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Abstract: In this note, we propose a new construction of cyclotomic p-adic L-functions that are
attached to classical modular cuspidal eigenforms. This allows for us to cover most known cases to
date and provides a method which is amenable to generalizations to automorphic forms on arbitrary
groups. In the classical setting of GL2 over Q, this allows for us to construct the p-adic L-function
in the so far uncovered extremal case, which arises under the unlikely hypothesis that p-th Hecke
polynomial has a double root. Although Tate’s conjecture implies that this case should never take
place for GL2/Q, the obvious generalization does exist in nature for Hilbert cusp forms over totally
real number fields of even degree, and this article proposes a method that should adapt to this setting.
We further study the admissibility and the interpolation properties of these extremal p-adic L-functions
Lext

p ( f , s), and relate Lext
p ( f , s) to the two-variable p-adic L-function interpolating cyclotomic p-adic

L-functions along a Coleman family.

Keywords: p-adic L-functions; Coleman families

1. Introduction

Let f ∈ Sk+2(Γ1(N), ε) be a modular cuspidal eigeform for Γ1(N) with nebenty-
pus ε and weight k + 2. The study of the complex L-function L(s, π) attached to the
automorphic representation π of GL2(A) generated by f is a very important topic in
modern Number Theory. Understanding this complex valued analytic function is the
key point for some of the most important problems in mathematics, such as the Birch and
Swinnerton–Dyer conjecture.

Back in the middle of the seventies, Vishik [1] and Amice-Vélu [2] defined a p-adic
measure µ f ,p of Z×p that is associated with f , under the hypothesis that p does not divide N.
The construction of this measure was the starting point for the theory of p-adic L-functions
attached to modular cuspforms. The p-adic L-function Lp( f , s) is a Cp-valued analytic
function that interpolates the critical values of the L-function L(s, π). The function Lp( f , s)
is defined by means of µ f ,p as

Lp( f , s) :=
∫
Z×p

exp(s · log(x))dµ f ,p(x),

where exp and log are, respectively, the p-adic exponential and p-adic logarithm functions.
Mazur, Tate, and Teitelbaum extended, in [3], the definition of µ f ,p to more general

situations and proposed a p-adic analogue of the Birch and Swinnerton–Dyer conjecture,
replacing the complex L-function L(s, π) with its p-adic counterpart Lp( f , s). It has been
shown that Lp( f , s) is directly related with the (p-adic, or eventually l-adic) cohomology of
modular curves, and this makes the p-adic Birch and Swinnerton–Dyer conjectures become
more tractable. In fact, the theory of p-adic L-functions has grown tremendously during
the last years. Many results, whose complex counterparts are inaccessible with current
techniques, have been proven in the analogous p-adic scenarios.
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1.1. Main Results

In this note, we provide a reinterpretation of the construction of the p-adic measures
µ f ,p. Our approach exploits the theory of automorphic representations and, in that sense, it
is similar to the construction that was provided by Spiess in [4] for weights strictly greater
than 2. This opens the door to possible generalizations of p-adic measures attached to
automorphic representations of GL2(AF) of any weight, for any number field F.

We are able to construct µ f ,p in every possible situation, except when the local au-
tomorphic representation πp attached to f is supercuspidal, and we hope that our work
clarifies why it is not expected to find good p-adic measures in the latter case.

We obtain a genuinely new construction in the unlikely setting where the p-th Hecke
polynomial has a double root. In this case, our main result (Theorem 5) reads, as follows:

Theorem 1. Let f = ∑n≥1 anqn ∈ Sk+2(Γ1(N), ε) be a cuspform, and assume that P(X) :=
X2 − apX + ε(p)pk+1 has a double root α. Subsequently, there exists a locally analytic p-adic
measure µext

f ,p of Z×p , such that, for any locally polynomial character χ = χ0(x)xm with m ≤ k:

∫
Z×p

χdµext
f ,p =

4π

Ω±f im · e
ext
p (πp, χ0) · L

(
m− k +

1
2

, π, χ0

)
. (1)

Here, L(s, π, χ0) denotes the complex the L-function of π that is twisted by χ0, and we have
set

eext
p (πp, χ0) =

{
(1− p−1)−1

(
pk−mα−1 + pm−k−1α− 2p−1

)
; χ0 |Z×p = 1;

−(1− p−1)−1rpr(m−k−1)αrτ(χ0); cond(χ0) = r > 0,

where τ(χ0) is the Gauss sum attached to χ0.

We call µext
f ,p the extremal p-adic measure. Coleman and Edixhoven showed in [5] that

P(X) never has double roots if the weight is 2, namely, k = 0. Moreover, they showed
that assuming Tate’s conjecture the polynomial P(X) can never be a square for general
weights k + 2. Because we believe in Tate’s conjecture, we expect that this situation never
occurs; hence, surely the hypothesis of the theorem is never fulfilled and µext

f ,p can never
be constructed. Because these extremal scenarios do appear in nature for other reductive
groups, for instance, for GL2/F where F is a totally real number field of even degree over
Q (see [6], Section 3.3.1), we believe that our result above is potentially powerful. We plan
to employ the approach of this note to cover these cases in the near future.

Notice that, in the unlikely situation of the above theorem, the two p-adic measures
µ f ,p and µext

f ,p coexist. Thus, one can define the p-adic L-function

Lext
p ( f , s) :=

∫
Z×p

exp(s · log(x))dµext
f ,p(x),

called the extremal p-adic L-function, which coexists with Lp( f , s), and satisfies the in-
terpolation property (1) with completely different Euler factors eext

p (πp, χ0) from the
classical scenario.

In the non-critical setting, namely when the roots of the Hecke polynomial are distinct,
there is a classical result that relates µ f ,p to a two-variable p-adic L-function Lp that
interpolates µg,p, as g ranges over a Coleman family passing through f . In [7], Betina
and Williams have recently extended this result to this critical setting. They construct
an element

Lp ∈ T⊗̂QpR,

where R is the Qp-algebra of locally analytic distributions of Z×p and T is certain Hecke
algebra defining a connected component of the eigencurve. Because an element of the
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Coleman family corresponds to a morphism g : T → Q̄p, the function Lp is characterized
by the property

Lp = C(g) · µg,p,

where C(g) ∈ Q̄×p is a constant normalized so that C( f ) = 1. The following result that was
proved in Section 7.4 relates Lp to our extremal p-adic measure µext

f ,p:

Theorem 2. Let t ∈ T the element corresponding to Up − α. We have that

∂Lp

∂t
( f ) ∈ α−1µext

f ,p + Q̄pµ f ,p.

This last result implies that these extremal p-adic L-functions are analogous to the
so-called secondary p-adic L-functions that are defined by Bellaïche in [8].

1.2. Summary and Structure of the Paper

This paper consists of two principal achievements: on the one hand, we provide
a reinterpretation of the p-adic cyclotomic distributions µ f ,p giving rise to the p-adic
L-functions Lp( f , p). After recalling the classical theory in Section 3, we introduce, in
Section 4, our construction. Thanks to its local nature, this construction is available in
every possible situation, except when the associated local automorphic representation is
supercuspidal. We also provide sufficient conditions for our locally constant distributions
µ f ,p to be extended to admissible locally analytic measures. Moreover, we exploit the
automorphic nature of our construction in order to compute the interpolation properties of
µ f ,p, namely, the relation between such p-adic distributions and the classical L-functions
L(s, π).

On the other hand, exploiting the same techniques used in this new reinterpretation
of the classical p-adic cyclotomic distributions µ f ,p, we introduce, in Section 5, a genuinely
new type of p-adic distribution µext

f ,p. Because such distribution is included in the formalism
of the construction described above, we can prove its admissibility and, as shown in
Theorem 1, we can describe its interpolation properties. Thus, µext

f ,p extends to a locally
analytic p-adic measure, giving rise to the extremal p-adic L-function Lext

p ( f , s).
There are several classical results that help in understanding better the classical p-adic

measures µ f ,p. The first one is the relation between µ f ,p and the so-called overconvergent
modular symbols. Such overconvergent modular symbols are locally analytic extensions of
the modular symbols attached to f . Pollack and Stevens showed, in [9], that we can obtain
the p-adic measures µ f ,p alternatively by evaluating the corresponding overconvergent
modular symbols at the degree zero divisor 0−∞. It is rather natural to ask ourselves
whether there is an analogous description for µext

f ,p. In Section 6, we prove that this is indeed
the case, and µext

f ,p can be realized as the evaluation of the corresponding overconvergent
modular symbol at 0−∞.

The second classical result relies on the relation µ f ,p with the eigencurve. The eigen-
curve is a rigid analytic space, whose points classify eigenvalues of the Hecke operators
acting on the spaces of modular forms of any weight. For many interesting arithmetic
applications, such as the Iwasawa Main Conjecture, it is convenient to construct a function
Lp on the eigencurve, with values in certain Qp-algebraR of locally analytic distributions
of Z×p , whose evaluation at the set of eigenvalues that are associated with f is given by
µ f ,p. In the non-critical setting, the construction of this two-variable p-adic L-function Lp
is rather classical, but, in our critical setting, it is a very recent result due to Betina and
Williams in [7]. In Section 7, we are able to relate our new p-adic measure µext

f ,p with Lp.
Indeed, we prove, in Theorem 2, that the derivative of Lp with respect to (Up − α) is given
by the measure µext

f ,p.



Mathematics 2021, 9, 234 4 of 26

1.3. Conclusions and Future Research

This new reinterpretation of the construction of µ f ,p has some interesting advantages.
On the one side, it is purely automorphic and local. It relies on the construction of a
well-behaved local morphism δ from the space of locally constant functions of Z×p to
the underlying space of the local automorphic representation that is associated with f
(see Section 4.4). This formalism is totally transferable to the case of any automorphic
representation of GL2 over any number field, because it only depends on the behaviour
of the local automorphic representation. Hence, we expect to be able to construct p-adic
measures and p-adic L-functions that are associated with any automorphic representation
of GL2 for any weight over any number field. Some of the cases in this research line
correspond to the work of Spiess in [4]. Moreover, if we exchange Z×p by any torus
in GL2(F), for any p-adic field F, we expect to generalize the morphisms δ in order to
obtain anti-cyclotomic p-adic L-functions that are associated with automorphic forms over
quaternion algebras and certain quadratic extensions of the base field, extending our results
in [10]. Hence, this formalism opens the door to many possible generalizations in many
new and interesting scenarios.

On the other side, because the existence of µ f ,p is subject to the existence of a morphism
δ with good properties, we expect that our work can shed some light on the problem of
determining the existence of admissible p-adic L-functions when the local automorphic
representation is supercuspidal. After a preliminary study of the possible morphisms δ in
this situation, we believe that such an admissible measure may not exist, and it would be
an interesting line of research to study whether that is indeed the case.

The main feature of the article is this new extremal p-adic measure µext
f ,p that arises

under the unlikely hypothesis that the p-th Hecke polynomial has a double root. This
hypothesis is equivalent to the non semi-simplicity of the Hecke operator Up, and it is
excluded for GL2 over Q while assuming Tate’s conjecture. Although we have already
noted that this construction can be generalized to the Hilbert setting where there are
concrete examples where this hypothesis actually occur, such an irregular situation over Q
is still interesting, as it is considered in this article. Indeed, the existence of µext

f ,p with the
mentioned interpolation properties and its relation with the two variable p-adic L-function
Lp could lead to a better understanding of the semi-simplicity of Up. The idea is to derive
a contradiction starting from this irregular setting by exploring the properties of µext

f ,p.

1.4. Notation

For any ring R, we denote by P(k)R := Symk(R2) the R-module of homogeneous
polynomials in two variables with coefficients in R, endowed with an action of GL2(R):((

a b
c d

)
∗ P
)
(x, y) := P

(
(x, y)

(
a b
c d

))
. (2)

We denote by V(k)R := HomR(P(k)R, R) and V(k) := V(k)C. Similarly, we define
the (right-) action of A ∈ GL2(R)+ on the set of modular forms of weight k + 2

( f | A)(z) := ρ(A, z)k+2 · f (Az); ρ

((
a b
c d

)
, z
)

:=
(ad− bc)

cz + d
.

We will denote by dx the Haar measure of Qp so that vol(Zp) = 1. Similarly, we write
d×x for the Haar measure of Q×p so that vol(Z×p ) = 1. By abuse of notation, will will also
denote by d×x the corresponding Haar measure of the group of ideles A×.

For any local character χ : Q×p → C×, write

L(s, χ) =

{
(1− χ(p)p−s)−1, χ unramified
1, otherwise.
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2. Local Integrals

In this section ψ : Qp → C× will be a non-trivial additive character, such that
ker(ψ) = Zp.

Lemma 1. For all s ∈ Q×p and n > 0, we have∫
s+pnZp

ψ(ax)dx = p−nψ(sa) · 1Zp(pna).

In particular, ∫
Z×p

ψ(ax)dx =


(1− p−1), a ∈ Zp
−p−1, a ∈ p−1Z×p
0, otherwise

Proof. We compute∫
s+pnZp

ψ(xa)dx =
∫

pnZp
ψ((s + x)a)dx = ψ(sa)

∫
Zp
|xpn|ψ(xpna)d× x

= p−nψ(sa)
∫
Zp

ψ(xpna)dx = p−nψ(sa) · 1Zp(pna).

To deduce the second part, notice that∫
Z×p

ψ(ax)dx = ∑
s∈(Z/pZ)×

∫
s+pZp

ψ(ax)dx = p−1 ∑
s∈(Z/pZ)×

ψ(sa)1Zp(pa).

Hence the result follows.

Lemma 2. Let χ : Z×p → C× be a character of conductor n ≥ 1. Let 1 + pnZp ⊂ U ⊆ Z×p be an
open subgroup. We have ∫

U
χ(x)ψ(ax)d×x = 0, unless |a| = pn.

Proof. We compute∫
U

χ(x)ψ(ax)d×x = ∑
s∈U/(1+pnZp)

χ(s)
∫

s+pnZp
ψ(ax)d x

= p−n1Zp(pna) ∑
s∈U/(1+pnZp)

χ(s)ψ(sa).

Hence the integral I :=
∫

U χ(x)ψ(ax)d×x must be zero if a 6∈ p−nZp. Moreover, if a ∈
p−n+1Zp,

I =
∫

U
χ(x(1 + pn−1))ψ(ax(1 + pn−1))d×x = χ(1 + pn−1)I = 0,

and the result follows.

3. Classical Cyclotomic p-Adic L-Function
3.1. Classical Modular Symbols

Let f ∈ Sk+2(N, ε) be a modular cuspidal newform of weight (k + 2) level Γ1(N) and
nebentypus ε.

By definition, we have

( f | A)(z) · (A−1P)(1,−z) · dz = det(A) · f (Az) · P(1,−Az) · d(Az), A ∈ GL2(R)+,
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for any P ∈ V(k). Hence, if we denote by ∆0 the group of degree zero divisors of P1(Q)
with the natural action of GL2(Q), we obtain the Modular Symbol:

φ±f ∈ HomΓ1(N)(∆0, V(k));

φ±f (s− t)(P) := 2πi
(∫ s

t
f (z)P(1,−z)dz±

∫ −s

−t
f (z)P(1, z)dz

)
.

Notice that Γ1(N)-equivariance follows from relation

φ±f |A(D) = det(A) · A−1
(

φ±f (AD)
)

, A ∈ GL2(R)+, (3)

deduced from the above equality and the fact that
(

1
−1

)
normalizes Γ1(N). The follow-

ing result is well known and classical:

Proposition 1. There exists periods Ω±, such that

φ±f = Ω± · ϕ±f ,

for some ϕ±f ∈ HomΓ1(N)(∆0, V(k)R f ), where R f is the ring of coefficients of f .

3.2. Classical p-Adic Distributions

Given f ∈ Sk+2(N, ε), we will assume that f is an eigenvector for the Hecke operator
Tp with eigenvalue ap. Let α be a non-zero root of the Hecke polynomial
X2 − apX + ε(p)pk+1.

We will construct distributions µ±f ,α of locally polynomial functions of Z×p of degree less
that k attached to f (and α in case p - N). Because the open sets U(a, n) = a + pnZp (a ∈ Z×p
and n ∈ N) form a basis of Z×p , it is enough to define the image of P

(
1, x−a

pn

)
1U(a,n)(x),

for any P ∈ P(k)Z∫
U(a,n)

P
(

1,
x− a

pn

)
dµ±f ,α(x) :=

1
αn ϕ±fα

(
a

pn −∞
)
(P), (4)

where fα(z) := f (z)− β · f (pz) and β = ε(p)pk+1

α . It defines a distribution because µ±f ,α
satisfies additivity, namely, since

P
(

1,
x− a

pn

)
1U(a,n)(x) = ∑

b≡a mod pn
(γa,bP)

(
1,

x− b
pn+1

)
1U(b,n+1)(x), γa,b :=

(
1 b−a

pn
0 p

)
,

it can be shown that∫
U(a,n)

P
(

1,
x− a

pn

)
dµ±f ,α(x) = ∑

b≡a mod pn

∫
U(b,n+1)

(γa,bP)
(

1,
x− b
pn+1

)
dµ±f ,α(x),

because, by (3), we have that Up ϕ±fα
= α · ϕ±fα

, where

(Up ϕ±fα
)(D) := ∑

c∈Z/pZ

(
1 c

p

)−1

ϕ±fα

((
1 c

p

)
D
)

. (5)

The following result shows that, under certain hypothesis, we can extend µ±f ,α to a
locally analytic measure.

Theorem 3 (Visnik, Amice-Vélu). Fix an integer h, such that 1 ≤ h ≤ k + 1. Suppose that α
satisfies ordpα < h. Therefore, there exists a locally analytic measure µ±f ,α satifying:
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•
∫

U(a,n) P
(

1, x−a
pn

)
dµ±f ,α(x) := 1

αn ϕ±fα

(
a

pn −∞
)
(P), for any locally polynomial function

P
(

1, x−a
pn

)
1U(a,n)(x) of degree strictly less than h.

• For any m ≥ 0, ∫
U(a,n)

(x− a)mdµ±f ,α(x) ∈
(

pm

α

)n
α−1.

• If F(x) = ∑m≥0 cm(x− a)m is convergent on U(a, n), then∫
U(a,n)

F(x)dµ±f ,α(x) = ∑
m≥0

cm

∫
U(a,n)

(x− a)mdµ±f ,α(x).

If we assume that there exists such a root α with ordpα < k + 1, then we define
µ f ,α := µ+

f ,α + µ−f ,α and the (cyclotomic) p-adic L-function:

Lp( f , α, s) :=
∫
Z×p

exp(s · log(x))dµ f ,α(x).

Remark 1. Write Vf the Q̄[GL2(Q)]-representation generated by f . For any g ∈ Vf , write

ϕ±g (s− t)(P) :=
2πi
Ω±

(∫ s

t
g(z)P(1,−z)dz±

∫ −s

−t
g(z)P(1, z)dz

)
. (6)

Relation (3) implies that the morphism

ϕ± : Vf −→ Hom
(

∆0, V(k)Q̄
)
[det], g 7→ ϕ±g , (7)

is GL2(Q)-equivariant.

4. p-Adic L-Functions

In this section, we provide a reinterpretation of the distributions µ±f ,αp
. Let f ∈

Sk+2(Γ1(N), ε) be a cuspidal newform as above and let p be any prime. Fix the embedding

Z×p ↪→ Q×p ↪→ GL2(Qp); x 7−→
(

x
1

)
. (8)

Assumption 1. Assume that there exists a Z×p -equivariant morphisms

δ : C(Z×p , L) −→ V,

where L is certain finite extension of the coefficient field Q({an}n), and V is certain model over L of
the local automorphic representation πp generated by f . Additionally, assume that, for big enough
n, (

1 s
pn

)
δ(1U(s,n)) =

1
γn

m

∑
i=0

ci(s, n)Vi, (9)

where m is fixed, Vi ∈ V do not depend neither s nor n, and ci(s, n) ∈ OL.

4.1. p-Adic Distributions

Let us consider the subgroup

K̂1(N) =
{

g ∈ GL2(Ẑ) : g ≡ ( ∗ ∗0 1 ) mod N
}

.

By strong approximation we have that GL2(A f ) = GL2(Q)+K̂1(N). Thus, for any
GL2(A f ) 3 g = hgkg, where hg ∈ GL2(Q)+, kg ∈ K̂1(N) are well defined up to multiplica-
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tion by Γ1(N) = GL2(Q)+ ∩ K̂1(N). Write K := K̂1(N) ∩GL2(Zp). By strong multiplicity
one, πK

p is one dimensional. Therefore, VK = Lw0 and V = L[GL2(Qp)]w0. Notice that we
have a natural morphism

ϕ±f ,p : V −→ Hom(∆0, V(k)L); ϕ±f ,p(gw0) = det(hg) · ϕ±f |h−1
g

.

Remark 2. If g ∈ GL2(Qp) then hg ∈ K̂1(N)p := K̂1(N) ∩∏` 6=p GL2(Q`). This implies that,
for any h ∈ GL2(Q)+ ∩ K̂1(N)p, we have hhg = h · hg for all g ∈ GL2(Qp). By (3), this implies
that ϕ±f ,p(hv) = h ∗ ϕ±f ,p(v), for all v ∈ V ⊂ πp, where the action of h ∈ GL2(Q)+ ∩ K̂1(N)p is
given by

(h ∗ ϕ)(D) := h(ϕ(h−1D)), ϕ ∈ Hom(∆0, V(k)L).

Remark 3. By definition, for any
(

a b
c d

)
∈ Γ0(N), we have

f
(

az + b
cz + d

)
= ε(d) · (cz + d)k+2 f (z), f |

(
a b
c d

)
= ε(d) · f .

For any z ∈ Q×p , such that z = pnu where u ∈ Z×p , we can choose d ∈ Z such that
d ≡ u−1 mod NZp and d ≡ pn mod NZ`, for ` 6= p. Let us choose A = ( a b

c d ) ∈ Γ0(N),
and we have

(z, 1) = pn A−1(uA, p−n A) ∈ GL2(A f ), (uA, p−n A) ∈ K̂1(N).

This implies that, if εp is the central character of πp,

εp(z)ϕ±f ,p(w0) = ϕ±f ,p(zw0) = det(pn A−1) · ϕ±f |p−n A = p−nkε(d) · ϕ±f

Hence, εp = ε−1
p | · |k, where εp = ε |Z×p .

Let Ck(Z×p ,Cp) be the space of locally polynomial functions of Z×p of degree less that
k. Notice that we have a Z×p -equivariant isomorphism

ı : C(Z×p ,Z)⊗Z P(k)Cp(−k) −→ Ck(Z×p ,Cp); h⊗ P 7−→ P(1, x) · h(x), (10)

where (−k) stands for the twist by the character x 7→ x−k.
Fixing L ↪→ Cp, we define the distributions µ±f ,δ that are attached to f and δ:

∫
Z×p

ı(h⊗ P)(x)dµ±f ,δ(x) := ϕ±f ,p(δ(h))(0−∞)(P). (11)

4.2. Admissible Distributions

We have just constructed a distribution

µ±f ,δ : Ck(Z×p ,Cp) −→ Cp.

This section is devoted to extend this distribution to a locally analytic measure µ±f ,δ ∈

Hom
(

Cloc−an(Z×p ,Cp),Cp

)
.

Definition 1. Write vp : Cp → Q ∪ {−∞} the usual normalized p-adic valuation. For any
h ∈ R+, a distribution µ ∈ Hom(Ck(Z×p ,Cp),Cp) is h-admissible if

vp

(∫
U(a,n)

gdµ

)
≥ vp(A)− n · h,
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for some fixed A ∈ Cp, and any g ∈ Ck(Z×p ,OCp) which is polynomical in a small enough
U(a, n) ⊆ Z×p . We will denote a previous relation by∫

U(a,n)
gdµ ∈ A · p−nhOCp .

Proposition 2. If h < k + 1, a h-admissible the distribution µ can be extended to a locally analytic
measure, such that ∫

U(a,n)
gdµ ∈ A · p−nhOCp ,

for any g ∈ C(Z×p ,OCp) which is analytic in U(a, n).

Proof. Notice that any locally analytic function is topologically generated by functions of

the form Pa,N
m (x) :=

(
x−a
pN

)m
1U(a,N)(x), where m ∈ N. By definition, we have defined the

values µ(Pa,N
m ) when m ≤ k. If m > h, we define µ(Pa,N

m ) = limn→∞ an, where

an = ∑
b mod pn ; b≡a mod pN

∑
j≤h

(
b− a

pN

)m−j(m
j

)
pj(n−N)µ(Pb,n

j ).

This definition agrees with µ when h < m ≤ k because pj(n−N)µ(Pb,n
j )

n→ 0 when
j > h, hence

lim
n→∞

an = ∑
b mod pn ; b≡a mod pN

m

∑
j=0

(
b− a

pN

)m−j(m
j

)
pj(n−N)µ(Pb,n

j ) = µ(Pa,N
m ).

The limit converges because {an}n is Cauchy. Indeed by additivity

an2 − an1 = ∑
j≤h

∑
b≡a (pn2 )

∑
b′≡b (pn1 )

m

∑
s=h+1

r(s)
(

s
j

)(
b′ − b

pN

)s−j

p(n2−N)jµ(Pb′ ,n2
j ),

where r(s) = (m
s )
(

b′−a
pN

)m−s
. Because

(
b′ − b

pN

)s−j

p(n2−N)jµ(Pb′ ,n2
j ) ∈ A · p−Ns p(n1−n2)(s−j)p(s−h)n2OCp ,

we have that an+1 − an
n→ 0.

It is clear by the definition that µ(Pa,N
m ) ∈ A · p−NhOCp for all m, a and N. Moreover,

it extends to a locally analytic measure by continuity, which is determined by the image of
locally polynomial functions of degree at most h.

Notice that, for all m ≤ k,

Pa,n
m (x) =

(
x− a

pn

)m
1U(a,n)(x) = ı

(
1U(a,n) ⊗

(
Y− aX

pn

)m
Xk−m

)
.
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Using property (9) and Remarks 2 and 3, we compute that

∫
Z×p

Pa,n
m dµ±f ,p = ϕ±f ,p(δ(1U(a,n)))(0−∞)

((
Y− aX

pn

)m
Xk−m

)
=

m

∑
i=0

ci(a, n)
γn · ϕ±f ,p

(
p−n

(
pn −a

1

)
Vi

)
(0−∞)

((
Y− aX

pn

)m
Xk−m

)
=

m

∑
i=0

ci(a, n)
εp(p)nγn · ϕ

±
f ,p(Vi)

(
a

pn −∞
)(

(p−nY)m(p−nX)k−m)
)

=
m

∑
i=0

ci(a, n)
γn · ϕ±f ,p(Vi)

(
a

pn −∞
)(

YmXk−m
)

.

Notice that ϕ±f ,p(Vi) ∈ Hom(∆0, V(k)L)
Γ1(Npr)
ε := HomΓ1(Npr)(∆0, V(k)L)ε for some

big enough r ∈ N, where the subindex ε indicates that the action of Γ1(Npr)/Γ0(Npr) is
given by the character ε. By Manin’s trick, we have that

HomΓ1(Npr)(∆0, V(k)L)ε ' HomΓ1(Npr)(∆0, V(k)OL)ε ⊗OL L.

Because YmXk−m ∈ P(k)OL , c(a, n) ∈ OL and the functions Pa,n
m generate Ck(Z×p ,OCp),

we obtain that ∫
U(a,n)

gdµ±f ,δ ∈
A
γnOCp , for all g ∈ Ck(Z×p ,OCp), (12)

for some fixed A ∈ L. We deduce the following result.

Theorem 4. Fix an embedding L ↪→ Cp. We have that µ±f ,δ is vp(γ)-admissible.

Definition 2. If we assume that vp(γ) < k + 1, we define the cyclotomic p-adic measure attached
to f and δ

µ f ,δ := µ+
f ,δ + µ−f ,δ.

4.3. Interpolation Properties

Given the modular form f ∈ Sk+2(Γ1(N)), we can define an automorphic form φ:
GL2(Q)\GL2(A)→ C associated with f . Indeed, one has that GL2(A) = GL2(Q)(GL2(R)+
×GL2(A f )), hence φ can be seen as the GL2(Q)-invariant function of GL2(A), whose
restriction to GL2(R)+ ×GL2(A f ) is

φ(g∞, g f ) =
det(γ)

det(g∞)
· f | γ−1g∞(i), g f = γk ∈ GL2(Q)+K̂1(N), g∞ =

(
a b
c d

)
.

Given g ∈ GL2(Qp), we compute ϕ±f ,p(gw0)(0−∞)(YmXk−m) =

= det(hg) · ϕ±f |h−1
g
(0−∞)(YmXk−m)

=
−2π det(hg)

Ω±f
·
(∫ 0

∞
f | h−1

g (ix)(−ix)mdx±
∫ 0

∞
f | h−1

g (ix)(ix)mdx
)

=
2π

Ω±f
·
∫
R+

xm−k · φ(( x
1 ), g)d×x · ((−i)m ± im).

This implies that, if we consider the automorphic representation π generated by φ,
and the GL2(Qp)-equivariant morphism

φ f : πp −→ π : gw0 7−→ gφ,
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we have that

ϕ±f ,p(δ(h))(0−∞)(YmXk−m) =
4π(−i)m

Ω±f
·
∫
R+

xm−k ·φ f (δ(h))(( x
1 ), 1)d×x ·

(
1± (−1)m

2

)
.

Let H be the maximum subgroup of Z×p such that h |sH is constant, for all sH ∈ Z×p /H.
Notice that h = ∑s∈Z×p /H h(s)1sH . Moreover, for all v ∈ πp, the automorphic form φ f (v)

is Up := ∏` 6=p Z×` -invariant when embedded in GL2(A f ) by means of (8). Hence, if we
consider ϕ f ,p := ϕ+

f ,p + ϕ−f ,p, then we have ϕ f ,p(δ(h))(0−∞)(YmXk−m) =

= ∑
sH∈Z×p /H

4πh(s)
imΩ±f

·
∫
R+

∫
Up

xm−kφ f (δ(1sH))
(
( x

1 ), 1,
( t

1
))

d×xd× t

= ∑
sH∈Z×p /H

4πh(s)
imΩ±f

·
∫
R+

∫
Up

xm−kφ f (δ(1H))
(
( x

1 ), (
s

1 ),
( t

1
))

d×xd× t

=
4π

Ω±f vol(H)
·
∫
A×/Q×

h̃(y) · φ f (δ(1H))
( y

1

)
d×y,

where h̃(y) = (−i)m · h(yp|y|y−1
∞ ) · |y|m−k, for all y = (yv)v ∈ A×, and Ω±f is Ω+

f or Ω−f ,
depending on whether m is even or odd.

Let χ ∈ Ck(Z×p ,Cp) be a locally polynomial character. This implies that χ(x) =
χ0(x)xm, for some natural m ≤ k and some locally constant character χ0. In particular
χ = ı(χ0 ⊗YmXk−m). We deduce that∫

Z×p
χ(x)dµ f ,δ(x) :=

4π

Ω±f imvol(H)
·
∫
A×/Q×

χ̃0(y)|y|m−kφ f (δ(1H))
( y

1

)
d×y,

where χ̃0(y) := χ0(yp|y|y−1
∞ ).

Let ψ : A/Q → C× be a global additive character and we define the Whittaker
model element

WH
δ : GL2(A) −→ C; WH

δ (g) :=
∫
A/Q

φ f (δ(1H))

((
1 x

1

)
g
)

ψ(−x)dx.

This element admits a expression WH
δ (g) = ∏v WH

δ,v(gv), if g = (gv) ∈ GL2(A). Moreover,
by Theorem 3.5.5 in [11], it provides the Fourier expansion

φ f (δ(1H))(g) = ∑
a∈Q×

WH
δ

((
a

1

)
g
)

.

We compute∫
A×/Q×

χ̃0(y)|y|m−kφ f (δ(1H))
( y

1

)
d×y =

∫
A×

χ̃0(y)|y|m−kWH
δ

( y
1

)
d×y

= ∏
v

∫
Q×v

χ̃0(yv)|yv|m−kWH
δ,v
( yv

1

)
d×yv.

By definition of δ, when v 6= p the element WH
δ,v correspond to the new-vector, thus by

Proposition 3.5.3 in [11]∫
Q×v

χ̃0(yv)|yv|m−kWH
δ,v
( yv

1

)
d×yv = Lv

(
m− k +

1
2

, πv, χ̃0

)
, v 6= p.
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By Section 3.5 of [11], We conclude∫
Z×p

χ(x)dµ f ,δ(x) =
4π

Ω±f im · eδ(πp, χ0) · L
(

m− k +
1
2

, π, χ̃0

)
,

where the Euler factor

eδ(πp, χ0) =
Lp

(
m− k + 1

2 , πp, χ̃0

)−1

vol(H)

∫
Q×p

χ̃0(yp)|yp|m−kWH
δ,p

(
yp

1

)
d×yp.

4.4. The Morphisms δ

In this section, we will construct morphisms δ satisfying Assumption 1. The only case
that will be left is the case when πp is supercuspidal. In this situation, we will not be able to
construct admissible p-adic distributions.

Let πp be the local representation. Let W : πp → C be the Whittaker functional,
and let us consider the Kirillov model K that is given by the embedding

λ : πp ↪→ K; λ(v)(y) = W
((

y
1

)
v
)

.

Recall that the Kirillov model lies in the space of locally constant functions φ : Q×p → C
endowed with the action(

1 x
1

)
φ(y) = ψ(xy)φ(y),

(
a

1

)
φ(y) = φ(ay). (13)

We construct the Z×p -equivariant morphism

δ : C(Z×p ,C) −→ K; δ(h)(y) =
∫
Z×p

Ψ(zy)h(z)ψ(−zy)d×z, (14)

for a well chosen locally constant function Ψ. Notice that, if h = 1H for H small enough

δ(h)(y) = Ψ(y)
∫

H
ψ(−zy)d×z = vol(H)Ψ(y), if |y| << 0.

This implies that, in order to choose Ψ, we need to control how K looks like:

• By Theorem 4.7.2 in [11], if πp = π(χ1, χ2) principal series then K consists on func-
tions φ, such that φ(y) = 0 for |y| >> 0, and

φ(y) =
{

C1|y|1/2χ1(y) + C2|y|1/2χ2(y), χ1 6= χ2,
C1|y|1/2χ1(y) + C2vp(y)|y|1/2χ1(y), χ1 = χ2,

|y| << 0,

for some constants C1 and C2.
• By Theorem 4.7.3 in [11], if πp = σ(χ1, χ2) a special representation such that χ1χ−1

2 =

| · |−1 then K consists on functions φ, such that φ(y) = 0 for |y| >> 0, and

φ(y) = C|y|1/2χ2(y), |y| << 0,

for some constant C.
• By Theorem 4.7.1 in [11], if πp is supercuspidal then K = Cc(Q×p ,C).

By Lemmas 1 and 2 we have that δ(h)(y) = 0 for y with big absolute value. This
implies that

• In case πp = π(χ1, χ2) with χ1 6= χ2, we can choose

Ψ = | · |1/2χ1 or Ψ = | · |1/2χ2.
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• In case πp = π(χ1, χ2) with χ1 = χ2, we can choose

Ψ = | · |1/2χ1 or Ψ = v · | · |1/2χ1.

• In case πp = σ(χ1, χ2), we have

Ψ = | · |1/2χ2.

• In case πp supercuspidal, it is not possible to choose any Ψ.

We have to prove whether δ satisfies the property (9): if Ψ is invariant under the action
of 1 + pnZp,(

1 a
pn

)
δ(1U(a,n))(y) = =

(
pn

pn

)(
p−n

1

)(
1 a

1

)
δ(1U(a,n))(y)

= εp(pn) · ψ(ap−ny) · δ(1U(a,n))(p−ny)

= εp(p)n ·
∫

U(a,n)
Ψ(p−nyz)ψ(p−ny(a− z))d× z

=
εp(p)n ·Ψ(p−nya) · |p|n

1− p−1 ·
∫
Zp

ψ(yz)d z

=
εp(p)n · |p|n

1− p−1 ·Ψ(p−nya) · 1Zp(y),

because d×x = (1− p−1)−1|x|−1dx.

• If Ψ is a character, then we deduce the property (9) with m = 0, γ = Ψ(p)pεp(p)−1,
c0(a, n) = Ψ(a) and V0 = (1− p−1)−1Ψ(y)1Zp(y).

• If Ψ = vp · χ, with χ a character, it also satisfies property (9) with m = 1,
γ = χ(p)pεp(p)−1, c0(a, n) = −nχ(a), c1(a, n) = χ(a), V0 = (1− p−1)−1χ(y)1Zp(y)
and V1 = (1− p−1)−1vp(y)χ(y)1Zp(y).

4.5. Computation Euler Factors

We first define the Gauss sum attached to a character:

Definition 3. For any character χ : Z×p → C× of conductor n ≥ 0,

τ(χ) = τ(χ, ψ) = pn
∫
Z×p

χ(x)ψ(−p−nx)dx.

The following result describes the Euler factors in each of the situations:

Proposition 3. We have the following cases:

(i) If Ψ = | · |1/2χi,

eδ(πp, χ0) =


(1−p−1)−1 pr(m−k− 1

2 )χi(p)−rτ(χ0χi ,ψ)
L(m−k+1/2,χ̃0χj)L(k−m+1/2,χ̃0χ−1

i )
, πp = π(χi, χj);

(1−p−1)−1 pr(m−k− 1
2 )χi(p)−rτ(χ0χi ,ψ)

L(k−m+1/2,χ̃0χ−1
i )

, πp = σ(χi, χj),

where r is the conductor of χiχ0.
(ii) If Ψ = vp · | · |1/2χi,

eδ(πp, χ0) =


pk−m− 1

2 χi(p)+pm−k− 1
2 χi(p)−1−2p−1

1−p−1 ; χ0χi |Z×p = 1;

−rpr(m−k− 1
2 )χi(p)−rτ(χ0χi ,ψ)
1−p−1 ; cond(χ0χi) = r > 0.
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Proof. In order to compute the Euler factors eδ(πp, χ0), we have to compute the local periods

Iδ :=
1

vol(H)

∫
Q×p

χ̃0(y)|y|m−kWH
δ,p
( y

1

)
d×y =

1
vol(H)

∫
Q×p

χ̃0(y)|y|m−kδ(1H)(y)d×y.

Recalling that χ̃0 is H-invariant, we obtain

Iδ =
1

vol(H)

∫
Q×p

χ̃0(y)|y|m−k
∫

H
Ψ(zy)ψ(−zy)d×zd×y =

∫
Q×p

χ̃0(x)|x|m−kΨ(x)ψ(−x)d×x.

In case (i), we have that Ψ = | · |1/2χi; hence, by Lemmas 1 and 2

Iδ = ∑
n

pn(k−m− 1
2 )χi(p)n

∫
Z×p

χ0(x)χi(x)ψ(−pnx)d× x

=

{
∑n≥0 pn(k−m− 1

2 )χi(p)n − (1− p−1)−1 pm−k− 1
2 χi(p)−1; χ0χi |Z×p = 1;

(1− p−1)−1 pr(m−k− 1
2 )χi(p)−rτ(χ0χi, ψ); cond(χ0χi) = r > 0

=

{
(1− p−1)−1(1− pm−k− 1

2 χi(p)−1)(1− pk−m− 1
2 χi(p))−1; χ0χi |Z×p = 1;

(1− p−1)−1 pr(m−k− 1
2 )χi(p)−rτ(χ0χi, ψ); cond(χ0χi) = r > 0,

because eδ(πp, χ0) = Lp(m− k + 1/2, πp, χ̃0)
−1 · Iδ and

Lp(s, πp, χ̃0) =

{
L(s, χ̃0χi) · L(s, χ̃0χj), πp = π(χi, χj),
L(s, χ̃0χi), πp = σ(χi, χj),

part (i) follows.
In case (ii), we have that Ψ = vp · | · |1/2χi; hence, we compute

Iδ = ∑
n

npn(k−m− 1
2 )χi(p)n

∫
Z×p

χ0(x)χi(x)ψ(−pnx)d× x

=

{
∑n≥0 npn(k−m− 1

2 )χi(p)n + (1− p−1)−1 pm−k− 1
2 χi(p)−1; χ0χi |Z×p = 1;

−r(1− p−1)−1 pr(m−k− 1
2 )χi(p)−rτ(χ0χi, ψ); cond(χ0χi) = r > 0

=


pk−m− 1

2 χi(p)+pm−k− 1
2 χi(p)−1−2p−1

(1−p−1)(1−pk−m− 1
2 χi(p))2

; χ0χi |Z×p = 1;

−r(1− p−1)−1 pr(m−k− 1
2 )χi(p)−rτ(χ0χi, ψ); cond(χ0χi) = r > 0,

where the second equality follows from the identity ∑n>0 nxn = x(1− x)−2. The result
then follows.

5. Extremal p-Adic L-Functions

If πp = π(χ1, χ2) or σ(χ1, χ2) with χ1 unramified, then the Hecke polynomial X2 −
apX + ε(p)pk+1 = (x− α)(x− β), where α = p1/2χ1(p)−1. This implies that, if γ = α has
small enough valuation, then we can always construct v(α)-admissible distributions µ±α
and µα = µ+

α + µ−α . In fact, if πp = π(χ1, χ2) and χ2 is also unramified, we can sometimes
construct a second vp(β)-admissible distribution µβ.

By previous computations, the interpolation property implies that, for any locally
polynomial character χ = χ0(x)xm ∈ Ck(Z×p ,Cp),∫

Z×p
χdµα =

4π

Ω±f im · ep(πp, χ0) · L
(

m− k +
1
2

, π, χ0

)
,

with
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ep(πp, χ0) =

{
(1− p−1)−1(1− ε(p)α−1 pm)(1− α−1 pk−m); χ0χ2 |Z×p = 1;

(1− p−1)−1 prmα−rτ(χ0χ2, ψ); cond(χ0χ2) = r > 0.

This interpolation formula coincides (up to constant) with the classical interpolation
formula of the distribution µ f ,α that is defined in Section 3.2. Indeed, it is easy to prove that
ϕ±fα

is proportional to ϕ±f ,p(V0) (see Equation (15)); hence, the fact that µ±f ,α is proportional
to µ±α follows from (4), (11) and property (9). In fact, if Ψ is a character, then all of the the
admissible p-adic distributions that are constructed in this paper are twists of the p-adic
distributions described in Section 3.2 (also in [3]); hence, for those situations, we only
provide a new interpretation of classical constructions.

The only genuine new construction is for the case Ψ = vp · | · |1/2χ and πp = π(χ, χ).

Theorem 5. Let f ∈ Sk+2(Γ1(N), ε) be a newform, and assume that πp = π(χ, χ). There exists
a (k + 1)/2-admissible distribution µext

f ,p of Z×p , such that, for any locally polynomial character
χ = χ0(x)xm ∈ Ck(Z×p ,Cp),∫

Z×p
χdµext

f ,p =
4π

Ω±f im · e
ext
p (πp, χ0) · L

(
m− k +

1
2

, π, χ0

)
,

with

eext
p (πp, χ0) =


pk−m− 1

2 χ(p)+pm−k− 1
2 χ(p)−1−2p−1

1−p−1 ; χ0χ |Z×p = 1;

−rpr(m−k− 1
2 )χ(p)−rτ(χ0χ,ψ)
1−p−1 ; cond(χ0χ) = r > 0.

Proof. The only thing that is left to prove is that µext
f ,p is (k + 1)/2-admissible, but this

directly follows from Theorem 4 and the fact that

εp = ε−1
p | · |k = χ2, γ = χ(p)p|p|

1
2 εp(p)−1 = χ(p)p

1
2+kεp(p).

Hence, vp(γ) =
1
2 + k + vp(χ(p)) = k+1

2 .

Remark 4. Notice that µext
f ,p has been constructed as the sum

µext
f ,p = µext,+

f ,p + µext,−
f ,p .

Definition 4. We call µext
f ,p extremal p-adic measure. Because (k + 1)/2 < k + 1, by Proposi-

tion 2, we can extend µext
f ,p to a locally analytic measure. Hence, we define the extremal p-adic

L-function
Lext

p ( f , s) :=
∫
Z×p

exp(s · log(x))dµext
f ,p(x).

Hence, we conclude that, in the conjecturally impossible situation that πp = π(χ, χ),
two p-adic L-functions coexist

Lp( f , s), Lext
p ( f , s).

Their corresponding interpolation properties look similar, but they have completely
different Euler factors.
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Alternative Description

In the classical setting that us described in Section 3 (χ unramified), p-adic distribu-
tions µ±f ,p are given by Equation (4), while extremal p-adic distributions satisfy

∫
U(a,n)

P
(

1,
x− a

pn

)
dµext,±

f ,p (x) = ϕ±f ,p(δ(1U(a,n)))(0−∞)

(
P
(

X,
Y− aX

pn

))
=

1
αn · ϕ

±
f ,p(V1 − nV0)

(
a

pn −∞
)
(P),

where V0 = (1− p−1)−1|y|1/2χ(y)1Zp(y) and V1 = (1− p−1)−1vp(y)|y|1/2χ(y)1pZp(y).
Using the relations (13), we compute the action of the Hecke operator Tp on V0 + V1:

Tp(V0 + V1) =

(
p−1

1

)
(V0 + V1) + ∑

c∈Z/pZ

(
1 p−1c

p−1

)
(V0 + V1)

= (V0 + V1)(p−1y) +
1

εp(p)
(V0 + V1)(py) ∑

c∈Z/pZ
ψ(cy)

=
α|y|1/2χ(y)
(1− p−1)

(
vp(y)1Zp(p−1y) +

1 + vp(py)
p ∑

c∈Z/pZ
ψ(cy)1Zp(py)

)

=
|y|1/2χ(y)
(1− p−1)

2α
(
1 + vp(y)

)
1Zp(y) = 2α(V0 + V1),

because α = γ = p1/2χ(p)−1 = εp(p)−1 p1/2χ(p). Similarly,

UpV0 = ∑
c∈Z/pZ

(
1 p−1c

p−1

)
V0 =

1
εp(p)

V0(py) ∑
c∈Z/pZ

ψ(cy) = αV0. (15)

Hence, V0 and V1 are basis of the generalized eigenspace of Up, in which V0 is the eigen-
vector and V0 + V1 is the newform. This implies that (up to constant) ϕ±f ,p(V0)

·
= ϕ±fα

, where

fα is the p-specialization defined in Section 3.2, while we have that ϕ±f ,p(V0 + V1)
·
= ϕ±f .

We conclude that, in terms of the classical definitions given in Section 3.2, the extremal
distribution can be described as∫

U(a,n)
P
(

1,
x− a

pn

)
dµext,±

f ,p (x) =
1

αn · ϕ
±
f−(n+1) fα

(
a

pn −∞
)
(P).

6. Overconvergent Modular Symbols

For any r ∈ pQ, let B[Zp, r] = {z ∈ Cp, ∃a ∈ Zp, |z− a| ≤ r}. We denote, by A[r], the
ring of affinoid function on B[Zp, r]. The ring A[r] has structure of Qp-Banach algebra with
the norm ‖ f ‖r= supz∈B[Zp ,r]| f (z)|. Denote, by D[r] = HomQp(A[r],Qp), the continuous
dual. It is also a Banach space with the norm

‖ µ ‖r= sup f∈A[r]
|µ( f )|
‖ f ‖r

.

We define
D†[r] := lim←−

r′∈pQ,r′>r

D[r′],

where the projective limit is taken with respect the usual maps D[r2] → D[r1], r1 > r2.
Because these maps are injective and compact, the space D†[r] is endowed with structure
of Frechet space.
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Given an affinoid Qp-algebra R and a character w : Zp → R×, such that w ∈ A[r]⊗̂Qp R,
we can define an action of the monoid

Σ0(p) =
{(

a b
c d

)
∈ M2(Zp), p - a, p | c, ad− bc 6= 0

}
on A[r]⊗̂Qp R and D[r]⊗̂Qp R given by

(γ ∗w f )(z) = w(a + cz) · f
(

b + dz
a + cz

)
, f ∈ A[r]⊗̂Qp R,

(γ ∗w µ)( f ) = µ(γ−1 ∗w f ), γ−1 ∈ Σ0(p), µ ∈ D[r]⊗̂Qp R.

Write Dw[r] for the space D[r]⊗̂Qp R with the corresponding action. Similarly, we define

D†
w := lim←−

r′∈pQ,r′>r

Dw[r] = D†[r]⊗̂Qp R,

where the second equality follows from Lemma 3.2 in [8]. Compatibility with base change
and Lemma 3.5 in [8] imply that, given a morphism of affinoid Qp-algebras ϕ : R→ R′, we
have isomorphisms

Dw[r]⊗R R′ '−→ Dϕ◦w[r], D†
w[r]⊗R R′ '−→ D†

ϕ◦w[r]. (16)

Definition 5. We call the space HomΓ(∆0, D†
w[r]) the space of modular symbols of weight w.

We denote, by Hom±Γ (∆0, D†
w[r]), the subgroup of HomΓ(∆0, D†

w[r]) of elements that are fixed or
multiplied by −1 by the involution given by

(
−1

1

)
.

The action of Σ0(p) on D†
w[r] induces an action of Up on Hom±Γ (∆0, D†

w[r]) given by
the Formula (5).

Assume that R is reduced and its norm | · | extends the norm of Qp. Write as usual
vp(x) = − log |x|/ log p, so that vp(p) = 1. Let us consider

R{{T}} :=

{
∑
n≥0

anTn, an ∈ R, lim
n
(vp(an)− nν) = ∞ for all ν ∈ R

}
.

Given F(T) ∈ R{{T}} and ν ∈ R,

N(F, ν) := max{n ∈ N, vp(an)− nν = infm(vp(am)−mν)}.

A polynomial Q(T) ∈ R[T] ⊆ R{{T}} is ν-dominant if it has degree N(Q, ν) and,
for all x ∈ Sp(R), we have N(Q, ν) = N(Qx, ν). We say that F(T) ∈ R{{T}} is ν-adapted
if there exists a (unique) decomposition F(T) = Q(T) · G(T), where Q(T) ∈ R[T] is a
ν-dominant polynomial of degree N(F, ν) and Q(0) = G(0) = 1.

Because Hom±Γ (∆0, Dw[r]) satisfies property (Pr) of Section 2 of [12] and Up acts
compactly, then one can define the characteristic power series F(T) ∈ R{{T}} of Up acting
on Hom±Γ (∆0, Dw[r]). We say that R is ν-adapted for some ν ∈ R, if F is ν-adapted. If this
is the case, then we can define the submodule Hom±Γ (∆0, Dw[r])≤ν of slope bounded by ν
modular symbols as the kernel of Q(Up) in Hom±Γ (∆0, Dw[r]).

We write Hom±Γ (∆0, D†
w[r])≤ν for the intersection

Hom±Γ (∆0, D†
w[r])

≤ν := Hom±Γ (∆0, D†
w[r]) ∩Hom±Γ (∆0, Dw[r′])≤ν

in Hom±Γ (∆0, Dw[r′]), for any r′ > r.
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6.1. Control Theorem

Let us consider the character

k : Z×p → Q×p , x 7−→ xk.

We have a morphism of Σ0(p)-modules

ρ∗k : D†
k [1] −→ V(k) := V(k)Qp ; ρ∗k (µ)(P) := µ(P(1, z)).

This provides a morphism

ρ∗k : Hom±Γ (∆0, D†
k [1]) −→ Hom±Γ (∆0, V(k)) (17)

Theorem 6 (Steven’s control Theorem). The above morphism induces an isomorphism of Qp-
vector spaces

ρ∗k : Hom±Γ (∆0, D†
k [1])

<k+1 −→ Hom±Γ (∆0, V(k))<k+1.

Proof. See Theorem 7.1 in [13] and Theorem 5.4 in [9].

6.2. Extremal Modular Symbols

Let f ∈ Sk+2(N, ε), as before, and assume that the Hecke polynomial x2 − apx +

ε(p)pk+1 has a double root α. We have defined admissible locally analytic measures µext,±
f ,p

that are characterized by∫
a+pnZp

P
(

1,
x− a

pn

)
dµext,±

f ,p (x) =
1

αn · ϕ
±
f−(n+1) fα

(
a

pn −∞
)
(P),

for any P ∈ P(k)Q. Our aim is to describe µext,±
f ,p as the evaluation at 0−∞ of certain

overconvergent modular symbol Hom±Γ (∆0, D†
k [0]).

Notice that, if we write gn := f − (n + 1) fα and γa,n :=
(

1 a
pn

)
,

∫
Zp

γ−1
a,n

(
ρk(P)1Zp

)
(x)dµext,±

f ,p (x) =
∫

a+pnZp
P
(

1,
x− a

pn

)
dµext,±

f ,p (x)

=
1

αn · ϕ
±
gn

(
a

pn −∞
)
(P)

=
1

αn · ϕ
±
gn(γa,n(0−∞))(P)

=

(
1
pα

)n
· ϕ±gn |γa,n

(0−∞)
(

γ−1
a,n P

)
.

Moreover, the elements γ−1
a,n

(
ρk(P)1Zp

)
∈ A[p−n] for all n ∈ N, a ∈ Zp, and these

functions form a dense set in
⋃

n≥0 A[p−n].

Lemma 3. For any divisor D ∈ ∆0, the expression

γ−1
a,n

(
ρk(P)1Zp

)
7−→

(
1
pα

)n
· ϕ±gn |γa,n

(D)
(

γ−1
a,n P

)
extends to a measure in ϕ̂±ext(D) ∈ D†

k [1].
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Proof. We have to show additivity, namely, since

γ−1
a,n

(
ρk(P)1Zp

)
= ∑

b≡a mod pn
γ−1

b,n+1

(
ρk(γbP)1Zp

)
, γb :=

(
1 b−a

pn

0 p

)
,

we have to show that(
1
pα

)n
· ϕ±gn |γa,n

(D)
(

γ−1
a,n P

)
= ∑

b≡a mod pn

(
1
pα

)n+1
· ϕ±gn+1|γb,n+1

(D)
(

γ−1
b,n+1γbP

)
.

Indeed, we have that γ−1
b,n+1γb = γ−1

a,n , thus the above equation follows from the fact
that gn ∈ Sk+2(Γ, ε) satisfies Upgn+1 = 1

p ∑b≡a gn+1 |γb= α · gn.
First, we notice that, by (3), for any P ∈ P(k)Zp ,

ϕ̂+
ext(D)(γ−1

a,N

(
ρk(P)1Zp

)
) =

(
1
α

)N
· ϕ+

gN
(γa,N D)(P) ∈ A · p−N k+1

2 OCp ,

for big enough N, since vp(α) = (k + 1)/2.
On the other hand, any locally analytic function is topologically generated by functions

of the form Pa,N
m (x) :=

(
x−a
pN

)m
1a+pN (x), where m ∈ N. The functions γ−1

a,N

(
ρk(P)1Zp

)
are

generated by Pa,N
m , when m ≤ k; hence, our distribution must be determined by

ϕ̂±ext(D)(Pa,N
m ) =

(
1
pα

)N
· ϕ±gN |γa,N

(D)
(

γ−1
a,N(xk−mym)

)
, m ≤ k.

If m > k, we define ϕ̂±ext(D)(Pa,N
m ) = limn→∞ an, where

an = ∑
b mod pn ; b≡a mod pN

∑
j≤k

(
b− a

pN

)m−j(m
j

)
pj(n−N) ϕ̂±ext(D)(Pb,n

j ).

The limit converge because {an}n is Cauchy, indeed by additivity

an2 − an1 = ∑
j≤h

∑
b≡a (pn2 )

∑
b′≡b (pn1 )

m

∑
s=k+1

r(s)
(

s
j

)(
b′ − b

pN

)s−j

p(n2−N)j ϕ̂±ext(D)(Pb′ ,n2
j ),

where r(s) = (m
s )
(

b′−a
pN

)m−s
. Because

(
b′ − b

pN

)s−j

p(n2−N)j ϕ̂±ext(D)(Pb′ ,n2
j ) ∈ A · p−Ns · p(n1−n2)(s−j)pn2(s− k+1

2 )OCp ,

we have that an+1− an
n→ 0. Hence, we have extended ϕ̂±ext(D) to a locally analytic measure

by continuity, which is determined by the image of locally polynomial functions of degree
at most k.
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The above lemma implies that ϕ̂±ext ∈ Hom(∆0, D†
k [1]). Let us check that it is Γ-

equivariant: For any g ∈ Γ, it is easy to show that gγ−1
a,n1Zp = γ−1

g−1a,n1Zp , where
(

α β
γ δ

)
a

= β+δa
α+γa . Thus by (7)

ϕ̂±ext(gD)(gγ−1
a,n

(
ρk(P)1Zp

)
) = ϕ̂±ext(gD)(γ−1

g−1a,n

(
ρk(γg−1a,ngγ−1

a,n P)1Zp

)
)

=

(
1
pα

)n
· ϕ±gn |γ

g−1a,n
(gD)

(
gγ−1

a,n P
)

=

(
1
pα

)n
· ϕ±gn |γ

g−1a,n
g
(D)

(
γ−1

a,n P
)

= ϕ̂±ext(D)(γ−1
a,n

(
ρk(P)1Zp

)
)

where the last equality has been obtained from the fact that γg−1a,ngγ−1
a,n ∈ Γ and gn is

Γ-invariant for all n. One easily checks that ϕ̂± is in the corresponding
(
−1

1

)
-subspace

ϕ̂±ext ∈ Hom±Γ (∆0, D†
k [1]).

From the definition, it is easy to check the following result

Proposition 4. The measures µext,±
f ,p and µext

f ,p can be obtained as

µext,±
f ,p = ϕ̂±ext(0−∞) |Z×p , µext

f ,p = ϕ̂ext(0−∞) |Z×p ,

where ϕ̂ext := ϕ̂+
ext + ϕ̂−ext.

6.3. Action of Up

Recall that the action of Σ0(p) on HomΓ(∆0, D†
k [1]) provides an action of the Hecke

operator Up; the aim of this section is to compute Up ϕ̂±ext. Notice that it is enough to

compute the image of the functions fa,n,P := γ−1
a,n

(
ρk(P)1Zp

)
:

(Up ϕ̂±ext)(D)( fa,n,P) = ∑
c mod p

ϕ̂±ext(γc,1D)(γc,1γ−1
a,n

(
ρk(P)1Zp

)
)

= ϕ̂±ext(γa,1D)(γ−1
0,n−1

(
ρk(P)1Zp

)
)

=

(
1
pα

)n−1
· ϕ±gn−1|γ0,n−1

(γa,1D)
(

γ−1
0,n−1P

)
=

1
p

(
1
pα

)n−1
· ϕ±gn−1|γ0,n−1γa,1

(D)
(

γ−1
a,1 γ−1

0,n−1P
)

= α

(
1
pα

)n
· ϕ±gn−1|γa,n

(D)
(

γ−1
a,n P

)
.

Because gn = gn−1 − fα, we deduce that

Up ϕ̂±ext = α ·
(

ϕ̂±ext + ϕ̂±
)
, (18)

where ϕ̂± ∈ Hom±Γ (∆0, D†
k [1]) is the classical overconvergent modular symbol correspond-

ing through Theorem 6 to the eigenvector with the eigenvalue α given by fα.

6.4. Specialization of ϕ̂±ext

Theorem 6 asserts that the morphism ρ∗k of (17) becomes an isomorphism when we
restrict ourselves to generalized eigenspaces for Up with valuation of the eigenvector
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strictly less than k + 1. We have seen that ϕ̂±ext lives in the eigenspace of eigenvalue α,
and we know that vp(α) = (k + 1)/2. Thus, it bijectively corresponds to an element of
Hom±Γ (∆0, V(k)). We can easily compute the image ρ∗k ϕ̂±ext just calculating the image of the
polynomical functions ρk(P)1Zp :

ϕ̂±ext(D)(ρk(P)1Zp) =

(
1
pα

)0
· ϕ±g0

(D)(P) = ϕ±f− fα
(D)(P).

Thus, ρ∗k ϕ̂±ext = ϕ±f− fα
, that corresponds via Eichler–Shimura to the modular form

f − fα. This fact fits with Theorem 6 since f − fα belongs to the generalized eigenspace,
indeed, (Up − α)2( f − fα) = 0.

7. Extremal p-Adic L-Functions in Families
7.1. Weight Space

LetW/Qp be the standard one-dimensional weight space. It is a rigid analytic space
that can classify characters of Z×p , namely,

W = Homcnt(Z×p ,Gm).

If L is any normed extension of Qp, we write w̃ : Z×p → L× for the continuous
morphism of groups corresponding to a point w ∈ W(L).

If k ∈ Z, then the morphism k̃(t) = tk for all t ∈ Z×p defines a point in W(Qp)
that we will also denote by k. Thus Z ⊂ W(Qp), and we call points in Z insideW(Qp)
integral weights.

If W = SpR is an admissible affinoid ofW , the immersion Sp(R) = W ↪→W defines
an element K ∈ W(R), such that, for every w ∈ W(Qp) ↪→ W(Qp), we have w̃ = w ◦ K̃.
By Lemma 3.3 in [8], there exists r(W) > 1, such that the morphism

Zp −→ R×, z 7−→ K̃(1 + pz)

belongs to A[r(W)](R). We say that W is nice if the points Z∩W are dense in W and both
R and R0/pR0 are PID, where R0 is the unit ball for the supremum norm in R.

7.2. The Eigencurve

For a fixed nice affinoid subdomain W = SpR ofW , we can consider the R-modules
Hom±Γ (∆0, DK̃[r]), for 1 < r ≤ r(W). By Proposition 3.6 in [8], we have that the space
Hom±Γ (∆0, DK̃[r]) is potentially orthonormalizable Banach R-module. The elements of the
Hecke algebraH = Z[Tq, 〈n〉, Up] act continuously and Up acts compactly.

If we consider Hom±Γ (∆0, D†
K̃[r]), Theorem 3.10 in [8] asserts that, for any w ∈W(Qp)

and any real number 1 < r ≤ r(W), there naturalH-equivariant morphism

Hom±Γ (∆0, D†
K̃[r])⊗R,w Qp −→ Hom±Γ (∆0, Dw̃[r]) (19)

is always injective and surjective except when w = 0 and the sign ± is −1.
The R-modules Hom±Γ (∆0, Dw[r]) for all 1 < r ≤ r(W) are all ν-adapted if one is,

in which case we say that W = SpR is ν-adapted. If W is ν-adapted, the restriction maps
define isomorphisms between the R-modules Hom±Γ (∆0, Dw̃[r])≤ν for all 1 < r ≤ r(W).
Thus, we obtain an isomorphism

Hom±Γ (∆0, D†
w̃[r])

≤ν ' Hom±Γ (∆0, Dw̃[r])≤ν, 1 < r ≤ r(W), (20)

as seen in Proposition 3.11 in [8].
The eigencurves C± κ→W can be constructed as the union of local pieces

C±W,ν −→W = SpR,
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where ν ∈ R is a real and W is a nice affinoid subspace adapted to ν. By definition,

C±W,ν = SpT±W,ν,

where T±W,ν is the R-subalgebra of EndR(Hom±Γ (∆0, D†
K̃[1])

≤ν) generated by the image of
the Hecke algebraH.

Remark 5. The cuspidal parts of C+W,ν and C−W,ν coincide by Theorem 3.27 in [8]; hence, we will
sometimes identify certain neighbourhoods of cuspidal points.

7.3. Specialization

Let w ∈W(Qp) and write Hom±Γ (∆0, D†
w̃[1])

≤ν
g for the image of the composition.

Hom±Γ (∆0, D†
K̃[1])

≤ν ⊗R,w Qp
(19)−→ Hom±Γ (∆0, Dw̃[1])≤ν (20)−→ Hom±Γ (∆0, D†

w̃[1])
≤ν (21)

In analogy with previous definition, we write T±w,ν for the Qp-subalgebra of the
endomorphism ring EndQp(Hom±Γ (∆0, D†

w̃[1])
≤ν
g ) generated by the image of the Hecke

algebraH. By definition, there is a correspondence between points x ∈ SpecT±w,ν(Q̄p) and
systems of H-eigenvalues appearing in Hom±Γ (∆0, D†

w̃[1])
≤ν
g . For any such x, we denote,

by
Hom±Γ (∆0, D†

w̃[1])(x)

the generalized eigenspace of the corresponding eigenvalues. Similarly, we denote, by
(T±w,ν)(x), the localization of T±w,ν ⊗Qp Q̄p at the maximal ideal corresponding to x. We
have that

Hom±Γ (∆0, D†
w̃[1])(x) = Hom±Γ (∆0, D†

w̃[1])
≤ν ⊗T±w,ν

(T±w,ν)(x). (22)

Because, by definition Hom±Γ (∆0, D†
K̃[1])

≤ν ⊗R,w Qp ' Hom±Γ (∆0, D†
w̃[1])

≤ν
g , we have

a natural specialization map

sw : T±W,ν ⊗R,w Qp −→ T±w,ν.

By Lemme 6.6 in [14] the morphism sw is surjective for all w ∈ W(Qp) and its kernel
is nilpotent. In particular,

SpecT±w,ν(Q̄p) = κ−1(w)(Q̄p), κ : C± −→ W .

Given x ∈ SpecT±w,ν(Q̄p) ⊂ C±W,ν(Q̄p), we can consider the rigid analytic localization
(T±W,ν)(x) of T±W,ν⊗Qp Q̄p at the maximal ideal corresponding to x. Notice that, if we denote
by R(w) the rigid analytic localization of R⊗Qp Q̄p at the maximal ideal corresponding to
w, then (T±W,ν)(x) is naturally a R(w)-algebra. Localizing at x, we obtain a surjective local
morphism of finite local Q̄p-algebras with nilpotent kernel

sw : (T±W,ν)(x) ⊗R(w),w Q̄p −→ (T+
w,ν)(x). (23)

Lemma 4. We have that
(T±w,ν)(x) ' Q̄p[X]/X2,

where X corresponds to the element of the Hecke algebra Up − α.

Proof. Equation (22) shows that (T±w,ν)(x) is the Qp-subalgebra of the endomorphism
ring EndQp(Hom±Γ (∆0, D†

w̃[1])
≤ν
(x)) that is generated by the image of the Hecke algebraH.

By Theorem 6, we have

Hom±Γ (∆0, D†
w̃[1])

≤ν
(x) = Hom±Γ (∆0, V(k))≤ν

(x) = Q̄p ϕ̂± + Q̄p ϕ̂±ext.
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Hence, we can embed

(T±w,ν)(x) ↪→ End(Q̄p ϕ̂± + Q̄p ϕ̂±ext) ' M2(Q̄p).

Hecke operators Tq and 〈n〉 act by scalar matrices, and the action of the operator Up is
described in Section 6.3. More precisely, X = Up − α is given by the matrix

(
0 α
0 0

)
with

respect to the basis ϕ̂±, ϕ̂±ext. Thus, X2 = 0 and the result follows.

Definition 6. Any classical cuspidal non-critical y ∈ C±(Q̄p) corresponds to a p-stabilized
normalized cuspidal modular symbol ϕ±f ′

α′
of weight κ(y) + 2. In this situation, we write

µ±y := µ±f ′ ,α′ .

Analogously, in our irregular situation that is given by x ∈ C±(Q̄p), we write

µext,±
x := µext,±

f ,p .

7.4. Two Variable p-Adic L-Functions

In this irregular situation, Betina and Williams define, in [7], two variable p-adic L-
functions L±p that interpolate the p-adic L-functions µ±y as y ∈ C±(Q̄p) runs over classical
points in a neighbourhood of x ∈ C±(Q̄p). In this section, we recall their construction and
we give a relation between L±p and µext,±

x .

Proposition 5. The space Hom±Γ (∆0, D†
K̃[1])(x) is a free (T±W,ν)(x)-module of rank one.

Proof. Proposition 4.10 in [7].

Corollary 1. After possibly shrinking W, there exists a connected component V = Sp(T) ⊂ C±W,ν
through x, such that T is Gorestein and

M± := Hom±Γ (∆0, D†
K̃[1])

≤ν ⊗T±W,ν
T

is a free T-module of rank one.

Proof. Corollary 4.11 in [7].

From the formalism of Gorestein rings, it follows that the R-linear dual M∨
± :=

HomR(M±, R) is free of rank one over T. Let R be the Qp-algebra of locally analytic
distributions of Z×p . We have a natural morphism D†[1] → R that is provided by the
extension-by-zero map. This induces a morphism ι : D†

K̃[1] → R⊗̂Qp R and a R-linear
morphism

Mel : Hom±Γ (∆0, D†
K̃[1]) −→ R⊗̂Qp R

ϕ 7−→ ι(ϕ(0−∞))

Because V is a connected component of the eigencurve,M± is a direct summand of
Hom±Γ (∆0, D†

K̃[1])
≤ν. Thus, the restriction of Mel defines an element ofR⊗̂QpM∨

±.

Definition 7. By choosing a basis ofM∨
± over T, the above construction provides

L±p ∈ R⊗̂Qp T

called the the two variables p-adic L-function.
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Write Q̄p[ε] := Q̄p[X]/(X2), and let us consider the morphism

x[ε]∗ : T −→ T(x) = (T±W,ν)(x) −→ (T±W,ν)(x) ⊗R(w),w Q̄p
sw−→ (T±w,ν)(x) ' Q̄p[ε],

given by (23) and Lemma 4. This provides a point x[ε] ∈ V(Q̄p[ε]) lying above x ∈ V(Q̄p).

Theorem 7. For any y ∈ V(Q̄p) corresponding to a small slope p-stabilized cuspidal eigenform,

L±p = C±(y) · µ±y ∈ R,

for some C±(y) ∈ Q̄×p . We can normalize L±p by choosing the right T-basis φ± ofM∨
±, so that

C±(x) = 1. Moreover, for a good choice of φ±,

L±p (x[ε]) = µ±x + α−1µext,±
x ε ∈ R⊗Qp Q̄p[ε].

Proof. The first part of this theorem corresponds to Theorem 5.2 in [7]. Here, we can
extend their arguments to also deduce the second part of the theorem.

By definition
Mel = L±p φ± ∈ R⊗̂QpM

∨
±.

For any point y ∈ V(Q̄p), write w = κ(y) ∈ W(Q̄p). If we denoteM(y) :=M± ⊗T
T(y), we have

M∨
(y) ⊗Rw ,w Q̄p = HomRw(M(y), Rw)⊗Rw ,w Q̄p = HomQ̄p

(M(y) ⊗Rw ,w Q̄p, Q̄p),

becauseM(y) is a finite free Rw-module. By Proposition 4.3 in [7] and the control Theorem
6, the composition (21) provides an isomorphism

M(y) ⊗Rw ,w Q̄p = Hom±Γ (∆0, D†
w̃[1])(y) ' Hom±Γ (∆0, V(w))(y)

=

{
Q̄p ϕ̂±y , regular case,
Q̄p ϕ̂±y + Q̄p ϕ̂±y,ext, irregular case.

We observe that, since

T(y) ⊗Rw ,w Q̄p =

{
Q̄p, regular case,
Q̄p[ε], irregular case,

a T(y)⊗Rw ,w Q̄p-basis forM∨
(y)⊗Rw ,w Q̄p is given by φ±y with φ±y (ϕ̂±y ) = 1 and φ±y (ϕ̂±y,ext) = 0.

Notice first that the point y : T → Q̄p factors through T(y) ⊗Rw ,w Q̄p → Q̄p, and it fits into
the commutative diagram

T(y) ⊗Rw ,w Q̄p
y //

·φ±y
��

Q̄p

=

��
M∨

(y) ⊗Rw ,w Q̄p
f 7→ f (ϕ̂±y )

// Q̄p

Because φ±y corresponds to the specialization of φ± up to constant, we compute

C±(y) · µ±y = C±(y) · ϕ̂±y (0−∞) = C±(y) ·Mel(ϕ̂±y ) = L±p (y) · φ±y (ϕ̂±y ) = L±p (y),

for some C±(y) ∈ Q̄p, so that C±(y) · φ± = φ±y . This proves the first assertion. For the
second, notice that C±(x) = 1 and we have the commutative diagram
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T(x) ⊗Rw ,w Q̄p '
x[ε] //

·φ±x
��

Q̄p[ε]

=

��
M∨

(x) ⊗Rw ,w Q̄p
f 7→ f (ϕ̂±x )+εα−1 f (ϕ̂±x,ext) // Q̄p[ε]

Because by (18) we have (Up − α)ϕ̂±x,ext = αϕ̂±x . Again, we compute

µ±x + α−1µext,±
x ε = ϕ̂±x (0−∞) + α−1 ϕ̂±x,ext(0−∞)ε = Mel(ϕ̂±x ) + εα−1Mel(ϕ̂±x,ext)

= L±p (x[ε]) ·
(

φ±x (ϕ̂±x ) + εα−1φ±x (ϕ̂±x,ext)
)
= L±p (x[ε]),

and the result follows.

Notice that there is no canonical choice of φ±x , even though we impose C±(x) = 1.
In fact, (1 + εc) · φ±x with c ∈ Q̄p is also a basis, so that C±(x) = 1. For any such a change
of basis, we obtain

L±p (x[ε]) = (1 + εc)−1(µ±x + α−1µext,±
x ε) = µ±x + (α−1µext,±

x − cµ±x )ε.

The following result does not depend on the choice of the generator φ±:

Corollary 2. Let t ∈ T the element corresponding to Up − α. Subsequently,

∂L±p
∂t

(x) ∈ α−1µext,±
x + Q̄pµ±x .
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