∣∣∣∣.

Lemma 2 (Dependent Lindeberg lemma). Suppose that the random variables (Wn,ij)(i,j)∈Dn,2
defined in (5) satisfy Assumption (Lin’). Consider the special case of complex exponential functions
h(w) = exp(i〈t, w〉) with t ∈ Rk. Then, for each k ∈ N and each k−tuple fk = ( f1, . . . , fk) of
cluster functionals, the following inequality holds:

∆n ≤ Tn,t(fk) + 6‖t‖2+δ An, n ∈ N2.

Proof. Consider (W∗n,j1 j2
)(j1,j2)∈Dn,2

an array of independent random variables satisfying
Assumption (Lin’) and such that (W∗n,j1 j2

)(j1,j2)∈Dn,2
is independent of (Wn,j1 j2)(j1,j2)∈Dn,2

and (W ′n,j1 j2
)(j1,j2)∈Dn,2

. Moreover, assume that W∗n,j1 j2
has the same distribution as Wn,j1 j2

for (j1, j2) ∈ Dn,2.
Then, using the same decomposition (7) in the proof of the previous lemma, one can

also write

∆n,j1 j2 ≤
∣∣∣E[hj1 j2(Vn,j1 j2 + Wn,j1 j2)− hj1 j2(Vn,j1 j2 + W∗n,j1 j2)

]∣∣∣
+
∣∣∣E[hj1 j2(Vn,j1 j2 + W∗n,j1 j2)− hj1 j2(Vn,j1 j2 + W ′n,j1 j2)

]∣∣∣. (14)

Then, from the previous lemma, the second term of the right-hand side (RHS) of the
inequality (14) is bounded by

6 ‖h(2)‖1−δ
∞ ‖h(3)‖δ

∞ E‖Wn,j1 j2‖
2+δ ≤ 6 ‖t‖2+δ E‖Wn,j1 j2‖

2+δ.

For the first term of the RHS of the inequality (14), first notice that, for a Rk−valued random
vector X independent from (W ′n,j1 j2

)(j1,j2)∈Dn,2
, we have

Ehj1 j2(X) = E
[

h

(
X +

j1−1

∑
u=0

m2

∑
v=1

W ′n,uv +
j2−1

∑
v=0

W ′n,j1v

)]

= exp

(
−1

2
tT

(
j1−1

∑
u=0

m2

∑
v=1

Cn,uv +
j2−1

∑
v=0

Cn,j1v

)
t

)
E[exp(i〈t, X〉)],

because W ′n,j1 j2
∼ Nk

(
0, Cn,j1 j2

)
, where Cn,j1 j2 := Cov(Wn,j1 j2) is the covariance matrix of

the vector Wn,j1 j2 , for (j1, j2) ∈ Dn,2. For j1 = 0 or j2 = 0, recall that Wn,j1 j2 = 0. In this
case, we also set Cn,j1 j2 = 0.
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Thus,∣∣∣E[hj1 j2(Vn,j1 j2 + Wn,j1 j2)− hj1 j2(Vn,j1 j2 + W∗n,j1 j2)
]∣∣∣

=

∣∣∣∣∣exp

(
−1

2
tT

(
j1−1

∑
u=0

m2

∑
v=1

Cn,uv +
j2−1

∑
v=0

Cn,j1v

)
t

)
× E

[
exp

(
i〈t, Vn,j1 j2〉

)(
exp

(
i〈t, Wn,j1 j2〉

)
− exp

(
i〈t, W∗n,j1 j2〉

))]∣∣∣
=

∣∣∣∣∣exp

(
−1

2
tT

(
j1−1

∑
u=0

m2

∑
v=1

Cn,uv +
j2−1

∑
v=0

Cn,j1v

)
t

)∣∣∣∣∣
×
∣∣Cov

(
exp

(
i〈t, Vn,j1 j2〉

)
, exp

(
i〈t, Wn,j1 j2〉

))∣∣
≤
∣∣Cov

(
exp

(
i〈t, Vn,j1 j2〉

)
, exp

(
i〈t, Wn,j1 j2〉

))∣∣.
Therefore,

∆n = ∑
(j1,j2)∈Dn,2

∆n,j1 j2

≤ ∑
(j1,j2)∈Dn,2

(∣∣Cov
(
exp

(
i〈t, Vn,j1 j2〉

)
, exp

(
i〈t, Wn,j1 j2〉

))∣∣+ 6‖t‖2+δE‖Wn,j1 j2‖
2+δ
)

= Tn,t(fk) + 6‖t‖2+δ An.

This completes the proof of Lemma 2.

The previous lemma together with Remark 1 imply the following theorem.

Theorem 1 (CLT for cluster functionals on random fields). Suppose that the basic Assumption
(Bas) holds and that Assumptions (Lin) and (Cov) are satisfied. Then, if for each k ∈ N, Tn,t(fk)
converges to zero as n → ∞, for all t ∈ Rk and all k−tuple fk = ( f1, . . . , fk) ∈ F k of cluster
functionals, the fidis of the empirical process (Zn( f )) f∈F of cluster functionals converges to the
fidis of a Gaussian process (Z( f )) f∈F with covariance function c defined in (Cov).

Proof. The assumptions (Lin) and (Cov) imply that, as n → ∞, Bn(ε) −→ 0 and an −→
∑k

s=1 c( fs, fs) < ∞, respectively. Therefore, taking into account Remark 1, we obtain from
Lemma 2 that, for each k ∈ N,

∆n =

∣∣∣∣∣∣E
h

 ∑
(i,j)∈Dn,2

Wn,ij

− h

 ∑
(i,j)∈Dn,2

W ′n,ij

∣∣∣∣∣∣ −→n→∞
0,

for all t ∈ Rk, with h(w) = exp(i〈t, w〉), because by hypothesis, Tn,t(fk) −→n→∞
0 for all

t ∈ Rk and all fk = ( f1, . . . , fk) ∈ F k.
Notice that

W ′n := ∑
(i,j)∈Dn,2

W ′n,ij ∼ Nk(0, m1m2 Cov(Wn,11))

and that |E(h(W ′n)− h(W))| −→
n→∞

0, where W ∼ Nk(0, Σk), with Σk = (c( fi, f j))(i,j)∈[k]2 .
Using triangular inequality, we deduce that∣∣∣∣∣∣E

h

 ∑
(i,j)∈Dn,2

Wn,ij

− h(W)

∣∣∣∣∣∣ −→n→∞
0,

and therefore (Zn( f1), . . . , Zn( fk)) = ∑(i,j)∈Dn,2
Wn,ij

D−→
n→∞

W. The proof of Theorem 1 is
complete.
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Remark 3. The previous theorem can be formulated for d = 3 as follows. Define Si = {(u, v, w) :
u ∈ [i], v ∈ [m2], w ∈ [m3]} ⊆ Dn,3, for i ∈ [m1], with the convention S0 = ∅. Moreover,
Lk

ij = {(i, j, w) : w ∈ [k]}, for (i, j, k) ∈ Dn,3, and Lk
ij = ∅ if i, j or k is zero. Then,

if Assumptions (Bas), (Lin), (Cov) are satisfied (for d = 3), and if for each k ∈ N,

T∗n,t(fk) = ∑
(j1,j2,j3)∈Dn,3

∣∣Cov
(
exp(i〈t, Vn,j1 j2 j3〉), exp

(
i〈t, Wn,j1 j2 j3〉

))∣∣ (15)

converges to zero as n → ∞ for all t ∈ Rk and all k−tuple fk = ( f1, . . . , fk) ∈ F k of cluster
functionals, with

Vn,j1 j2 j3 := ∑
(u1,u2,u3)∈Dn,3\

(
Sj1−1 ∪

⋃j2−1
l=0 L

m3
j1 l ∪L

j3
j1 j2

)Wn,u1u2u3 ,

the fidis of the empirical process (Zn( f )) f∈F of cluster functionals converges to the fidis of a
Gaussian process (Z( f )) f∈F with covariance function c.

Remark 4. We have mentioned earlier that n = (n1, . . . , nd) → ∞ means ni → ∞ for each
i ∈ [d]. However, the limits of the sequences indexed with n, as n → ∞, could be reformulated
in terms of the limits of such sequences as “n → ∞ along a monotone path on the lattice Nd”,
i.e., along n = (dϑ1(n)e, . . . , dϑd(n)e) for some strictly increasing continuous functions ϑi :
[1, ∞) −→ [1, ∞), with i ∈ [d], such that ϑi(n) −→ ∞ as n→ ∞, for i ∈ [d].

Suppose that from each block Yn we extract a sub-block Y′n and that the remaining
parts Rn = Yn − Y′n of the blocks Yn do not influence the process Zn( f ). In particular,
this last statement is fulfilled if

(rnvn)
−1E|∆n( f )−E∆n( f )|2I{|∆n( f )−E∆n( f )|≤√nnvn} = o(1)

and P(|∆n( f )−E∆n( f )| > √nnvn) = o(rn/nn), where ∆n( f ) := f (Yn)− f (Y′n). This as-
sumption would allow us to consider Tn,t(fk) (or T∗n,t(fk)) as a function of the blocks Y′n
(separated by ln) instead of the blocks Yn, in order to provide them bounds based on
either the strong mixing coefficient of Rosenblatt [12] or the weak-dependence coefficients
of Doukhan and Louhichi [10] for stationary random fields. These bounds are developed
in Gómez-García [5] for the case of weakly-dependent time series. However, we do not
develop them in the random field context as this is not the aim of this work. This topic will
be addressed in a forthcoming applied statistics paper with numerical simulations.

3. Asymptotic Behavior of the Extremogram for Space–Time Processes

In this section, we propose a measure (in two versions) of serial dependence on space
and time of extreme values of space–time processes. We provide an estimator for this
measure and we use Theorem 1 in order to establish an asymptotic result. This work is
inspired by the extremogram for time series defined in Davis and Mikosch [13].

Let X = {Xt(s) : s ∈ Zd, t ≥ 0} be a Rk-valued space–time process, which is
stationary in both space and time. We define the extremogram of X for two sets A and B
both bounded away from zero by

ρA,B(s, ht) := lim
x→∞

P
(

x−1Xht(s) ∈ B
∣∣∣x−1X0(0) ∈ A

)
, (16)

with (s, ht) ∈ Zd × [0, ∞), provided that the limit exists.
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In estimating the extremogram, the limit on x in (16) is replaced by a high quantile
un of the process. Defining un as the (1− 1/kn)−quantile of the stationary distribution of
‖Xt(s)‖ or related quantity, with kn = o(n) −→ ∞, as n→ ∞, one can redefine (16) by

ρA,B(s, ht) = lim
n→∞

P
(

u−1
n Xht(s) ∈ B

∣∣∣u−1
n X0(0) ∈ A

)
, (17)

with (s, ht) ∈ Zd × [0, ∞).
The choice of such a sequence of quantiles (un)n∈N is not arbitrary. The main condition

to guarantee the existence of the limit (17) for any two sets A and B bounded away from
zero, is that it must satisfy the following convergence

knP
(

u−1
n

(
Xt1(s1), . . . , Xtp(sp)

)
∈ ·

) vague−→
n→∞

m(s1,t1),...,(sp ,tp)( · ), (18)

for all (si, ti) ∈ Zd × [0, ∞), i ∈ [p], p ∈ N, where(
m(s1,t1),...,(sp ,tp)

)
(si ,ti)∈Zd×[0,∞), i∈[p], p∈N

is a collection of Radon measures on the Borel σ-field B(Rkp \ {0}), not all of them being

the null measure, with m(s1,t1),...,(sp ,tp)(R
kp \Rkp) = 0. In this case, we have

P
(

u−1
n Xht(s) ∈ B

∣∣∣u−1
n X0(0) ∈ A

)
=

knP
(
u−1

n
(
X0(0), Xht(s)

)
∈ A× B

)
knP

(
u−1

n X0(0) ∈ A
)

−→
m(0,0),(s,ht)(A× B)

m(0,0)(A)
= ρA,B(s, ht),

provided that m(0,0)(A) > 0.

Remark 5. The condition (18) is particularly satisfied if the space–time process X is regularly
varying. For details and examples of regularly varying space–time processes and time series,
see Davis and Mikosch [1] and Basrak and Segers [14], respectively.

Note that the extremogram (17) is a function of two lags: a spatial-lag s ∈ Zd and a
non-negative time-lag ht. Due to all the spatial values that the spatial-lag s takes, in practice,
it is very complicated to analyze the results of estimating such an extremogram. Moreover,
the calculation would be very slow in terms of computation. To obtain a simpler interpreta-
tion and to simplify the calculations, we assume that the space–time process X satisfies the
following “isotropy” condition:

(I) For each pair of non-negative integers ht and hs,

P
(
X0(0) ∈ A, Xht(s) ∈ B

)
= P

(
X0(0) ∈ A, Xht(s

′) ∈ B
)
, ∀s, s′ ∈ Sd−1

hs
,

where Sd−1
h :=

{
s ∈ Zd : ‖s‖∞ = h

}
with h ≥ 0 and ‖(s1, . . . , sd)‖∞ = maxi=1,...,d |si|.

Under this condition, the extremogram (17) can be redefined using only two non-
negative integer lags: a spatial-lag hs and a time-lag ht. Indeed, under Condition (I),
we define the iso-extremogram of X for two sets A and B both bounded away from zero by

ρ∗A,B(hs, ht) = ρA,B(hs ~e1, ht), hs, ht ∈ N0 := {0} ∪N, (19)

where~e1 = (1, 0, 0, 0, . . . , 0) ∈ Rd is the first element of the canonical basis of Rd.
We now propose an estimator for the iso-extremogram. For this, without loss of

generality, consider d = 2 because the case d > 2 can be treated in the same way.
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Let Xn := {Xt(i, j) : (i, j, t) ∈ [n1]× [n2]× [n3]} be the observations from a Rk-valued
space–time process X, stationary in both space and time, and which satisfies Condition
(I). Let us set n = n1n2n3. The sample iso-extremogram based on the observations Xn is
given by

ρ̂∗A,B(hs, ht) :=

∑
(j1,j2)∈[m1]×[m2]

n3−ht

∑
t=1

∑
(i1,i2)∈Shs (cj1 j2 )

I{ Xt+ht
(i1,i2)

un ∈B,
Xt(cj1 j2

)

un ∈A
}

#Shs(cj1 j2)

∑
(j1,j2)∈[m1]×[m2]

n3

∑
t=1

I{ Xt(cj1 j2
)

un ∈A
} , (20)

for hs = 0, 1, 2, . . . , d2−1 min{r1, r2}e − 1, and ht = 0, . . . , n− 1, where

cij :=
(⌈

(2i− 1)r1 + 1
2

⌉
,
⌈
(2j− 1)r2 + 1

2

⌉)
denotes the “center” of the block Bij = [(i− 1)r1 + 1 : ir1]× [(j− 1)r2 + 1 : jr2], for (i, j) ∈
[m1]× [m2]. Moreover, Sh(u, v) := {(i, j) ∈ [n1]× [n2] : ‖(u, v)− (i, j)‖∞ = h} with h ≥ 0
and #E denotes the cardinality of the set E. We recall that ri = rni ,i and mi = dni/rie,
for i = 1, 2, 3.

Defining the cluster functional

fA,B,h1,h2 :

 ∞⋃
l1,l2,l3=1

Bl1l2l3(R
k),R∪

 −→ (R,B(R)),

for h1, h2 = 0, 1, 2, . . ., such that

fA,B,h1,h2

(
(x(i1,i2,i3))(i1,i2,i3)∈[l1]×[l2]×[l3]

)
= ∑
(i1,i2)∈Sh1

(c)

l3−h2

∑
i3=1

IA×B(x(c,i3), x(i1,i2,i3+h2)
)

#Sh1(c)
, (21)

with c = (d(l1 + 1)/2e, d(l2 + 1)/2e) ∈ [l1]× [l2] (the “center” of the block B = [l1]× [l2]),
we can rewrite the estimator (20) as

ρ̂∗A,B(hs, ht) =
∑(j1,j2,j3)∈Dn,3

fA,B,hs ,ht(Yn,j1 j2 j3) + δn + RA,B,hs ,ht

∑(j1,j2,j3)∈Dn,3
fA,A,0,0(Yn,j1 j2 j3) + RA,A,0,0

, (22)

where

δn : = ∑
(j1,j2,j3)∈Dn,3

∑
(i1,i2)∈Shs (cj1 j2 )

j3r3

∑
t=j3r3−ht+1

I{ Xt+ht
(i1,i2)

un ∈B,
Xt(cj1 j2

)

un ∈A
}

#Shs(cj1 j2)
,

RA,B,hs ,ht : = ∑
(j1,j2)∈[m1]×[m2]

∑
(i1,i2)∈Sh2

(cj1 j2 )

n3−ht

∑
t=m3r3+1

I{ Xt+ht
(i1,i2)

un ∈B,
Xt(cj1 j2

)

un ∈A
}

#Shs(cj1 j2)
.

We can therefore write (22) in terms of empirical processes of cluster functionals (4) and use
Lindeberg CLT for cluster functionals on random fields (Theorem 1) together with suitable
conditions of joint distributions, in order to prove the convergence in distribution of the
iso-extremogram estimator.

For this, first of all, we make some considerations: the normalized random variables
are defined here by Xn,(i1,i2,t) = u−1

n Xt(i1, i2), where n = (n1, n2, n3) and n = n1n2n3; and
the random blocks (Yn,j1 j2 j3)(j1,j2,j3)∈Dn,3

as in (2). We define N0 := N ∪ {0} and FA,B :=
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{
fA,B,hs ,ht : hs, ht ∈ N0

}
as the family of cluster functionals defined in (21). Moreover, for

the set A, bounded away from zero, let vn := P
(
u−1

n X0(0, 0) ∈ A
)
.

Secondly, consider the following conditions:

(Cov’) For each hs, h′s, ht, h′t ∈ N0,

∑
i∈Shs (c)

∑
i′∈Sh′s

(c)

r3−ht

∑
t=1

r3−h′t

∑
t′=1

P
(

u−1
n (Xt(c), Xt′(c)) ∈ A2, (Xt+ht(i), Xt′+h′t

(i′)) ∈ B2
)

rvn · #Shs(c) · #Sh′s(c)

and

∑
i∈Shs (c)

r3−ht

∑
t=1

r3

∑
t′=1

P
(
u−1

n (Xt(c), Xt′(c)) ∈ A2, Xt+ht(i) ∈ B
)

rvn · #Shs(c)

converge to σA,B((hs, ht), (h′s, h′t)) and σ′A,B(hs, ht), respectively, where r = r1r2r3 and
c = (d(r1 + 1)/2e, d(r2 + 1)/2e) (the “center” of the block B11 = [r1]× [r2]).

(C) ∑
(c,t),(c′ ,t′)∈C(r1,r2)×[n3]

P
(

u−1
n (Xt(c), Xt′(c

′)) ∈ A× A
)
= O(1),

where C(r1, r2) := {cij ∈ [n1] × [n2] : (i, j) ∈ [m1] × [m2]} is set of the “centers” of the
blocks Bij = [(i− 1)r1 + 1 : ir1]× [(j− 1)r2 + 1 : jr2].

Proposition 1 (CLT for the iso-extremogram estimator). Assume that the following conditions
hold for the Rk-valued space–time process

X =
{

Xt(s) : (s, t) ∈ Z2 × [0, ∞)
}

.

1. The process X is stationary in both space and time and satisfies Condition (I).
2. The sequence (un) is such that (18) holds. Moreover, r � v−1

n � n and
√

nvn � r �
nvnr3, where n = n1n2n3, r = r1r2r3, ri � ni and ri = rni ,i −→ ∞, for i = 1, 2, 3.

3. Conditions (Cov’) and (C) hold, and the Lindeberg condition (Lin) is satisfied for the nor-
malized variables Xn,(s,t) = u−1

n Xt(s) together with the family of cluster functionals FA,B.
Moreover, for each k ∈ N, the coefficient T∗n,t(fk) defined in (15) converges to zero as n→ ∞,
for all k−tuple of cluster functionals ( f1, . . . , fk) ∈ F k

A,B and all t ∈ Rk. The same assump-
tion holds together with the family FA := { fA,A,0,0}, which contains a single functional.

Then, for each (Ls, Lt) ∈ N0 ×N0,
√

nvn

r1r2

(
ρ̂∗A,B(hs, ht)− ρ∗A,B,n(hs, ht)

)
0≤hs≤Ls , 0≤ht≤Lt

D−→
n→∞

N (0, ΣA,B,Ls ,Lt), (23)

where ρ∗A,B,n(hs, ht) := P
(
u−1

n Xht(hs~e1) ∈ B
∣∣u−1

n X0(0) ∈ A
)

and ΣA,B,Ls ,Lt is the covariance
matrix, defined by the coefficients

σh,h′ = σA,B(h, h′)− ρ∗A,B(h
′)σ′A,B(h)− ρ∗A,B(h)σ

′
A,B(h

′) + ρ∗A,B(h)ρ
∗
A,B(h

′)σ′A,A(0),

with h, h′ ∈ [0 : Ls]× [0 : Lt].

Proof. Consider the expression (22) of the iso-extremogram estimator. Then, for (hs, ht) ∈
[0 : Ls]× [0, Lt], we obtain that

√
nvn

r1r2

(
ρ̂∗A,B(hs, ht)− ρ∗A,B,n(hs, ht)

)
=

Zn( fA,B,hs ,ht)−
(

mhtvn√
nvn

+ Zn( fA,A,0,0)
)

ρ∗A,B,n(hs, ht) +
δn√
nvn

+ R
r1r2√

nvn
Zn( fA,A,0,0) + 1 + r1r2RA,A,0,0

nvn

, (24)
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where Zn(·) denotes the empirical process of cluster functionals (4). Furthermore, here R =

(nvn)−1
(

RA,B,hs ,ht − ρ∗A,B,nRA,A,0,0

)
and m = m1m2m3.

Now, notice that Chebyshev’s inequality applied on the random variables R and
r1r2RA,A,0,0/ (nvn) implies that they converge to zero in probability as n→ ∞. Similarly,
applying Chebyshev’s inequality together with the condition

√
nvn = o(r), we prove

that (nvn)−1/2δn
P−→ 0, as n → ∞. This last condition (

√
nvn = o(r)) also guarantees

that mhtvn(nvn)−1/2 −→
n→∞

0. Again, Chebyshev’s inequality on the random variable
r1r2√

nvn
Zn( fA,A,0,0), followed by Condition (C) and r = o(nvnr3), implies that this converges

to zero in probability as n→ ∞. Thus,

√
nvn

r1r2

(
ρ̂∗A,B(hs, ht)− ρ∗A,B,n(hs, ht)

)
= Zn( fA,B,hs ,ht)− ρ∗A,B,n(hs, ht)Zn( fA,A,0,0) + o(1).

From Theorem 1, the assumption 3 implies that (Zn( fA,B,hs ,ht))(hs ,ht)∈[0:Ls ]×[0:Lt ] converges
to a centered Gaussian random variable with covariance matrix

(σA,B(h, h′))h,h′∈[0:Ls ]×[0:Lt ],

for each (Ls, Lt) ∈ N2
0. Using the same argument, we prove that Zn( fA,A,0,0) converges to a

centered Gaussian variable with variance σA,A(0, 0).
Finally, considering the existence of σ′A,B in (Cov’), we obtain the desired result.

4. Conclusions and Perspectives

We have proved Lindeberg lemmas for cluster functionals on stationary random fields.
This allowed us to obtain a CLT for the finite-dimensional marginal distributions of the
empirical process (4) of cluster functionals of stationary random fields under the classical
Lindeberg condition and the convergence to zero of a sequence Tn that summarizes the
dependence between the blocks of values of the random field. Moreover, we have intro-
duced a new spatio–temporal measure of serial extremal dependence: the iso-extremogram,
a type of correlogram for extreme values of space–time processes. Under precise conditions,
we have proved that the iso-extremogram estimator is asymptotically Gaussian.

In all our results, it can be noted that the sequence Tn converges to zero if the random
field satisfies short range dependence conditions; either mixing or weak-dependence
conditions. However, in this work we do not specify such conditions because it is not the
aim of this paper, but of course it will be presented in a forthcoming applied statistics article
including numerical simulations. To obtain a general idea of how to simplify the coefficient
Tn using weak dependence coefficients, the reader is referred to Gómez-García [5] which
deals with the time series framework.
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