
mathematics

Article

On a Retarded Nonlocal Ordinary Differential System with
Discrete Diffusion Modeling Life Tables

Francisco Morillas 1,* and José Valero 2,*

����������
�������

Citation: Morillas, F.; Valero, J. On a

Retarded Nonlocal Ordinary

Differential System with Discrete

Diffusion Modeling Life Tables.

Mathematics 2021, 9, 220.

https://doi.org/10.3390/

math9030220

Academic Editor: Jose Cánovas

Received: 21 December 2020

Accepted: 19 January 2021

Published: 22 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departament d’Economia Aplicada, Facultat d’Economia, Campus dels Tarongers s/n, Universitat de
València, 46022 València, Spain

2 Centro de Investigación Operativa, Avda. Universidad s/n, Universidad Miguel Hernández de Elche,
03202 Elche, Spain

* Correspondence: Francisco.Morillas@uv.es (F.M.); jvalero@umh.es (J.V.)

Abstract: In this paper, we consider a system of ordinary differential equations with non-local discrete
diffusion and finite delay and with either a finite or an infinite number of equations. We prove several
properties of solutions such as comparison, stability and symmetry. We create a numerical simulation
showing that this model can be appropriate to model dynamical life tables in actuarial or demographic
sciences. In this way, some indicators of goodness and smoothness are improved when comparing
with classical techniques.

Keywords: lattice dynamical systems; ordinary differential equations; discrete nonlocal diffusion
problems; retarded equations; life tables

1. Introduction

Nonlocal diffusion problems generated by convolution operators have been used
widely in the literature in order to model diffusion processes. As explained in [1], a convo-
lution operator can describe transport due to long-range dispersal mechanisms. Another
application of such models is the approximation of reaction-diffusion equations, as done
in [2] in the continuous case and in [3] in the discrete case. They have been also used to
model phase transitions (see [4–7] among others). The long-time behavior of the solutions
of such systems has been considered for example in [7,8]. In [9], the relation between a
continuous nonlocal diffusion equation and its discrete counterpart was studied.

In our previous paper [10], we studied analytically and numerically the nonlocal
ordinary differential system with discrete diffusion

d
dt

ui(t) = ∑
r∈D

ji−rur (t)− ui (t) + ∑
r∈Z\D

ji−rgr(t), i ∈ D, t > 0, (1)

ui (0) = ui,0, i ∈ D,

where D is a suitable subset of Z, showing that it is appropriate for modeling life tables.
The main downside is that the predictions are only valid for a short term of about two or
three years.

It seems, however, that some memory effects are present on life tables, so it would
be better to consider a model with delay. This allows us to extend the validity of the
predictions for larger periods of about five to ten years. Therefore, in this paper, we
modify system (1) by means of the introduction of some delay terms. For life tables, the
delay pattern is established via improvement rates [11]. We point out that our model is
deterministic, non-parametric and predicts the evolution of the probability of death by age
over time.

In Section 2, we study some properties of the solutions of the retarded nonlocal
model such as a comparison principle, the stability of stationary points or the symmetry of
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solutions under certain assumptions. The analysis is carried out for a system with either a
finite or an infinite number of equations, extending to the model with delay similar results
from [10].

In Section 3, we apply the new model to life tables in Spain. We use the observed values
in the period from 1908 to 2012 to fit the model and then validate it by making predictions
in the period 2013–2018. We compare the predicted values with the observed ones by using
two indicators of goodness. In both cases, the conclusion is that the model is appropriate for
making quality predictions in the middle-term. We repeat the same calculations but using
the Lee-Carter model, which is seminal and paradigmatic for this theory, obtaining that in
almost all cases, our model improves the aforementioned indicators when comparing it
with this classical model.

2. Properties of Solutions of Non-Local Diffusion Problems with Finite Delay

Let D be a subset of Z of one of the following types:

D = {m1, m1 + 1, . . . , m2}, −∞ < m1 < m2 < +∞, (2)

D = Z, (3)

D = {i ∈ Z : i ≤ m}, (4)

D = {i ∈ Z : i ≥ m}, m ∈ Z. (5)

For the cases (3)–(5), we define the Banach spaces

l∞
1 = {(ui)i∈D : sup

i∈D
|ui| < ∞},

l∞
2 = {(ui)i∈Z\D : sup

i∈Z\D
|ui| < ∞},

lp
1 = {(ui)i∈D : ∑

i∈D
|ui|p < ∞},

lp
2 = {(ui)i∈Z\D : ∑

i∈Z\D
|ui|p < ∞},

with the usual norms ‖u‖l∞
1
= supi∈D|ui|, ‖u‖l∞

2
= supi∈Z\D|ui|, ‖u‖lp

1
=
(
∑i∈D|ui|p

) 1
p ,

‖u‖lp
2
=
(

∑i∈Z\D|ui|p
) 1

p . If D = Z, then l∞
1 = l∞, lp

1 = lp. In the case (2), the phase space
is Rm, m = m2 −m1 + 1, with its norm denoted by ‖·‖Rm . The scalar products in Rm and
l2
j , j = 1, 2, will be given by (·,·)Rm and (·,·)l2

j
, respectively.

We consider the following non-autonomous retarded problem with non-local diffusion: d
dt

ui(t) = [J(t, ut)]i − ui(t), i ∈ D, t > τ,

ui(τ + s) ≡ φi(s), i ∈ D, s ∈ [−h, 0],
(6)

where τ is the initial moment of time, and J : R+ ×C([−h, 0], X)→ X, with either X = Rm,
X = l∞

1 or X = l1
1 , is the non-autonomous convolution operator defined by

[J(t, ut)]i = ∑
r∈D

∫ 0

−h
ji−rur(t + s)αi(s)dµ(s) + ∑

r∈Z\D

∫ 0

−h
ji−rgr(t + s)αi(s)dµ(s), if i ∈ D,

where u(t) =
(
ui(s)

)
i∈D, ut = u(t + s) for s ∈ [−h, 0], j : Z → R, g : R× Z\D → R and

dµ(s) = ξ(s)ds being ξ(·) a probability density. We assume the following conditions:

(H1) jk ≥ 0 for all k ∈ Z.
(H2) ∑i∈Z ji = 1.
(H3) g ∈ C(R, l∞

2 ).
(H4) αi ∈ C([−h, 0],R), αi(s) ≥ 0 for i ∈ D, s ∈ [−h, 0].
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Throughout the paper, the space C([−h, 0], X) will be denoted for short by Ch and
its supremum norm by ‖·‖Ch

when no confusion arises. All the results in this section
extend analogous ones from [10] in the same problem but without delay, that is, when
h = 0. In the case with delay we need to add conditions concerning the functions αi (see
(H4), (H5), (H7)).

2.1. A Finite Number of Equations

We assume now that D is given by (2), so X = Rm.
Let us prove first the existence and uniqueness of solutions by applying the abstract

theory for differential equations with delay [12].

Lemma 1. Let (H1)–(H4) hold. For any φ ∈ C([−h, 0],Rm) and the initial moment τ, there
exists a unique solution u(·) ∈ C1([τ,+∞),Rm) of problem (6).

Proof. We write (6) in the form

du
dt

= f (ut) + h(t), (7)

where f (ut) = ( fm1(ut), ..., fm2(ut))
T , h(t) = (hm1(t), ..., hm2(t))

T with

fi(φ) = ∑
r∈D

∫ 0

−h
ji−rφr(s)αi(s)dµ(s)− φi(0), φ ∈ Ch,

hi(t) = ∑
r∈Z\D

∫ 0

−h
ji−rgr(t + s)αi(s)dµ(s).

The map f : Ch → Rm is globally Lipschitz continuous, which follows from

‖ f (φ1)− f (φ2)‖2
Rm ≤ ∑

i∈D

(
∑

r∈D

∫ 0

−h
ji−r|φr

1(s)− φr
2(s)|αi(s)dµ(s) +

∣∣∣φi
1(0)− φi

2(0)
∣∣∣)2

≤ ‖φ1 − φ2‖2
Ch ∑

i∈D

(∫ 0

−h
αi(s)dµ(s) + 1

)2

= C‖φ1 − φ2‖2
Ch

.

On the other hand, the map h : [τ,+∞)→ Rm is obviously continuous as g ∈ C(R, l∞
2 ).

Therefore, the map J : R× Ch → Rm, J(t, φ) = f (φ) + h(t), is jointly continuous in
both variables and Lipschitz continuous on the second variable. Hence, Theorem 2.3 in [12]
implies the existence of a unique solution u ∈ C([τ − h, t0),Rm), defined at least for some
t0 > τ.

Since f is globally Lipschitz, it has sublinear growth, that is, there are constants
C1, C2 > 0 such that

‖ f (φ)‖Rm ≤ C1 + C2‖φ‖Ch
for all φ ∈ Ch. (8)

Thus, it takes any bounded set of Ch into a bounded set of Rh. Since h is continuous,
the map J takes closed bounded subsets of R× Ch into bounded subsets of Rm.

Let us prove that the solution exists for any t ≥ τ. If a solution u(·) were non-
continuable on [τ− h, b), for any closed bounded set U in R× Ch there would exists a time
tU such that u(t) 6∈ U for any tU ≤ t < b ([12], Theorem 3.2). We will obtain an estimate
showing that the last is impossible for any solution.
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Multiplying (7) by u and using (8) and g ∈ C(R, l∞
2 ) we have

1
2

d
dt
‖u‖2

Rm ≤
(

C1 + C2‖ut‖Ch

)
‖u(t)‖Rm +

∥∥∥h(t)
∥∥∥
Rm
‖u(t)‖Rm

≤ C3 + C4‖ut‖2
Ch

for all τ ≤ t < b.

Integrating between τ and t + θ, τ ≤ t < b, θ ∈ [−h, 0], t + θ ≥ τ, we obtain

‖u(t + θ)‖2
Rm ≤ ‖u(τ)‖2

Rm + 2C3(b− τ) + 2C4

∫ t+θ

τ
‖us‖2

Ch
ds.

Taking the supremum over θ ∈ [−h, 0] and taking into account that ‖u(t + θ)‖Rm ≤
‖φ‖Ch

if t + θ < τ, we get

‖ut‖2
Ch
≤ ‖φ‖2

Ch
+ C5 + C6

∫ t

τ
‖us‖2

Ch
ds.

Gronwall’s lemma implies that

‖ut‖2
Ch
≤
(
‖φ‖2

Ch
+ C5

)
eC6(t−τ) for all τ ≤ t < b. (9)

Let B0 be the closed ball in Ch centered at 0 with radius R = 2
(
‖φ‖2

Ch
+ C5

)
eC6(b−τ)

and put U = [τ, b]× B0. Then, if u(·) were non-continuable, there would exist tU such that
u(t) 6∈ U for any tU ≤ t < b. This contradicts (9).

Finally, we prove that u(·) ∈ C1([τ,+∞),Rm). We have seen that h : [τ,+∞) → Rm

is a continuous function. Additionally, f : Ch → Rm is globally Lipschitz and u ∈
C([−h,+∞),Rm), so ut ∈ C([0,+∞), Ch). Hence, the application t 7→ f (ut) + h(t), t ≥ τ,

is a continuous function, so using the equality (7), we obtain that
du
dt

is also continuous on

[τ,+∞).

Further, we will prove that the solutions are non-negative if the initial condition is
non-negative. This result implies in turn a comparison principle.

For an arbitrary (real) constant v, we denote v+ = max{0, v}, v− = max{0,−v}.
We observe that v = v+ − v− and that v·v+ = (v+)2.

Proposition 1. Let (H1) − (H4) hold. Assume that gr(t) ≥ 0 for any (t, r) ∈ R × Z\D.
Let φ ∈ C([−h, 0],Rn) be such that φi(s) ≥ 0 for s ∈ [−h, 0], i ∈ D. Then, the solution u(·) of
problem (6) satisfies that ui(t) ≥ 0 for all i ∈ D, t ≥ τ.

Proof. Multiplying the equation in (6) by (−u)+ and using the equality ([13], Lemma 2.2)(
−du

dt
, (−u)+

)
Rm

=
1
2

d
dt

∥∥∥(−u)+
∥∥∥2

Rm

we have

1
2

d
dt

∥∥∥(−u(t))+
∥∥∥2

Rm

= ∑
i∈D

∑
r∈D

∫ 0

−h
(−ur(t + s))(−ui(t))+ ji−rαi(s)dµ(s)

− ∑
r∈Z\D

∫ 0

−h
ji−rgr(t + s)(−ui(t))+αi(s)dµ(s)−

∥∥∥(−u(t))+
∥∥∥2

Rm
,
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and discarding the negative terms

1
2

d
dt

∥∥∥(−u(t))+
∥∥∥2

Rm

≤ ∑
i∈D

∑
r∈D

∫ 0

−h
(−ur(t + s))(−ui(t))+ ji−rαi(s)dµ(s)

= ∑
i∈D

∑
r∈D

∫ 0

−h

(
(−ur(t + s))+ − (−ur(t + s))−

)
(−ui(t))+ ji−rαi(s)dµ(s)

≤ ∑
i∈D

∑
r∈D

∫ 0

−h
(−ur(t + s))+(−ui(t))+ ji−rαi(s)dµ(s)

≤ 1
2 ∑

i∈D
∑

r∈D

∫ 0

−h

((
(−ur(t + s))+

)2
+
(
(−ui(t))+

)2
)

ji−rαi(s)dµ(s).

We deduce by (H2) that

1
2

d
dt

∥∥∥(−u(t))+
∥∥∥2

Rm
≤
∥∥∥(−ut)

+
∥∥∥2

Ch
∑
i∈D

∫ 0

−h
∑

r∈D
ji−rαi(s)dµ(s)

≤ M
∥∥∥(−ut)

+
∥∥∥2

Ch
,

where M = ∑i∈D
∫ 0
−h αi(s)dµ(s). Integrating over (τ, t) we find

∥∥∥(−u(t))+
∥∥∥2

Rm
≤
∥∥∥(−u(τ))+

∥∥∥2

Rm
+ 2M

∫ t

τ

∥∥∥(−us)
+
∥∥∥2

Ch
ds.

Taking t = t + θ for θ ∈ [−h, 0], t + θ ≥ τ, and using that
∥∥∥(−u(t + θ))+

∥∥∥
Rm

=∥∥∥(−φ(t + θ))+
∥∥∥
Rm

if t + θ < τ the last expression reads as

∥∥∥(−u(t + θ))+
∥∥∥2

Rm
≤
∥∥∥(−φ)+

∥∥∥2

Ch
+ 2M

∫ t+θ

τ

∥∥∥(−us)
+
∥∥∥2

Ch
ds,

and taking the supremum over [−h, 0],∥∥∥(−ut)
+
∥∥∥2

Ch
≤
∥∥∥(−φ)+

∥∥∥2

Ch
+ 2M

∫ t

τ

∥∥∥(−us)
+
∥∥∥2

Ch
ds.

Finally, Gronwall’s lemma gives∥∥∥(−ut)
+
∥∥∥2

Ch
≤
∥∥∥(−φ)+

∥∥∥2

Ch
e2M(t−τ),

so u(t) ≥ 0 for all t ≥ τ.

Corollary 1. Let (H1)− (H4) hold. Additionally, let φ1, φ2 be two initial conditions such that
φ1 ≥ φ2 in C([−h, 0],Rn), and let g1, g2 ∈ C(R, l∞

2 ) be two functions such that g1(t) ≥ g2(t)
for all t ≥ τ. We consider the solutions u(·), v(·) of problem (6) with φ = φ1, g = g1 and φ = φ2,
g = g2, respectively. Then, u(t) ≥ v(t) for all t ≥ τ.

Let us consider the autonomous case, that is, the function g does not depend on t.
Assume also that α does not depend on i and denote

M1 = M1(h) =
∫ 0

−h
α(s)dµ(s).
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A fixed point u ∈ Rm has to satisfy the following system:

−M1 ∑
r∈D

ji−rur + ui = M1 ∑
r∈Z\D

ji−rgr = bi, i ∈ D.

We can rewrite it in the matrix form

Au = b, (10)

where

A = I −M1



j0 j−1 j−2 · · · · · · jm1−m2

j1 j0 j−1 j−2 · · · jm1−m2+1
j2 j1 j0 j−1 · · · jm1−m2+2
...

. . . . . . . . . . . .
...

jm2−m1−1 · · · j2 j1 j0 j−1
jm2−m1 · · · · · · j2 j1 j0


.

We consider the following condition:

M1 ∑
r∈D

ji−r < 1, ∀i ∈ D. (11)

Let ri be the sum of the elements of the row i of the matrix A. Then, (11) implies that

ri = 1−M1 ∑
r∈D

ji−r > 0.

Hence, A is diagonal dominant, so that the system has a unique solution, i.e., there
exists a unique fixed point u.

We will show that it is stable. For this aim, we need to study the properties of the
solutions of the homogeneous system d

dt
vi(t) = ∑r∈D

∫ 0
−h ji−rvr(t + s)α(s)dµ(s)− vi(t), i ∈ D, t > 0,

vi(s) ≡ φi(s), i ∈ D, s ∈ [−h, 0].
(12)

We recall the definition of stability of stationary points.

Definition 1. The zero solution of (12) is stable in the sense of Lyapunov if for each ε > 0 there
exists γ(ε) > 0 such that if ‖v(0)‖Rm < γ, then ‖v(t)‖Rm < ε ∀t ≥ 0. Additionally, we
say that 0 is asymptotically stable if it is stable and there is γ > 0 such that if ‖v(0)‖Rm < γ,
then limt→+∞‖v(t)‖Rm = 0. It is exponentially stable if it is stable and, moreover, there exist
γ, c0, λ > 0 such that if ‖v(0)‖Rm < γ, then ‖v(t)‖Rm ≤ c0e−λt for all t ≥ 0.

Lemma 2. Let (H1)− (H4) hold. Assume that (11) holds and that h < − 1
2 log(1− δ(h)), where

δ(h) = min
i∈D
{1−M1(h) ∑

r∈D
ji−r} = min

r∈D
{1−M1(h) ∑

i∈D
ji−r}.

Then, the zero solution of problem (12) is exponentially stable (hence, asymptotically stable).
Moreover, it attracts uniformly as t→ +∞ any solution starting on a bounded set.

Remark 1. Although the condition h < − 1
2 log(1− δ(h)) is an inequation, it is easy to see that

for h small enough it holds true. Indeed, we can choose first h0 > 0 such that M1(h0)∑r∈D ji−r < 1
for any i ∈ D, which implies that M1(h)∑r∈D ji−r < 1 for all h ≤ h0, i ∈ D. Then, we choose
h ≤ h0 such that h < − 1

2 log(1− δ(h0)) ≤ − 1
2 log(1− δ(h)), where we have used that δ(h) is

a non-increasing function.
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Proof. Let v(t) be an arbitrary solution to problem (12) with ‖φ‖Ch
≤ d.

Let 0 < λ < 2. Then

d
dt

(
eλt‖v‖2

Rm

)
= λeλt‖v(t)‖2

Rm + 2eλt ∑
i∈D

vi(t)

(
∑

r∈D

∫ 0

−h
ji−rvr(t + s)α(s)dµ(s)− vi(t)

)

= (λ− 2)eλt‖v(t)‖2
Rm + 2eλt ∑

i∈D
vi(t) ∑

r∈D

∫ 0

−h
ji−rvr(t + s)α(s)dµ(s).

We estimate the last term as follows:

2eλt ∑
i∈D

vi(t) ∑
r∈D

∫ 0

−h
ji−rvr(t + s)α(s)dµ(s)

≤ 2eλt

(
M1(h)

2 ∑
i∈D

∑
r∈D

ji−r

(
vi(t)

)2
+

1
2 ∑

i∈D
∑

r∈D

∫ 0

−h
ji−r|vr(t + θ)|2α(s)dµ(s)

)

≤ 2eλt

(
M1(h)

2 ∑
i∈D

(
vi(t)

)2
∑

r∈D
ji−r +

1− δ(h)
2M1(h)

∫ 0

−h
∑

r∈D
|vr(t + θ)|2α(s)dµ(s)

)

= (1− δ(h))eλt

(
∑
i∈D

(
vi(t)

)2
+ sup

θ∈[−h,0]
∑

r∈D
|vr(t + θ)|2

)
.

Hence,

d
dt

(
eλt‖v‖2

Rm

)
≤ (λ− 2)eλt‖v(t)‖2

Rm + 2eλt(1− δ(h))‖vt‖2
Ch

≤ 2eλt(1− δ(h))‖vt‖2
Ch

.

Integrating over (0, t), we have

eλt‖v(t)‖2
Rm ≤ ‖v(0)‖2

Rm + 2(1− δ(h))
∫ t

0
eλs‖vs‖2

Ch
ds.

We set t + θ, t + θ ≥ 0, instead of t and obtain that

‖v(t + θ)‖2
Rm ≤ e−λ(t+θ)‖v(0)‖2

Rm + 2(1− δ(h))e−λ(t+θ)
∫ t+θ

0
eλs‖vs‖2

Ch
ds

≤ e−λteλh‖v(0)‖2
Rm + 2(1− δ(h))e−λteλh

∫ t

0
eλs‖vs‖2

Ch
ds.

Thus, as ‖v(t + θ)‖Rm ≤ ‖φ‖2
Ch

for t + θ < 0, we have

eλt‖vt‖2
Ch
≤ eλh‖φ‖2

Ch
+ 2(1− δ(h))eλh

∫ t

0
eλs‖vs‖2

Ch
ds.

By Gronwall’s lemma, we get

eλt‖vt‖2
Ch
≤ eλh‖φ‖2

Ch
e2(1−δ(h))eλht,

so
‖vt‖2

Ch
≤ eλh‖φ‖2

Ch
e(2(1−δ(h))eλh−λ)t. (13)

Condition h < − 1
2 log(1− δ(h)) implies that 2(1− δ(h))e2h < 2, so there exists

0 < λ∗ < 2 such that 2(1− δ(h))eλ∗h = λ∗. Therefore, choosing λ ∈ (λ∗, 2) we obtain
that 2(1− δ(h))eλh − λ < 0. It follows from inequality (13) that 0 is exponentially stable
and that it attracts uniformly as t→ +∞ any solution starting on a bounded set.
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Corollary 2. Let (H1)–(H4) hold. We consider equation (6) in the autonomous case, that is, the
function g does not depend on t and τ = 0. Assume that (11) holds and that h < − 1

2 log(1− δ(h)).
Then, the fixed point u is exponentially stable for the autonomous problem (6). Moreover, it
uniformly attracts every solution starting on a bounded set.

We finish this subsection by showing that symmetry of the initial condition and the
functions g, α and j imply symmetry of the solution.

Lemma 3. Let (H1)–(H4) hold. Let D = {−d,−d + 1, ..., 0, ..., d− 1, d}, d ∈ N. Assume also
that gi(t) = g−i(t), for all i ∈ Z\D, t ≥ τ, ji = j−i, αi(s) = α−i(s), φi(s) = φ−i(s) for any
i ∈ Z, s ∈ [−h, 0]. Then, the unique solution to problem (6) is symmetric, that is,

ui(t) = u−i(t) for all i ∈ D, t ≥ τ − h.

Proof. Let wi(t) = u−i(t). Then, the hypothesis of the lemma implies that

dwi

dt
=

du−i

dt

= ∑
r∈D

∫ 0

−h
j−i−rur(t + s)α−i(s)dµ(s) + ∑

r∈Z\D

∫ 0

−h
j−i−rgr(t + s)α−i(s)dµ(s)− u−i(t)

= ∑
r∈D

∫ 0

−h
ji+rw−r(t + s)αi(s)dµ(s) + ∑

r∈Z\D

∫ 0

−h
ji+rg−r(t + s)αi(s)dµ(s)− wi(t)

= ∑
r∈D

∫ 0

−h
ji−rwr(t + s)αi(s)dµ(s) + ∑

r∈Z\D

∫ 0

−h
ji−rgr(t + s)αi(s)dµ(s)− wi(t)

and wi(τ + s) = u−i(τ + s) = ui(τ + s) = φi(s) for s ∈ [−h, 0]. It follows that w(·)
is the unique solution to problem (6) with initial condition φ. Hence, wi(t) = ui(t) =
u−i(t) for all i ∈ D and t ≥ τ − h.

2.2. An Infinite Number of Equations

We consider now the case where the system can admit an infinite number of equations.
For this we define D as a subset of Z of one of the types given in (3)–(5).

First, we study the Equation (6) with X = l∞
1 , so J : R× l∞

1 → l∞
1 .

We will need the following extra assumption:

(H5)supi∈D
∫ 0
−h αi(s)dµ(s) < ∞.

Remark 2. Conceptually, in life tables, it can be of interest to use an infinite number of equations.
For example, domains of type (5) can be used for the biometric function Life Expectancy, which is
defined (at year t) as ∑∞

i=0 pi(t) · i, where pi(t) represents the survival probability at age i at year t.
We note that in this work we use the function qi = (1− pi), where qi represents the risk of death at
age i. In Section 3.1.2, we apply model (6) with an infinite number of equations to the variable qi.

In order to obtain the existence and uniqueness of solutions we use once again the
abstract theory for differential equations with delay given in ([12], Chapter 2). Although
the results are stated in the phase space Rn, the theorems are valid for a Banach space
as well.

Lemma 4. Assume that, in addition to (H1)–(H4), (H5) is satisfied. Then, for any φ ∈
C([−h, 0], l∞

1 ) there exists a unique solution u(·) ∈ C1([τ,+∞), l∞
1 ) of problem (6).

Proof. We proceed as in Lemma 1. System (6) is considered in the form (7), where in this
case ( fi(ut))i∈D and (hi(t))i∈D are column vectors with infinite elements.
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We prove first that the map f : l∞
1 → l∞

1 is globally Lipschitz continuous. Indeed, by
(H2) and (H5), we have

‖ f (φ1)− f (φ2)‖2
l∞
1

≤ sup
i∈D

(
∑

r∈D

∫ 0

−h
ji−r|φr

1(s)− φr
2(s)|αi(s)dµ(s) +

∣∣∣φi
1(0)− φi

2(0)
∣∣∣)

≤ sup
s∈[−h,0], i∈D

∣∣∣φi
1(s)− φi

2(s)
∣∣∣ sup

i∈D

(
∑

r∈D

∫ 0

−h
ji−rαi(s)dµ(s) + 1

)

≤ ‖φ1 − φ2‖C([−h,0],l∞
1 )

(
sup
i∈D

∑
r∈D

ji−r

∫ 0

−h
αi(s)dµ(s) + 1

)

≤ ‖φ1 − φ2‖C([−h,0],l∞
1 )

(
sup
i∈D

∫ 0

−h
αi(s)dµ(s) + 1

)
.

Second, we check that h(t) is a continuous map for the cases (4) and (5). If tn → t in R,
then by (H3) we obtain that∥∥∥h(tn)− h(t)

∥∥∥
l∞
1

= sup
i∈D

∣∣∣∣∣∣ ∑
r∈Z\D

∫ 0

−h
ji−rgr(tn + s)αi(s)dµ(s)− ∑

r∈Z\D

∫ 0

−h
ji−rgr(t + s)αi(s)dµ(s)

∣∣∣∣∣∣
≤ sup

i∈D
∑

r∈Z\D

∫ 0

−h
ji−r|gr(tn + s)− gr(t + s)|αi(s)dµ(s)

≤ sup
s∈[−h,0], i∈D

|gi(tn + s)− gi(t + s)| sup
i∈D

∑
r∈Z\D

ji−r

∫ 0

−h
αi(s)dµ(s)

≤ ‖g(tn)− g(t)‖C([−h,0],l∞
2 ) sup

i∈D

∫ 0

−h
αi(s)dµ(s)→ 0 as n→ ∞.

In order to prove that the solution is globally defined for t ≥ τ, we need to obtain
an estimate of its growth. Let b > τ be the maximal time of existence of the solution u(·),
so it is not continuable in [τ − h, b). Since f is Lipschitz, it has sublinear growth, and h(·) is
bounded in [τ − h, b]. Hence,∥∥∥∥du

dt

∥∥∥∥
l∞
1

≤ K1 + K2‖ut‖C([−h,0],l∞
1 ), for t ∈ [τ − h, b),

so

‖u(t)‖l∞
1
≤ ‖u(τ)‖l∞

1
+
∫ t

τ

∥∥∥∥du
dr

∥∥∥∥
l∞
1

dr

≤ ‖u(τ)‖l∞
1
+ K1(b− τ) + K2

∫ t

τ
‖ur‖C([−h,0],l∞

1 )dr,

for t ∈ [τ − h, b). Arguing as in the proof of Lemma 1 we deduce that

‖ut‖C([−h,0],l∞
1 ) ≤

(
‖φ‖C([−h,0],l∞

1 ) + K1(b− τ)
)

eK2(t−τ).

Again by the same arguments of the proof of Lemma 1, we arrive at a contradiction.

Further, we will obtain a comparison principle as in Proposition 1. For this aim, we
need two additional assumptions:
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(H6)There exist K > 0 and a ∈ l2
1 such that ai > 0, for all i ∈ D, and

∑
i∈D

a2
i

a2
r

ji−r ≤ K for every r ∈ D.

(H7)There exists α(·) ∈ C([−h, 0],R) such that αi(s) ≤ α(s) for all s ∈ [−h, 0].

It is obvious that (H7) is stronger than (H5). Condition (H6) is satisfied for any kernel
ji with subexponential growth, that is, ji ≤ ce−α|i| for some α, c > 0 [10].

Proposition 2. Let (H1)− (H4), (H6)− (H7) hold. Assume that gr(t) ≥ 0 for any (t, r) ∈
R× Z\D. Let φ ∈ C

(
[−h, 0], l∞

1
)

be such that φi(s) ≥ 0 for s ∈ [−h, 0] and i ∈ D. Then,
ui(t) ≥ 0 for all i ∈ D, t ≥ τ.

Proof. We define the function v(t) =
(
vi(t)

)
i∈D =

(
aiui(t)

)
i∈D, which belongs to

C1([τ, ∞), l2
1
)

as a ∈ l2
1 . We know by ([13], Lemma 2.2) that(

−dv
dt

, (−v)+
)

l2
1

=
1
2

d
dt

∥∥∥(−v)+
∥∥∥2

l2
1

.

The function v satisfies the equality

−dvi
dt

= −ai ∑
r∈D

∫ 0

−h
ji−rur(t + s)αi(s)dµ(s)− ai ∑

r∈Z\D

∫ 0

−h
ji−rgr(t + s)αi(s)dµ(s) + vi(t).

Multiplying it by (−v)+, we have

1
2

d
dt

∥∥∥(−v(t))+
∥∥∥2

l2
1

= ∑
i∈D

∑
r∈D

∫ 0

−h
(−ur(t + s))(−vi(t))+ai ji−rαi(s)dµ(s)

− ∑
r∈Z\D

∫ 0

−h
ai ji−rgr(t + s)(−vi(t))+αi(s)dµ(s)−

∥∥∥(−v(t))+
∥∥∥2

≤ ∑
i∈D

∑
r∈D

∫ 0

−h
(−ur(t + s))+(−vi(t))+ai ji−rαi(s)dµ(s)

≤ 1
2 ∑

i∈D
∑

r∈D

∫ 0

−h

(
(−vr(t + s))+

)2 a2
i

a2
r

ji−rαi(s)dµ(s)

+
1
2 ∑

i∈D
∑

r∈D

∫ 0

−h

(
(−vi(t))+

)2
ji−rαi(s)dµ(s).

Making use of (H7), the last term is estimated by

1
2 ∑

i∈D
∑

r∈D

∫ 0

−h

(
(−vi(t))+

)2
ji−rαi(s)dµ(s)

≤ 1
2 ∑

i∈D

(
(−vi(t))+

)2 ∫ 0

−h
αi(s)dµ(s) (14)

≤ 1
2

∫ 0

−h
α(s)dµ(s)

∥∥∥(−v(t))+
∥∥∥2

l2
1

.
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By (H6) and (H7), for the penultimate term, we obtain

1
2 ∑

i∈D
∑

r∈D

∫ 0

−h

(
(−vr(t + s))+

)2 a2
i

a2
r

ji−rαi(s)dµ(s)

≤ 1
2 ∑

r∈D
∑
i∈D

a2
i

a2
r

ji−r

∫ 0

−h

(
(−vr(t + s))+

)2
α(s)dµ(s) (15)

≤ K
2

∫ 0

−h
∑

r∈D

(
(−vr(t + s))+

)2
α(s)dµ(s)

≤ K
2

∥∥∥(−vt)
+
∥∥∥2

C([−h,0],l2
1)

∫ 0

−h
α(s)dµ(s).

Since ∑i∈D
a2

i
a2

r
ji−r

∫ 0
−h((−vr(t + s))+)2

α(s)dµ(s) is convergent for each r ∈ D and the
iterated limit

∑
r∈D

∑
i∈D

a2
i

a2
r

ji−r

∫ 0

−h

(
(−vr(t + s))+

)2
α(s)dµ(s)

is convergent as well, the change of order in the summatories is justified. Further-
more, vt ∈ C

(
[−h, 0], l2

1
)

implies that Sk = ∑r∈D, |r|≤k((−vr(t + s))+)2
α(s) converges to

∑r∈D((−vr(t + s))+)2
α(s) uniformly in s ∈ [−h, 0], so it is correct to change the order of

the summatory and the integral in the penultimate inequality of (15).
Thus, there exists a constant M > 0 satisfying∥∥∥(−v(t))+

∥∥∥2

l2
1

≤
∥∥∥(−v(τ))+

∥∥∥2

l2
1

+ M
∫ t

τ

∥∥∥(−vs)
+
∥∥∥2

C([−h,0],l2
1)

ds.

Arguing as in the proof of Proposition 1 it follows that u(t) ≥ 0 for all t ≥ τ.

Corollary 3. Assume the conditions of Proposition 2. Let φ1, φ2 be two initial conditions such that
φ1 ≥ φ2 in C

(
[−h, 0], l∞

1
)
, and let g1, g2 ∈ C(R, l∞

2 ) be two functions such that g1(t) ≥ g2(t)
for all t ≥ τ. We consider the solutions u(·), v(·) of the problem (6) with φ = φ1, g = g1 and
φ = φ2, g = g2, respectively. Then, u(t) ≥ v(t) for all t ≥ τ.

Second, we study the equation (6) with X = l1
1 , so J : R× l1

1 → l1
1 if we replace

condition (H3) by

(H3b)g ∈ C(R, l1
2).

Lemma 5. Assume that conditions (H1), (H2), (H3b), (H4) and (H7) are satisfied. Then, for any
φ ∈ C([−h, 0], l1

1) there exists a unique solution u(·) ∈ C1([τ,+∞), l1
1) of problem (6).

Proof. As in Lemma 4, we only need to check that f : l1
1 → l1

1 is globally Lipschitz
continuous and that h : R→ l1

1 is a continuous map for the cases (4) and (5).



Mathematics 2021, 9, 220 12 of 27

By (H2) and (H7), we have

‖ f (φ1)− f (φ2)‖2
l1
1

≤ ∑
i∈D

(
∑

r∈D

∫ 0

−h
ji−r|φr

1(s)− φr
2(s)|αi(s)dµ(s) +

∣∣∣φi
1(0)− φi

2(0)
∣∣∣)

≤ ∑
r∈D

∑
i∈D

ji−r

∫ 0

−h
|φr

1(s)− φr
2(s)|α(s)dµ(s) + ‖φ1(0)− φ2(0)‖l1

1

≤
∫ 0

−h
∑

r∈D
|φr

1(s)− φr
2(s)|α(s)dµ(s) + ‖φ1(0)− φ2(0)‖l1

1

≤ ‖φ1 − φ2‖C([−h,0],l1
1)

(∫ 0

−h
α(s)dµ(s) + 1

)
.

If tn → t in R, then by (H3b) and (H7), we obtain that∥∥∥h(tn)− h(t)
∥∥∥

l1
1

= ∑
i∈D

∣∣∣∣∣∣ ∑
r∈Z\D

∫ 0

−h
ji−rgr(tn + s)αi(s)dµ(s)− ∑

r∈Z\D

∫ 0

−h
ji−rgr(t + s)αi(s)dµ(s)

∣∣∣∣∣∣
≤ ∑

r∈Z\D
∑
i∈D

ji−r

∫ 0

−h
|gr(tn + s)− gr(t + s)|α(s)dµ(s)

≤
∫ 0

−h
∑

r∈Z\D
|gr(tn + s)− gr(t + s)|α(s)dµ(s)

≤ ‖g(tn)− g(t)‖C([−h,0],l1
2)

∫ 0

−h
α(s)dµ(s)→ 0 as n→ ∞.

The change of the order in the summatories is justified in the same way as in Lemma 2.
On the other hand, since the functions l1(·) = {|gr(tn + ·)− gr(t + ·)|α(s)}r∈D, l2(·) =
{
∣∣φr

1(s)− φr
2(s)

∣∣α(s)}r∈D belong to C([−h, 0], l1
2) and C([−h, 0], l1

1) respectively, by a stan-
dard compactness argument, we obtain that the sequences
S1

k = ∑r∈Z\D, |r|>k|gr(tn + s)− gr(t + s)|α(s) converge uniformly in s ∈ [−s, 0] to
∑r∈Z\D|gr(tn + s)− gr(t + s)|α(s), as k → ∞, and the sequence
S2

k = ∑r∈Z\D, |r|>k
∣∣φr

1(s)− φr
2(s)

∣∣α(s) converges uniformly to ∑r∈Z\D
∣∣φr

1(s)− φr
2(s)

∣∣α(s).
Thus, in both cases, the limit function is integrable and it is legitimate to change the order
of the summatory and the integral.

We study the comparison principle also in this case.

Proposition 3. Suppose that conditions (H1), (H2), (H3b), (H4) and (H7) are satisfied. Assume
that gr(t) ≥ 0 for any (t, r) ∈ R× Z\D. Let φ ∈ C

(
[−h, 0], l1

1
)

be such that φi(s) ≥ 0 for
s ∈ [−h, 0] and i ∈ D. Then, ui(t) ≥ 0 for all i ∈ D, t ≥ τ.



Mathematics 2021, 9, 220 13 of 27

Proof. As u ∈ C1([τ,+∞), l1
1
)
⊂ C1([τ,+∞), l2

1
)
, we obtain arguing as in Proposition 2 that

1
2

d
dt

∥∥∥(−u(t))+
∥∥∥2

l2
1

≤ ∑
i∈D

∑
r∈D

∫ 0

−h
(−ur(t + s))+(−ui(t))+ ji−rαi(s)dµ(s)

≤ 1
2 ∑

i∈D
∑

r∈D

∫ 0

−h

(
(−ur(t + s))+

)2 ji−rαi(s)dµ(s)

+
1
2 ∑

i∈D
∑

r∈D

∫ 0

−h

(
(−ui(t))+

)2
ji−rαi(s)dµ(s).

Condition (H7) implies as in (14) and (15) that

1
2 ∑

i∈D
∑

r∈D

∫ 0

−h

(
(−ui(t))+

)2
ji−rαi(s)dµ(s) ≤ 1

2

∫ 0

−h
α(s)dµ(s)‖u(t)‖2

l2
1
,

1
2 ∑

i∈D
∑

r∈D

∫ 0

−h

(
(−ur(t + s))+

)2 ji−rαi(s)dµ(s)

≤ 1
2 ∑

r∈D
∑
i∈D

ji−r

∫ 0

−h

(
(−ur(t + s))+

)2
α(s)dµ(s)

≤ 1
2

∫ 0

−h
∑

r∈D

(
(−ur(t + s))+

)2
α(s)dµ(s)

≤ 1
2

∥∥∥(−ut)
+
∥∥∥2

Ch

∫ 0

−h
α(s)dµ(s).

The proof is finished in the same way as in Proposition 2.

Corollary 4. Assume the conditions of Proposition 3. Let φ1, φ2 be two initial conditions such that
φ1 ≥ φ2 in C

(
[−h, 0], l1

1
)
, and let g1, g2 ∈ C(R, l∞

2 ) be two functions such that g1(t) ≥ g2(t)
for all t ≥ τ. We consider the solutions u(·), v(·) of the problem (6) with φ = φ1, g = g1 and
φ = φ2, g = g2, respectively. Then, u(t) ≥ v(t) for all t ≥ τ.

We finish this section by showing that if D = Z and the initial condition and the
functions ji, αi and the initial condition are symmetric, then the solution is symmetric well.

Lemma 6. Let either the conditions of Lemma 4 or 5 hold and let D = Z. Assume that jk =
j−k, φk(s) = φ−k(s), αk(s) = α−k(s) for all k ∈ D, s ∈ [−h, 0]. Then, the unique solution given
in Lemmas 4 and 5 satisfies:

uk(t) = u−k(t) for all k ∈ D, t ≥ τ − h.

Proof. The proof follows the same lines as in Lemma 3 except that the term containing the
function g is now missing.

3. Application to Life Tables

Life tables are a widely used tool in demographic sciences or in actuarial field to study
the behavior of a population in relation to the survival, or mortality, in a region or in a
period of time. The implications of the results derived from them have a great importance,
for example, for the analysis of the sustainability of the pension system; for the comparison
of populations via indicators as expectation of life; for the estimation of the insurance
premium; or for the calculation of the mathematical reserves to guarantee the pay of the
claims [14].
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Life tables are structured in biometric functions and the relations between them (see,
for example, [15–17]). Some of these important functions, among others, can be: the survival
probability at exact age x, px, or its complement, the probability of death, qx (the focus
of this work); the expectation of life at concrete age x, ex; the central rate of mortality by
age, mx, etc. Usually, we do not know the true values of the biometric functions and, then,
they are treated as underlying values, which are unknown. In this situation, these values
can be approximated using techniques or methodologies from this field of knowledge
(see, [18], https://www.mortality.org/Public/Docs/MethodsProtocol.pdf or [19], among
others). In this work, as in our previous paper [10], the aim is to estimate and predict the
true probabilities of death (at each age x). In general, in order to estimate the values of a
biometric function, different points of view and several types of techniques can be used.
We consider three important paradigms: a first classification between the stochastic and
the non-stochastic paradigms; second, we distinguish the situations when the model is
based on the parametric point of view or, on the contrary, it does not consider parameters;
finally, in the third level, we differentiate between the dynamic point of view (if the model
considers the evolution with time) or the static point of view (the changes with time are not
considered). The difference between the stochastic and non-stochastic frameworks is based,
in actuarial practice, on the use or the interpretation of the results of the technique. For
example, the Gompertz law [20] can be used in a deterministic framework (the results of the
fit of the Gompertz law are used as unique values and as input in other steps of the process
as, for example, in tarification) or it can be used in a stochastic framework, for example,
by considering the fit as a realization of the random process of interest. The literature on
this topic is extensive. The papers [11,15] contain a good introduction to the stochastic
framework. The works of [21,22] introduce us to parametric and non parametric models.
The works [16,23–26] allow us to know examples of stochastic, parametric and statics
models. Concerning stochastic, parametric and dynamical models, the works [27–31] are
interesting. We can find examples of stochastic, nonparametric and static models in [32–35];
for non-parametric and dynamical models, see [36].

As in the previous work [10], in this paper, we consider a non-stochastic paradigm,
with a non-parametric model and a dynamical point of view. However, in this work, we
consider the previous information as well. Thus, the difference between these two works
is the use of the past information, via improvement rates. In the paper [10], history is not
considered, and only the current (actual) data are used to estimate the predictions for the
future. That procedure has the important limitation that the predictions are only valid for a
short term, for periods of two or three years. The technique that is proposed in this work
avoids this limitation and, by considering the history of the mortality rates, improves the
previous results because it allows us to make predictions for periods of five to ten years.

In order to introduce the previous information, we establish a delay pattern via
improvement rates [11].

3.1. Dynamical Kernel Graduation with Delay

In order to improve the dynamical model (1), which was proposed in [10], in this
work, we introduce the history using the concept of Improvement Rate (see [37–40]). These
rates characterize the evolution of the mortality year-to-year or between two arbitrary
moments, t0 and t1. In this sense, we use the classical definition of improvement rate
between t0 and t1 (t0 < t1) at age x, given by rt0,t1

x = qt1
x /qt0

x . If we consider as delay the
value d = t1 − t0 > 0, then, rt0,t1

x ≡ rt0,t0+d
x . Similarly, we define the global improvement

rate between t0 and t1, rt0,t1 , as the coefficient of the linear model without constant term of
the observed death rates, that is, we fit the linear model

qt1· = rt0,t1 · qt0·

with the data
{

qt0
0 , . . . , qt0

ω

}
and

{
qt1

0 , . . . , qt1
ω

}
.

https://www.mortality.org/Public/Docs/MethodsProtocol.pdf
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3.1.1. Procedure by Steps

The proposed method can be summarized as follows:

1. We consider the observed mortality rates at each age (from 0 to 100) and each
year in the considered period (from 1908 to 2019), and denote them by qt

x, x ∈ D =
{0, . . . , 100}, t ∈ {1908, . . . , 2019}. Additionally, we consider the values of gx(t),
which is the rate of death either at “negative ages” or after the actuarial infinite (we
have chosen it to be equal to 100).

2. We estimate the improvement rates by age and delays, that is:

year
delay 1 2 3 4 ...

r1909
1908 ∼

q1909
·

q1908·
r1910

1908 ∼
q1910
·

q1908·
r1911

1908 ∼
q1911
·

q1908·
r1912

1908 ∼
q1912
·

q1908·
. . . r2017

1908 ∼
q2017
·

q1908·
r2018

1908 ∼
q2018
·

q1908·

r1910
1909 ∼

q1910
·

q1909·
r1911

1909 ∼
q1911
·

q1909·
r1912

1909 ∼
q1912
·

q1909·
r1913

1909 ∼
q1913
·

q1909·
. . . r2017

1909 ∼
q2017
·

q1909·
−

r1911
1910 ∼

q1911
·

q1910·
r1912

1910 ∼
q1912
·

q1910·
r1913

1910 ∼
q1913
·

q1910·
r1914

1910 ∼
q1914
·

q1910·
. . . − −

r1912
1911 ∼

q1912
·

q1911·
r1913

1911 ∼
q1913
·

q1911·
r1914

1911 ∼
q1914
·

q1911·
r1915

1911 ∼
q1915
·

q1911·
. . . − −

...
... . . . − − − −

r2017
2016 ∼

q2017
·

q2016·
r2018

2016 ∼
q2018
·

q2016·
− − − − −

r2018
2017 ∼

q2018
·

q2017·
− − − − − −

3. We estimate the mean, with respect to the delay, of the improvement rates:

rd
=

1
#(d) ∑

t0,t1:d=|t1−t0|
rt1

t0
, (16)

being #(d) the number of couples (t0, t1) such that d = |t1 − t0|. We will refer to these
values as the global improvement rates for the delay d.

4. The annual improvement rates by delay, rd, play an important role in the procedure
because they contain previous information of the mortality process. However, the
experience of studying this phenomenon allows us to assure that the importance of
these rates are not the same for all delays, and it is clear (under usual conditions such
as non-pandemic ones) that the behavior of the improvement rates become more
important if they are close to the time of prediction. Using this realistic assumption,
we assume that the importance of these rates is modulated by a probability distribu-
tion function. In particular, we consider a modified exponential function. To do this,
we consider the exponential probability density function with the form

fλ(s) =
{

λe−λs if s ≥ 0,
0 if s < 0,

and obtain a density function in the interval [0, h] by putting

f̂λ(s) =
λe−λs∫ h

0 λe−λsds
, s ∈ [0, h]. (17)

Then, we define the density function ξ(·) from (6) by ξ(s) = f̂λ(−s) for s ∈ [−h, 0].
In the particular case when in the numerical approximations we consider only integer
delays, we can discretize the interval [0, h] by using a finite number of integer delays
s = {0, 1, . . . , dmax}, where dmax = h ∈ N is the maximum delay to be considered.
Thus, instead of (17), we will use the discretized probability function

f ∗(s) =
f̂λ(s)

∑dmax
s=0 f̂λ(s)

, (18)
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which approximates (17) at s = 0, 1, ..., dmax.

Remark 3. We could also use the values of the function f̂λ(s) at s = 0, 1, ..., dmax to define
the approximative function f ∗(s), but we have used (18) because the results in the numerical
simulations were quite good. The use of the exponential function to derive f ∗ is arbitrary.
Thus, it is reasonable to think that the selected function is not optimal. In this sense, we
consider that this topic could be a possible new line of investigation to improve the work.

5. Using the annual improvement rates, and the exponential distribution, we define the
weighted improvement rates as

Rd
weight = rd · f ∗(d) (19)

6. Using the improvement rates by delay, rd, we can define the functions α(s) from (6),
by putting

α(−d) = rd for d ∈ 0, 1, ..., dmax,

where r0
= 1, and then defininig α(s) at other points by linear interpolation, that is,

α(s) = α(−i− 1) + (α(−i)− α(−i− 1))(s + i + 1) for s ∈ (−i− 1,−i), i = 0, ..., dmax − 1. (20)

This procedure can be implemented for a non-integer step as well. Namely, let b be a
divisor of dmax. Then, we define in a similar way as above the improvement rates rd

for d = b, 2b, ..., dmax. We observe that in this particular situation, the functions α(s)
are independent of i ∈ D.

It is usual to assume some hypothesis in the behavior of the mortality. Namely,

H1. For each age x, for an arbitrary moment t and for a small time step τ > 0, the graduate

value at t + τ, denoted by
◦
qx(t + τ), depends on:

• all graduate values at moment t,
◦
qz(t), z ∈ D ⊂ Z (via Gaussian kernel gradua-

tion, see [17]).
• all previous moments of time t + s, s ∈ [−h, 0] (via the exponential probability

density function and the improvement rates).

H2. The relation between
◦
qx(t + τ) and

{◦
qz(t)

}
,
{◦

qz(t + s)
}

s∈[−h,0[
is:

◦
qx(t + τ) =

1
1 + τ

◦
qx(t) +

τ

1 + τ ∑
z∈D

∫ 0

−h
jx−z

◦
qz(t + s)α(s)dµ(s) (21)

+
τ

1 + τ ∑
z∈Z\D

∫ 0

−h
jx−zgz(t + s)α(s)dµ(s)

where j· is a suitable kernel (in this work a Gaussian kernel), gz(·) is the rate of death
either at “negative ages” or after the actuarial infinite, dµ(s) = ξ(s)ds and α(s) is
defined above using the annual improvement rates from the past.

Remark 4. The hypothesis H2 is consistent in the sense that if τ → 0, then
◦
qx(t + τ) → ◦

qx(t).
Additionally, if τ 6= 0, the new graduate value depends on the step τ and the delay.

Remark 5. We note that if the history is not important, then the annual improvement rates are
equal to 1, so µ(s) can be interpreted as a degenerated probability function such that dµ(s) = 1 at
0. In this situation, the expression (21) is analogous to (1).
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Remark 6. The proposed relation (21) is based on the empirical experience and on the actuarial
practice in a similar way as in [10].

Next, we establish the relation between (21) and (6). From (21), we easily obtain that

(1 + τ)

τ

◦
qx(t + τ) =

◦
qx(t)

τ
+ ∑

z∈D

∫ 0

−h
jx−z

◦
qz(t + s)α(s)dµ(s) + ∑

z∈Z\D

∫ 0

−h
jx−zgz(t + s)α(s)dµ(s),

◦
qx(t + τ)− ◦qx(t)

τ
= ∑

z∈D

∫ 0

−h
jx−z

◦
qz(t + s)α(s)dµ(s)− ◦qx(t + τ) + ∑

z∈Z\D

∫ 0

−h
jx−zgz(t + s)α(s)dµ(s).

Formally, if we consider a fixed time t, and we take the limits as τ → 0, then

d
dt
◦
qx(t) = ∑

z∈D

∫ 0

−h
jx−z

◦
qz(t + s)α(s)dµ(s)− ◦qx(t) + ∑

z∈Z\D

∫ 0

−h
jx−zgz(t + s)α(s)dµ(s). (22)

Remark 7. The validation of the model will be made using the observed values in the period
2013–2018 and the Lee-Carter model by taking the predicted values in both cases. This can be done
showing that our predictions lie in the confidence interval of the predictions by the Lee-Carter model
or even that they are near the expected value in this model.

3.1.2. Application of Theoretical Results

Equation (22) fits into model (6) with D = {0, ..., 100}, m = 101 and ui(t) =
◦
qi(t).

The Gaussian kernel obviosuly satisfies (H1) and (H2). The function gr(t) ≡ gr ∈ l∞
2 is a

constant function, where gr is defined as follows:

gr =

{
0 if r < 0,

g0 > 0 if r > 100.
(23)

Hence, (H3) is satisfied. Here, g0 is the probability of death after the actuarial infinite.
In this case, αi(s) = α(s), where α(·) ∈ C([−h, 0],R) is given in (20). Therefore, (H4) holds
true. Since the function g does not depend on, the problem is autonomous, so we take
τ = 0.

Hence, Lemma 1 implies that for any initial condition φ ∈ C([−h, 0],Rm), there exists
a unique solution u(·) ∈ C1([0,+∞),Rm), where we take τ = 0. Additionally, in view
of Proposition 1 if φ ∈ C([−h, 0],Rn) is such that φi(s) ≥ 0 for s ∈ [−h, 0], i ∈ D, then
ui(t) ≥ 0 for all i ∈ D, t ≥ 0. This is an important property, because the functions

◦
qi(t)

cannot be negative as they are probabilities.
We obtain that for small h there is a unique exponentially stable fixed point as well.

Lemma 7. We choose h0 > 0 such that

M0 =
∫ 0

−h0

α(s)dµ(s) ≤ 1.

Then for any h ≤ h0 such that

h < −1
2

log(1− δ0),

where δ0 = minr∈D{1− M0 ∑i∈D ji−r}, problem (22) possesses a unique fixed point which is
exponentially stable.

Proof. Since j is a Gaussian kernel, ∑i∈D ji−r < 1 for any r, so M0 ≤ 1 implies that δ0 > 0.
The result follows then from Remark 1 and Corollary 2.
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Although in the actuarial practice, the set D is finite because the probability of death
is considered to be constant after some age (the actuarial infinite), it is also possible to
estimate the values of

◦
qx for any non-negative x. In this case, D is of the type (5); more

precisely, D = {i ∈ Z : i ≥ 0}. As before, (H1), (H2), (H4) are satisfied and the function
gr(t) ≡ gr is a constant function, where gr is defined by: gr = 0 if r < 0.

If we consider the phase space X = l∞
1 , then gr ∈ l∞

2 , so (H3) is satisfied. As the
Gaussian kernel j has subexponential growth, (H6) is true. Since αi(s) = α(s) for any i ∈ D,
(H7) is obviously satisfied (which implies that (H5) also holds). Then, by Lemma 4 for any
initial condition φ ∈ C([−h, 0], l∞

1 ) there exists a unique solution u(·) ∈ C1([0,+∞), l∞
1 ).

Additionally, in view of Proposition 2, if φ ∈ C
(
[−h, 0], l∞

1
)

is such that φi(s) ≥ 0 for
s ∈ [−h, 0], i ∈ D, then ui(t) ≥ 0 for all i ∈ D, t ≥ 0.

If we consider the phase space X = l1
1 , then gr ∈ l1

2 , so (H3b) is satisfied. Thus,
Lemma 5 implies that for any initial condition φ ∈ C([−h, 0], l1

1), there exists a unique
solution u(·) ∈ C1([0,+∞), l1

1). Finally, by Proposition 3 if φ ∈ C
(
[−h, 0], l1

1
)

is such that
φi(s) ≥ 0 for s ∈ [−h, 0], i ∈ D, then ui(t) ≥ 0 for all i ∈ D, t ≥ 0.

3.2. Details and Example

In this section, we will give the details of the numerical simulations.

3.2.1. Data, Period and Software

The data used in this study are downloaded from the Human Mortality Data Base [18].
It refers to the death rates of the Spanish population in the period 1908–2018. In this study,
we combine several sub-periods to obtain the estimations. The period 1908–2012 is used
to obtain some preliminary estimates; a sub-period of them, 1978–2012, is used to fit the
significant improvement rates. We note that this last sub-period coincides with a period
of significant changes in Spain. Among other events, the actual democratic status begins,
which motivates the consolidation of the welfare system and implies the consolidation or
changes of health protocols in Spain such as the transfer of home births to the hospital,
significantly reducing the mortality at first ages [41,42]. The period 2013–2018 is used to
validate the method.

The software used for all calculations and the construction of the figures is the R-
Software [43]. Additionally, the data are downloaded from [18] and they are manipulated
and visualized using the R-package [44]. This demographic package is also used to estimate
the Lee-Carter Model.

3.2.2. Validation

The validation process has two parts. In the first part, we compare the forecasted data
with the observed data in the same period. In the second part, to validate the model, we
compare the proposed method with the classical Lee-Carter model [28].

In the first part, we fit the proposed model using the observed data in the period
1978–2012; next, we forecast the mortality in the years 2013–2018 to obtain the prediction
of the mortality rates, qt, f

x . Then, for each year in the validation period, we compare the
observed death rates at each age, qt,obs

x , with the forecasted values. The comparison is
made using

It
MSD =

ω

∑
x=0

(
qt,obs

x − qt, f
x

)2

(
qt, f

x

)2 or χt
MSD

=
ω

∑
x=0

(
qt,obs

x − qt, f
x

)2

qt, f
x

. (24)

It is remarkable that a modification of the previous indicators can be appropriate.
In particular, we can use the smoothed values and not the observed or forecasted values
directly. We denote this modified indicators as It

SMSD and χt
SMSD

.
The second part of the validation consists in comparing the proposed method in this

work with the classical Lee-Carter model [28]. The comparison is made in two ways. Firstly,
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we forecast the mortality rates by the two methodologies in the period 2013–2018. Then,
we compute It

MSD and χt
MSD

(or its smoothed versions) and compare the results directly.
Additionally, we project the mortality in the period 2019–2030 with both techniques and
compare it to determine if they have a similar magnitude.

The Lee-Carter model was formulated to estimate the central mortality rates, mt
x, at

year t. This model can be formulated as

ln mt
x = ax + ktbx + ex,t, (25)

where ax, bx are factors depending only on the age; kt is a factor that describes the evolution
of the mortality over the years; et

x is a realization of the white noise. It is remarkable
that bx modulates the factor kt to adequate the behavior of the mortality due to social
improvements such as the control of diseases, the improvement in health habits, nutrition...
If we consider this model without other conditions, the number of parameters is 2 ×
#(number o f ages) + #(number o f years) (in our case, 2× 101 + 111 = 313 parameters).
It is usual to model the kt values as an autoregressive process of type ARIMA, and also
that the fit provides us an autoregressive model of order 1 (one parameter); in this case,
we reduce the number of parameters to 202. It is convenient to remark that the Lee-Carter
model is a parametric model and the proposed method is nonparametric. In this sense, the
assumptions of the proposed model are less restrictive.

Remark 8. The election of the Lee-Carter model is not arbitrary and it is justified by the importance
of that work. The paper of Lee-Carter model [28] is considered as a seminal model. It is the model
with more influence in all ambits of this field of knowledge. We note that, in the actuality, there
exist several versions of this model that improve it. However, we consider the comparison with
this model by several reasonings: (i) It is usual in the scientific literature to use this model in
comparisons; (ii) others models based on the Lee-Carter model either are not better in all conditions
or the improvements are small; (iii) the Lee-Carter model has a great number of parameters, 200
or more; comparing this fact with our model, the difference is significant, as the number is less in
our case.

3.2.3. Estimations and Results

It is known that the mortality has a dynamic behavior in all country or regions.
Figure 1 shows the evolution of the crude mortality rates in the period 1908–2018. This
figure shows the evolution of the death rates over the last 111 years.

We note that the highest series in the graphic correspond to the first years of the
study, at the beginning of the XX century. The lines at the bottom of the figure corresponds
to the recent years. This indicates to us that there exists an evident improvement in the
mortality rates.

In order to apply the expression (21) to the observed data and obtain the forecasted
values, it is necessary to know the values of the function gz after the actuarial infinite. In this
work, we consider that these values correspond to the values of the mortality rates for ages
greater than a characteristic age, when an effect known as “Plateau effect” begins [45,46].
This effect indicates to us that the risk of death does not increase to 1, but remains constant
from certain age. Figure 1 shows this effect (simulated to facilitate interpretation), which
can be observed in the final part of each curve and corresponds to the mortality risk values
for ages in the range 90–130. In practice, the age at which the Plateau effect begins is
unknown and it can be only estimated from the observed data. In this work, we consider
that, for each year t greater than a characteristic age, gt

z = max
{

qt
z
}

z>70. Figure 2 shows the
evolution of the death risk at last ages.
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Figure 1. Rates of death.
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Figure 2. Last mortality rates.

The tendency of the series in Figure 2 is decreasing and the values of this series
converge to the limit 0.35 (blue line at the bottom of the figure), which is consistent with
the works of other authors ([40], p. 41) in the Spanish case, for both genders and for ages
up to 105 years. Other authors consider that this limit is 0.684 [46] (yellow-middle line in
the figure), or 0.5 [45] (pink-top line in the figure). This type of assertion is not without
controversy [47]. In our simulations, we have taken g2012

z ≡ 0.385638 as the probability of
death after the actuarial infinite. This is the value of g0 in (23).

In step 2 of the method, the global improvement rates are estimated using (16).
Figure 3 shows these rates for the first 21 lags; we find that the behavior is similar to
the first 40 lags. We have analyzed these first delays and consider that they are enough
to capture the dynamic of the improvements. Due to this, we have chosen the value of h
equal to 21.

We fit a linear model for the global improvement rates (dashed line in Figure 3) without
the constant coefficient and the obtained value of the parameter is b̂ = −0.004171019. In this
method, we consider as global improvement rates the values derived from the expression
rd

= r(d) = 1 + b̂ · d, d ∈ {1, 2, . . . , 21}. Hence, with such a procedure, the function α(s)
is linear.

On other hand, we assume that the impact of the improvement rates is not equal
for all of them. Its importance is modulated by another function. As we have said,
the improvement rates are modulated by a probability function which is exponential, as in
expression (18), and the weigthed improvement rates are obtained as in (19). The parameter
λ in (18) is equal to 11

12 . Figure 4 shows the probability function which is used.
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Figure 3. Improvement rates.
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Now, we have defined all the elements which are necessary to apply the method
for forecasting.

In order to estimate the solution, we use expression (21) with τ = 1 and approximate
the integral term with the Riemann summatory.

Firstly, and with the objective of using the observed data to measure the quality of
the technique, we apply the method using the data in the period 1908–2012 and obtain
two types of predictions for the period 2013–2018: (i) applying the proposed technique; (ii)
applying the Lee-Carter method. Additionally, the indicators of quality defined by (24)
are estimated.
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Figure 5 shows the predictions with the two techniques, the proposed technique and
the Lee-Carter method. We can observe that these two series of values are close to the
observed data. The magnitude of the values are coherent in the two methods. Comparing
them with a graphical analysis, we are not able to identify whether one method is better
than the other.
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Figure 5. Forecasting.

In order to clarify if one technique is better than the other, we need to calculate a
numerical indicator. In this sense, we consider the quality indicators defined in (24). Using
the observed data as reference data and the estimation made with each technique as the
assumption, we obtain the values in Table 1.

Table 1. Summary of the measures of goodness of the predictions.

I2013
MSD I2014

MSD I2015
MSD I2016

MSD I2017
MSD I2018

MSD

Model 0.05461045 0.06223897 0.02171756 0.03676833 0.02777047 0.03182172

Lee-Carter 0.08731890 0.11195858 0.02715306 0.09994482 0.07357846 0.10755673

%Improve. 62.5 55.6 80.0 36.8 37.7 29.6

χ2013
MSD χ2014

MSD χ2015
MSD χ2016

MSD χ2017
MSD χ2018

MSD

Model 0.1641217 0.2378390 0.1283401 0.2026115 0.1892803 0.2083615

Lee-Carter 0.1919128 0.2775853 0.0947843 0.2470046 0.2353773 0.3415634

%Improve. 85.5 85.7 135.4 82.0 80.4 61.0

We can observe that the proposed technique is more accurate that the Lee-Carter
method in both indicators of goodness. In the case of the indicators It

MSD, the improvement
is for all years and the values of the error of the proposed technique with respect to the
observed values are between 30% and 80% of the error of the Lee-Carter model. In the case
of the indicators χt

MSD, we observe that the improvement is not for all years, as in 2015,
the Lee-Carter model has better results, but we think that this occurs because that year has
a great oscillation at initial ages. For the rest of the years, the rate of improvement of the
proposed method with respect to the Lee-Carter model was between 30% and 80%.
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Now, as we said before, we will compare the proposed technique with the Lee-Carter
method in forecasting. Figure 6 shows the predictions with these two methods for the
period 2019–2028.
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Figure 6. Long-term forecasting.

We observe that the Lee-Carter method has greater variability than the proposed
method for the ages in the intervals 5–15 and 40–50. In addition, the mortality curves have
similar values for the rest of the ages. As we do not have observed values of mortality
for the period 2019–2028, it is difficult to determine which of the two techniques is better.
In this situation, we will only compare the magnitude of the predictions with these two
techniques, checking whether the values are similar or not. Since the Lee-Carter method
is a reference method, we will verify if our results are within the confidence intervals of
the Lee-Carter predictions. Figure 7 shows the values of the predictions with the proposed
technique jointly with the upper and lower confidence curves of the Lee-Carter predictions
(at a 95% confidence-level) for the years 2021–2028. It is clear that the values are between
the two bounds of the Lee-Carter model, which indicates us that the method is appropriate.
Additionally, considering that with the predictions between 2013 and 2018, the proposed
method has turned out to be more accurate than the Lee-Carter method, it is convenient to
reflect on which of these methods is appropriate.

We note that we can measure the goodness of the forecasting otherwise by using
the quality indicators (24) but changing the reference values. First, we must assume as
correct the values of the Lee-Carter values; second, we assume as correct the values of
the proposed method. The comparison is made using the caution principle, depending of
the application. For example, if we use the values of the proposed method when the true
values are the Lee-Carter ones, the indicator I2019

MSD was equal to 1.812869, which tells us
that “globally” the discrepancies were close to 81%. If we use the Lee-Carter values when
the true values are the ones of the proposed technique, then I2019

MSD was 2.551214, which
indicates to us that, “globally”, discrepancies were close to 155%. The “possible error” was
double if we used the Lee-Carter values. The same situation occurs for the rest of the years.
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Figure 7. Comparison by using the confidence intervals of the Lee-Carter method.

These two ways of measuring the quality of the proposed method allow us to affirm
that, in the middle-term, the proposed method is quite appropriate.

It is important to point out that there exist several ways to improve this work: (i) in-
troducing one improvement rate for each age instead of estimating a unique improvement
rate for all ages, qt1· = rt0,t1 · qt0· (obviously, this increases the number of parameters of the
problem, but no more than in the Lee-Carter model); (ii) introducing a process that allows
us to select the better probability function.

Finally, we would like to remark that the main differences in the numerical simulations
of this paper with respect to the ones in [10] are the following:

• In the model of this paper, we have considered the influence of the values of the
variable in the past and not only in the current moment of time, as in [10].

• The functions α(s) are new in this paper and we have approximated them via the

improvement rates rd.
• We have considered the probability functions (17), (18) in order to modulate the

improvement rates rd.
• In [10], the value of the function g was taken to be equal to 0 outside the domain D,

whereas in the present work, the value of g for ages greater than 100 was taken to be
equal to a positive number due to the “Plateau effect”.

• The numerical simulations show that the predictions are good enough for at least a
period of 8 years, whereas in the model without delay, the predictions were good for
a period of 3 years.

4. Conclusions

In this work, we considered a system of ordinary differential equations with non-local
discrete diffusion and finite delay. This paper extends the results in [10], incorporating
prior information in the form of delay. With this, it is possible to improve the prediction
window with respect to the previous work; in [10], the horizon of the prediction is adequate
up to three years; however, in this work, it is verified (with the data in the considered
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period and for the defined measures) that the prediction horizon can be extended up to
8 years, and that it gives coherent values, in magnitude, when we compare it with other
classical techniques such as the Lee-Carter model, up to 18 years.

The first part of the paper is dedicated to theoretically analyzing the system: firstly,
a system with a finite number of equations; secondly, a system with an infinite number of
them. In both cases, we prove the existence of solutions and several properties of them
such as comparison results, stability and symmetry.

In the second part of the work, we applied the model to life tables, defining the
parameters of the model (for example, the delay is incorporated as improvement rates of
the probability of death) and applying the theoretical results of the first part by estimating
and projecting to the future the risk of mortality (by age). In order to calculate the numerical
estimations, we considered the data of Spanish mortality in the period 1908–2018 from [18];
the choice of this source of information is due to the fact that this organization uses a
methodology that unifies certain methodological aspects of the statistical bureaus of several
countries, providing a common framework that allows us to assure that the proposed
model can be applied to any region in the world. In order to validate the proposed model
and compare it with the Lee-Carter model, we defined some indicators of goodness and
smoothness. In this sense, these measures indicate to us that this model is more accurate
than the classical Lee-Carter model in the considered period of validation (between 2013
and 2018). Additionally, the proposed model gives us coherent values up to 2028 (maybe
even for a larger period of time) when we compare these values with the values of the
Lee-Carter model.

Finally, we consider several aspects of this work that could be improved in future
researches. For example, we could consider improvement rates which are dependent of
age or use other density probability functions, and not only the exponential distribution. It
is possible to introduce other aspects in the model as the cohort effect, which is usual in the
demographic and actuarial fields.
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