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Abstract: In this note, we propose a new construction of cyclotomic p-adic L-functions that are
attached to classical modular cuspidal eigenforms. This allows for us to cover most known cases to
date and provides a method which is amenable to generalizations to automorphic forms on arbitrary
groups. In the classical setting of GL, over Q, this allows for us to construct the p-adic L-function
in the so far uncovered extremal case, which arises under the unlikely hypothesis that p-th Hecke
polynomial has a double root. Although Tate’s conjecture implies that this case should never take
place for GL,/Q, the obvious generalization does exist in nature for Hilbert cusp forms over totally
real number fields of even degree, and this article proposes a method that should adapt to this setting.
We further study the admissibility and the interpolation properties of these extremal p-adic L-functions
LYY(f,s), and relate LY!(f,s) to the two-variable p-adic L-function interpolating cyclotomic p-adic
L-functions along a Coleman family.
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1. Introduction

Let f € Sk.2(T'1(N),€e) be a modular cuspidal eigeform for I'i (N) with nebenty-
pus € and weight k + 2. The study of the complex L-function L(s, 7r) attached to the
automorphic representation 77 of GL,(A) generated by f is a very important topic in
modern Number Theory. Understanding this complex valued analytic function is the
key point for some of the most important problems in mathematics, such as the Birch and
Swinnerton—Dyer conjecture.

Back in the middle of the seventies, Vishik [1] and Amice-Vélu [2] defined a p-adic
measure ji,, of Z;; that is associated with f, under the hypothesis that p does not divide N.
The construction of this measure was the starting point for the theory of p-adic L-functions
attached to modular cuspforms. The p-adic L-function L,(f,s) is a Cp-valued analytic
function that interpolates the critical values of the L-function L(s, 7). The function Ly(f,s)
is defined by means of yi , as

Ly(f,5) = [ exp(s-1og(x))dpy,p(x),

p

where exp and log are, respectively, the p-adic exponential and p-adic logarithm functions.

Mazur, Tate, and Teitelbaum extended, in [3], the definition of y f,p to more general
situations and proposed a p-adic analogue of the Birch and Swinnerton-Dyer conjecture,
replacing the complex L-function L(s, 7r) with its p-adic counterpart L, (f,s). It has been
shown that Ly (f,s) is directly related with the (p-adic, or eventually I-adic) cohomology of
modular curves, and this makes the p-adic Birch and Swinnerton-Dyer conjectures become
more tractable. In fact, the theory of p-adic L-functions has grown tremendously during
the last years. Many results, whose complex counterparts are inaccessible with current
techniques, have been proven in the analogous p-adic scenarios.
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1.1. Main Results

In this note, we provide a reinterpretation of the construction of the p-adic measures
Jf,p- Our approach exploits the theory of automorphic representations and, in that sense, it
is similar to the construction that was provided by Spiess in [4] for weights strictly greater
than 2. This opens the door to possible generalizations of p-adic measures attached to
automorphic representations of GL, (Ar) of any weight, for any number field F.

We are able to construct jif , in every possible situation, except when the local au-
tomorphic representation 77, attached to f is supercuspidal, and we hope that our work
clarifies why it is not expected to find good p-adic measures in the latter case.

We obtain a genuinely new construction in the unlikely setting where the p-th Hecke
polynomial has a double root. In this case, our main result (Theorem 5) reads, as follows:

Theorem 1. Let f = Y ;51 4,q" € Siy2(I1(N), €) be a cuspform, and assume that P(X) :=
X? — apX + e(p)p**1 has a double root «. Subsequently, there exists a locally analytic p-adic
measure y]e(”‘; of Z\, such that, for any locally polynomial character x = xo(x)x™ with m < k:

47 1
ext __ ext
z Xdyf,p = Q}tlm "€y (np/XO) 'L<m—k+ 5 7T/XO>' 1)

Here, L(s, 7T, xo) denotes the complex the L-function of 7t that is twisted by xo, and we have
set

eeXt(anXO) — (1 - p_l)_l (pk—m“—l + pm—k—la - ZP_1>; X0 |Z;,<: 1;
' —(1=p ) lrpr Dz (x); cond(xo) = r >0,

where T(x) is the Gauss sum attached to x.

We call ptf}t the extremal p-adic measure. Coleman and Edixhoven showed in [5] that

P(X) never has double roots if the weight is 2, namely, k = 0. Moreover, they showed
that assuming Tate’s conjecture the polynomial P(X) can never be a square for general
weights k + 2. Because we believe in Tate’s conjecture, we expect that this situation never

occurs; hence, surely the hypothesis of the theorem is never fulfilled and y?"; can never

be constructed. Because these extremal scenarios do appear in nature for other reductive
groups, for instance, for GL, /F where F is a totally real number field of even degree over
Q (see [6], Section 3.3.1), we believe that our result above is potentially powerful. We plan
to employ the approach of this note to cover these cases in the near future.

Notice that, in the unlikely situation of the above theorem, the two p-adic measures

pg,pand ‘uj‘?(; coexist. Thus, one can define the p-adic L-function

L(£,5) = [ exp(s - log(x))dps(x),

P

called the extremal p-adic L-function, which coexists with L,(f,s), and satisfies the in-
terpolation property (1) with completely different Euler factors e‘;"t(np,)(o) from the
classical scenario.

In the non-critical setting, namely when the roots of the Hecke polynomial are distinct,
there is a classical result that relates i, to a two-variable p-adic L-function £, that
interpolates yg p,, as ¢ ranges over a Coleman family passing through f. In [7], Betina
and Williams have recently extended this result to this critical setting. They construct
an element

ﬁp c T®Q}7 R,

where R is the Qp-algebra of locally analytic distributions of Z,; and T is certain Hecke
algebra defining a connected component of the eigencurve. Because an element of the
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Coleman family corresponds to a morphism g : T — @y, the function £, is characterized
by the property

Ly =C(8) " Hgps
where C(g) € Q' is a constant normalized so that C(f) = 1. The following result that was

proved in Section 7.4 relates £, to our extremal p-adic measure y}?‘;

Theorem 2. Let t € T the element corresponding to U, — a. We have that

oL _ _
T:(f) S 1.“?,(; + Qpl"f,p'

This last result implies that these extremal p-adic L-functions are analogous to the
so-called secondary p-adic L-functions that are defined by Bellaiche in [8].

1.2. Summary and Structure of the Paper

This paper consists of two principal achievements: on the one hand, we provide
a reinterpretation of the p-adic cyclotomic distributions ¢, giving rise to the p-adic
L-functions Ly(f, p). After recalling the classical theory in Section 3, we introduce, in
Section 4, our construction. Thanks to its local nature, this construction is available in
every possible situation, except when the associated local automorphic representation is
supercuspidal. We also provide sufficient conditions for our locally constant distributions
Hfp to be extended to admissible locally analytic measures. Moreover, we exploit the
automorphic nature of our construction in order to compute the interpolation properties of
1f,p, namely, the relation between such p-adic distributions and the classical L-functions
L(s, m).

On the other hand, exploiting the same techniques used in this new reinterpretation
of the classical p-adic cyclotomic distributions jif ,, we introduce, in Section 5, a genuinely
new type of p-adic distribution y?’;. Because such distribution is included in the formalism
of the construction described above, we can prove its admissibility and, as shown in

Theorem 1, we can describe its interpolation properties. Thus, ‘u]ec"; extends to a locally

’

analytic p-adic measure, giving rise to the extremal p-adic L-function L;Xt (f,s).

There are several classical results that help in understanding better the classical p-adic
measures ji,,. The first one is the relation between i , and the so-called overconvergent
modular symbols. Such overconvergent modular symbols are locally analytic extensions of
the modular symbols attached to f. Pollack and Stevens showed, in [9], that we can obtain
the p-adic measures jif , alternatively by evaluating the corresponding overconvergent
modular symbols at the degree zero divisor 0 — co. It is rather natural to ask ourselves
whether there is an analogous description for y}e("; In Section 6, we prove that this is indeed
ext

’

the case, and ¢! can be realized as the evaluation of the corresponding overconvergent

modular symbol at 0 — oco.

The second classical result relies on the relation i , with the eigencurve. The eigen-
curve is a rigid analytic space, whose points classify eigenvalues of the Hecke operators
acting on the spaces of modular forms of any weight. For many interesting arithmetic
applications, such as the Iwasawa Main Conjecture, it is convenient to construct a function
Ly on the eigencurve, with values in certain Qy-algebra R of locally analytic distributions
of Z,;, whose evaluation at the set of eigenvalues that are associated with f is given by
#f,p- In the non-critical setting, the construction of this two-variable p-adic L-function £
is rather classical, but, in our critical setting, it is a very recent result due to Betina and
Williams in [7]. In Section 7, we are able to relate our new p-adic measure y]e("; with L.

Indeed, we prove, in Theorem 2, that the derivative of £, with respect to (U, — «) is given
ext

by the measure p For
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1.3. Conclusions and Future Research

This new reinterpretation of the construction of jif , has some interesting advantages.
On the one side, it is purely automorphic and local. It relies on the construction of a
well-behaved local morphism é from the space of locally constant functions of Z to
the underlying space of the local automorphic representation that is associated with f
(see Section 4.4). This formalism is totally transferable to the case of any automorphic
representation of GL, over any number field, because it only depends on the behaviour
of the local automorphic representation. Hence, we expect to be able to construct p-adic
measures and p-adic L-functions that are associated with any automorphic representation
of GL; for any weight over any number field. Some of the cases in this research line
correspond to the work of Spiess in [4]. Moreover, if we exchange Z; by any torus
in GL,(F), for any p-adic field F, we expect to generalize the morphisms ¢ in order to
obtain anti-cyclotomic p-adic L-functions that are associated with automorphic forms over
quaternion algebras and certain quadratic extensions of the base field, extending our results
in [10]. Hence, this formalism opens the door to many possible generalizations in many
new and interesting scenarios.

On the other side, because the existence of jif , is subject to the existence of a morphism
¢ with good properties, we expect that our work can shed some light on the problem of
determining the existence of admissible p-adic L-functions when the local automorphic
representation is supercuspidal. After a preliminary study of the possible morphisms ¢ in
this situation, we believe that such an admissible measure may not exist, and it would be
an interesting line of research to study whether that is indeed the case.

The main feature of the article is this new extremal p-adic measure ye’,‘t that arises
under the unlikely hypothesis that the p-th Hecke polynomial has a double root. This
hypothesis is equivalent to the non semi-simplicity of the Hecke operator Uj, and it is
excluded for GL; over Q while assuming Tate’s conjecture. Although we have already
noted that this construction can be generalized to the Hilbert setting where there are
concrete examples where this hypothesis actually occur, such an irregular situation over Q
is still interesting, as it is considered in this article. Indeed, the existence of ;45}’,(; with the
mentioned interpolation properties and its relation with the two variable p-adic L-function
Ly could lead to a better understanding of the semi-simplicity of Uj,. The idea is to derive

a contradiction starting from this irregular setting by exploring the properties of y?’(;.

1.4. Notation

For any ring R, we denote by P(k)g := Sym*(R2) the R-module of homogeneous
polynomials in two variables with coefficients in R, endowed with an action of GL;(R):

(1) owr(on(: D))

We denote by V (k) := Homg(P(k)gr,R) and V (k) := V(k)c. Similarly, we define
the (right-) action of A € GL(R)™" on the set of modular forms of weight k + 2

(1@ =422 fan; (8] )2) = 0

We will denote by dx the Haar measure of Qp so that vol(Z,) = 1. Similarly, we write
d* x for the Haar measure of Q; so that vol(Z, ) = 1. By abuse of notation, will will also
denote by d* x the corresponding Haar measure of the group of ideles A*.

For any local character x : (@; — C*, write

[ A=x(p)p~*)Y, xunramified
L2 = { 1, otherwise.
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2. Local Integrals

In this section ¥ : Q, — C* will be a non-trivial additive character, such that
ker(¢) = Zy.

Lemma1l. Foralls € Q; and n > 0, we have

| wlax)dx = p~p(sa) -1z, (p"a)
s+p"Zy

In particular,
(1-pY), acz,
/X plax)dx =< —p7t, ae p’lZ;

0, otherwise

Proof. We compute

/s+anp P(xa)dx

‘/pn ZP

= pp(sn) [ pCepadx = pp(s) - 1z, (p"a)

P

P((s +x)a)dx = p(sa) [ |xp"[g(xp"a)d* x

To deduce the second part, notice that

foveos= ¥ [ gl p Y gleaz, (o).

p se(Z/pZ)* se(Z/pZ)*

Hence the result follows. O

Lemma 2. Let x : Z; — C* be a character of conductor n > 1. Let 1 + p"Z, C U C Z, be an
open subgroup. We have

/ x(x)p(ax)d*x =0, unless |a| = p".
u

Proof. We compute

x(x)p(ax)d™x x(s) (ax)d x
/LI Y sel/(1+p"Zy) /S+pnzplp

= p Mg, (p"a) Y, x(s)p(sa).

sel/(1+p"zy)
Hence the integral I := [, x(x)¢(ax)d” x must be zero if a ¢ p~"Z,. Moreover, if a €

p—n—i-lzpl

I= [ e )plax(i 4 ")) = x(1 4+ p" =0,
and the result follows. [

3. Classical Cyclotomic p-Adic L-Function
3.1. Classical Modular Symbols

Let f € Sx.2(N, €) be a modular cuspidal newform of weight (k + 2) level I' (N) and
nebentypus €.
By definition, we have

(f | A)(z) - (A71P)(1, —z) - dz = det(A) - f(Az) - P(1,—Az)-d(Az), A€ GLy(R)",
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for any P € V(k). Hence, if we denote by Ay the group of degree zero divisors of P!(Q)
with the natural action of GL,(Q), we obtain the Modular Symbol:

4>jf € Homr, (Ao, V(k));
47?5(5—13 —27'(1(/ f(z)P(1, —z)dz £ f( )P (1,z)dz>.
Notice that I'; (N)-equivariance follows from relation

¢/(D) = det(4) - A" (¢;(AD)), A € GLy(R)™, 3)

-1

deduced from the above equality and the fact that (
ing result is well known and classical:

) normalizes I'y (N). The follow-

Proposition 1. There exists periods Q)+, such that
07 =97,
for some go? € Homy, () (Ao, V(k)r, ), where Ry is the ring of coefficients of f.

3.2. Classical p-Adic Distributions

Given f € S¢42(N, €), we will assume that f is an eigenvector for the Hecke operator
T, with eigenvalue a,. Let a be a non-zero root of the Hecke polynomial
X2 —ap,X +e(p)prtL.

We will construct distributions a of locally polynomial functions of Z; of degree less

that k attached to f (and « in case p { N). Because the open sets U(a,n) = a + p" Ly (a € L)

and n € N) form a basis of Z, it is enough to define the image of P<1 = “)1U(H m (%),
forany P € P(k)yz

X — n ' A
/u(a,n)P<1' p" >d ftx( x) = ,an’fa(p >(P)' 4)

where fy(z) := f(z) — B f(pz) and B = e(p . Tt defines a distribution because p fa
satisfies additivity, namely, since

x—a —b b
P(lz pn>1l,1(a,n) (x) = Z (741 bp) <1 pn+1 )1U(b,n+1) (x), Yab = ( (1) W >/

b=a mod p" !

it can be shown that

X — x—b
Pl1, 2= Vaut (x) = / P(l,)di )
/U<a,n> ( P ) Hia) = L ey TP )27 ()

b=a mod p

because, by (3), we have that U, (pi =a- (pﬁ, where

w2 () (V5

The following result shows that, under certain hypothesis, we can extend yjf ,toa
locally analytic measure.

Theorem 3 (Visnik, Amice-Vélu). Fix an integer h, such that 1 < h < k+ 1. Suppose that «
satisfies ordpa < h. Therefore, there exists a locally analytic measure ‘u;ﬂx satifying:
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¢ fu(a,n) P<1/ xﬁ”)d}lﬁ(x) = D%,,(pi (% - 00> (P), for any locally polynomial function
P (1 x‘,ﬁ) Lit(am) (x) of degree strictly less than h.

o Foranym > 0,
gt Py
/u(m)(x a) dyf’a(x) € ( " ) a .

e IfF(x) = Xy>ocm(x —a)™ is convergent on U(a,n), then

/L.I(a,n)l-"(x)dyh(x) = Y /

m=0 U(an)

(x — a)"dpit, ().

If we assume that there exists such a root a with ord,a < k + 1, then we define
Ha = y}r w T Hia and the (cyclotomic) p-adic L-function:

Ly(foas) = /Z exp (s - 10g(x))ditf o (x).

Remark 1. Write V; the Q[GLy(Q)]-representation generated by f. For any g € Vy, write

2

ois—(P) = 5 (/t 2(2)P(1, —2)dz + /_: g(z)P(l,z)dz) . ©)
Relation (3) implies that the morphism
o5V — Hom(Ao, v(k)@) det, g ¢F, %)
is GL, (Q)-equivariant.

4. p-Adic L-Functions
In this section, we provide a reinterpretation of the distributions y}jf 2y Let f €
Sk12(I'1(N), €) be a cuspidal newform as above and let p be any prime. Fix the embedding

Zy — Qp — GL2(Qp); X — ( X 1 ) 8)

Assumption 1. Assume that there exists a Z, -equivariant morphisms
6:C(Zy,L) —V,

where L is certain finite extension of the coefficient field Q({an }n), and V is certain model over L of
the local automorphic representation 71, generated by f. Additionally, assume that, for big enough
n,

1 s 1 &
n 5(111(5,11)) =T Zci(sln)vi/ )
P %0
where m is fixed, V; € V do not depend neither s nor n, and c;(s,n) € Oy.

4.1. p-Adic Distributions

Let us consider the subgroup

~

Ri(N) = {g €GLy(2): g=(4%) mod N}.

By strong approximation we have that GL,(Af) = GL,(Q)*K{(N). Thus, for any
GLy(Af) 5 g = hgky, where hy € GLy(Q) ™, kg € Ky(N) are well defined up to multiplica-
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tion by I'1 (N) = GL2(Q) ™ N Ky (N). Write K := K;(N) N GLy(Z,). By strong multiplicity
one, ng is one dimensional. Therefore, VX = Lwy and V = L[GL,(Qj)]wy. Notice that we
have a natural morphism

(Pfj'ip : V. — Hom(Ay, V(k)L); ¢Jﬁfz,p<gw0> = det(hg) ) (Pﬁhgl‘

Remark 2. If g € GLy(Qp) then hy € Ki(N)P := K;(N) NI Tezp GL2(Qy). This implies that,
for any h € GLy(Q)* N Ky (N)P, we have hyg = h - hg for all g € GLy(Qp). By (3), this implies
that (pjjf,p(hv) =hx* (pﬁp(v),for allv € V C mp, where the action of h € GLy(Q) " N Ky (N)? is
given by

(h*¢)(D) :=h(p(h™'D)), ¢ € Hom(Ag, V(k)1).

Remark 3. By definition, for any (°5) € To(N), we have

f(iﬁ) =e(d) - (cz+d)*2f(2),  FI(Lh) =e@)-f.

For any z € Qp, such that z = p"u where u € Z,, we can choose d € Z such that

d = u~! mod NZ, and d = p" mod NZ, for { # p. Let us choose A = (°5) € To(N),
and we have

(z,1) = p" A~ Y (uA, p~"A) € GLa(Af), (uA,p~"A) € K1(N).
This implies that, if €, is the central character of 7Ty,
ep(2)97, (o) = g7, (zwg) = det(p" A7) - 955y = p"Fe(d) - g7
_ 1k _ §
Hence, ep = €, | - |, where ep = € |Zp'

Let Cx(Z);, Cp) be the space of locally polynomial functions of Z,; of degree less that
k. Notice that we have a Z -equivariant isomorphism

1:C(Z},2) 07 P(K)e, (—k) — Cu(Z},Cp);  h@P s P(Lx)-h(x), (10)

where (—k) stands for the twist by the character x ~— x .

Fixing L < C,, we define the distributions yjjf ; that are attached to f and J:

L 1@ P)@dnfy(x) = of, (6(1) (0 — ) (P). a1

p

4.2. Admissible Distributions

We have just constructed a distribution
ngé : Gi(Zy,Cp) — Cp.

This section is devoted to extend this distribution to a locally analytic measure y]jf 5 €

Hom (Cloc—an(Z;;/ (Cp)r (Cp) .

Definition 1. Write v, : C, — QU {—oo} the usual normalized p-adic valuation. For any
h € R*, a distribution y € Hom(Cy(Z};, Cp), Cp) is h-admissible if

> —n-
Vp (/u(m) gdy) > vp(A) —n-h,
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for some fixed A € Cp, and any g € Cr(Zy, Oc,) which is polynomical in a small enough
U(a,n) C Z;. We will denote a previous relation by

duc A -p™M0O¢. .
/U(M)gﬂ p C,

Proposition 2. Ifh < k + 1, a h-admissible the distribution y can be extended to a locally analytic
measure, such that

due A-p"0O¢,
/u(m)gu p C,

forany g € C(Z};, Oc,) which is analytic in U(a, n).

Proof. Notice that any locally analytic function is topologically generated by functions of
m

the form P& (x) := (%) 1ys(a,n) (x), where m € N. By definition, we have defined the
values y(P,’i{N) when m < k. If m > h, we define y(PfL’N) = lim,,_,c a,, where

b—a\"l , ;
o
b mod p"; b=a mod pN j<h p ]

This definition agrees with y when i < m < k because p/("*~N )y(P}j’“) % 0 when
j > h, hence

. noy—a\" T (m\
Jlim 2, = )y Z( N ) (-)P](” NPy = u(PgN).

b mod p"; b=a mod pN j=0 J

The limit converges because {a, }, is Cauchy. Indeed by additivity

=Y ¥ Y ) r<s><j)(b"b)”p<"zN>fu<P}’“”2>,

N
j<hb=a (p"2) b'=b (p"1) s=h+1 p

where () = (1) (152)"”" ecause

v —b\"" ny—N)j b n —Ns_ (n7—ny)(s—j) .. (s—h)n
(pN> plm Nl (PY2) € 4. pNep(m-m)(e=i)pls-himoyg,

we have that a1 — a, 0.

It is clear by the definition that ‘u(P,’f{N yeA-p~Nh Oc, for all m,a and N. Moreover,

it extends to a locally analytic measure by continuity, which is determined by the image of
locally polynomial functions of degree at most . [

Notice that, for all m < k,

_ m _ X m
PO (x) = (p) 1U(a,n)<x>:z(1u<a,n>®(Ypf ) xk-m).
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Using property (9) and Remarks 2 and 3, we compute that

a,n Y —aX\" —m
Pitduy, = (6(1(a,n))) (0 = o0) 7 x*
x fip p %

o )pe-m (52) )

) a0 (=) (770

+ a myrk—m
97,0 (G =) (),
Notice that gojf,p(Vi) € Hom(Ay, V(k)L)gl(Npr) := Homg, (npr) (B0, V (k)L )e for some

big enough r € N, where the subindex € indicates that the action of I'; (Np") /To(Np") is
given by the character €. By Manin’s trick, we have that

<
NG

I

i
(e}
)

I
™=
0
=y
N
S~—

T
o
S

1=

Ry
—

2

=
N~—

]

o
2
X

Homrl(Npr) (Ao, V(k)L)e ~ Homrl(Npr) (Ao, V(k)OL)e ®o, L.

Because Y"X*~™ € P(k)o,, c(a,n) € Op and the functions P;;" generate Cx(Z,, Oc,),
we obtain that

A

+ X

/U(a,n) gdﬂf,(s € WOCP, forallg € C(Z,, Oc,), (12)
for some fixed A € L. We deduce the following result.

Theorem 4. Fix an embedding L — C,. We have that ptjjf 5 15 Up()-admissible.

Definition 2. If we assume that v,(y) < k + 1, we define the cyclotomic p-adic measure attached
to f and &

Hps=HfsT My

4.3. Interpolation Properties

Given the modular form f € S;,,(I'1(N)), we can define an automorphic form ¢:
GL,(Q)\GLy(A) — C associated with f. Indeed, one has that GL,(A) = GL,(Q)(GLy(R) ™
xGL2(Ay)), hence ¢ can be seen as the GL,(Q)-invariant function of GLy(A), whose
restriction to GLp(R)* x GLy(A¢) is

0(50,87) = qarioy £ 17 gs(0), 85 = 1 € CLa@ RaN), g = (24).

Given g € GL(Qyp), we compute (p]jf,p (gwo) (0 — c0) (Y™ Xk=—m) =

= det(hg) - G”ﬁhgl (0 — oo0) (Y™ XK=y

_ _27[;)1?(}18). ([:f | hgl(ix)(—ix)mdxiljf | hgl(ix)(ix)mdx>
_ é?/wk-¢<<x1>,g>m-<<—f>miim>-

This implies that, if we consider the automorphic representation 7 generated by ¢,
and the GL,(Q,)-equivariant morphism

gbfZT[pHﬂ: qwo — ¢,
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we have that

D tgam e (B,

0 E)0=5) ) = S

Let H be the maximum subgroup of Z such that 1 |5 is constant, for all sH € Z, / H.
Notice that h = Esez,f /11 1(8) 15 Moreover, for all v € 71, the automorphic form ¢¢(v)

is UP := Ty Z, -invariant when embedded in GL,(A) by means of (8). Hence, if we
consider ¢y, 1= q)f+p +9r then we have ¢ ,(6(h))(0 — o0) (Y™ Xk=m) =

_ 47th(s - k . .
- sHGZX/H Zin /R+ /UP L)) ((F1),1, (")) d"xd™ t
h(s
N SHEZX/H%Z(F /R+ /up XK (6(1)) (% 1), (F1), (q))d*xd™ t
47 . .
= GRGE heror H) 00N )

where i(y) = (=)™ - h(yp|yly!) - [y|"F, forall y = (y0)o € AX, and ijf is QJT or QJ?,
depending on whether m is even or odd.

Let x € Ci(Z;,Cp) be a locally polynomial character. This implies that x(x) =
Xo(x)x™, for some natural m < k and some locally constant character x(. In particular
X = 1(xo ® Y"X*=™). We deduce that

./;X(x)dﬂfﬁ(x) 12(%'/&/@ RolyI™ For(6(1m)) (¥ 1 )d™y,

where %o(y) := Xo(¥pyYe')-
Let ¢ : A/Q — C* be a global additive character and we define the Whittaker

model element
WiiGLa) — G W= [ gt (1] ) )v(-na

This element admits a expression Wl (g) =TT, W 5 H (g0),if § = (g0) € GLy(A). Moreover,
by Theorem 3.5.5 in [11], it provides the Fourier expansion

opoe) = £ wi((" ) )s)

aeQx

We compute

S WA 00N )y = [ o)l W)y

I1 [ Rolwolyel" Wi (* )a"ye.
v v

By definition of §, when v # p the element W{! correspond to the new-vector, thus by
Proposition 3.5.3 in [11]

- _ . 1 -
/X)co(yv)lyvlm Wi (¢ 1)dxyv—Lv(m—k+ 2,7rv,xO), v #p.

v
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By Section 3.5 of [11], We conclude

/

where the Euler factor

1 -
x(@)dpug 5(x) -es(7ty, x0) -L(m ke ,mm),

x ~ofm 2

-1
L m—k+l,n,)€0
P 277%p - _
et = 2L Vol(H) ) [ Rl "W (7 )7y,
P

4.4. The Morphisms 6

In this section, we will construct morphisms ¢ satisfying Assumption 1. The only case
that will be left is the case when 71, is supercuspidal. In this situation, we will not be able to
construct admissible p-adic distributions.

Let 71, be the local representation. Let W : 1, — C be the Whittaker functional,
and let us consider the Kirillov model K that is given by the embedding

Ay = K; A(U)(y)zW((y 1 )v>

Recall that the Kirillov model lies in the space of locally constant functions ¢ : Q; — C
endowed with the action

(17 )ew =weee, (7 o) = otay) (13)
We construct the Z -equivariant morphism
5:C(Z},C) — K S(h)(y) = /Z Y (zy)h(2)p(—zy)d*z, (14)

for a well chosen locally constant function ¥. Notice that, if & = 1} for H small enough

8() () = ¥(v) [ p(-zn)d*z = vol(H)¥(y), ifly| <<0.

This implies that, in order to choose ¥, we need to control how K looks like:

e By Theorem 4.7.2 in [11], if 1, = 71()1, x2) principal series then K consists on func-
tions ¢, such that ¢(y) = 0 for |y| >> 0, and

Cyly[!/? +Coly"x2(y), ,
4,()2{ 1yl “xa(y) + Gyl “xa(y) X1 # X2 y| <<0,

C1lyl"%x1(y) + Coop (W) 1M1 (v),  x1 = x2,

for some constants C; and Cy.
* By Theorem 4.7.3 in [11], if 1, = (1, x2) a special representation such that x1x, o=
| -]~ then K consists on functions ¢, such that ¢(y) = 0 for |y| >> 0, and

o) =Clyl'x2(y), Iyl <<0,
for some constant C.
* By Theorem 4.7.1in [11], if 7t is supercuspidal then K = Cc(Q;’, C).

By Lemmas 1 and 2 we have that 6(h)(y) = 0 for y with big absolute value. This
implies that

e Incase 7, = 7(x1, x2) with x1 # X2, we can choose

Y=[1"x o ¥=[]"p
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e Incase mp, = (X1, x2) with x1 = x2, we can choose
Y= "*n or ¥=o0|[Vx.
* Incaserm, = o(x1, x2), we have
¥ =[x

* Incase 7, supercuspidal, it is not possible to choose any Y.

We have to prove whether ¢ satisfies the property (9): if ¥ is invariant under the action
of 1+ p"Zy,
(" )oCuamm = = (") (7" ) ()euEn) )
= ep(p") plap™"y) - 0(Lugam)(p™")
= )" [ ¥y y(a—2)d* 2
U(an)

ep(p)"-¥(p"ya) - Ip["

= 1_ p_l /%p ll’(yz)d z

n, n

2P ) 15,0,

because d*x = (1 — p~1)~1|x|ldx.

. If ¥ is a character, then we deduce the property (9) withm =0, v = ¥ ( p)psp (p)fl,
co(a,n) =¥(a)and Vo = (1 - p~")"¥(y)1z,(y).

e IfY = ov,-x with x a character, it also satisfies property (9) with m = 1,
v=x(p)pep(p) ", cola,n) = —nx(a), ci(a,n) = x(a), Vo = (1 —p~ ") "x(W)1z,(v)
and Vi = (1 - p~ 1) 1o, () x(y)1z, ().

4.5. Computation Euler Factors

We first define the Gauss sum attached to a character:

Definition 3. For any character x : Z; — C* of conductor n > 0,

(X)) =tx¢) =p" i x(x)p(—p~"x)dx.

P

The following result describes the Euler factors in each of the situations:

Proposition 3. We have the following cases:
i) IfY=11"x,

. 1
A=p )" 2w ()T o) s )
L(m—k+1/2,%0x;) L(k—m+1/2,50x; 1) P 7 (Xi. X/)’

1
(A—p= )" D i () T (roxind)
L(k—m+1/2,%0x; 1)

e&(”p,XO) =

, Tt =0(Xis Xj),s

where r is the conductor of x;xXo.
(i) IfY¥=0p-]-1"?x;,

k—m—1 m—k—1 -1 -1
2xi(p)+ 2 Xi —2p . 1.
p i(p) q—p’l ip) =2 . XoXi |Z;_ 1;

65(7-[}7’ XO) = r(mfkf%

—rp

"xi(p) " T (xoxi) ;

- cond(xox:) =r > 0.
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Proof. In order to compute the Euler factors e;(71,, xo), we have to compute the local periods
— 1 = m—kyrH (Y X 1 / = m—k x
I i Joy RO W )T = s [ Rl o)y
Recalling that {g is H-invariant, we obtain
1
I — v m—k/ 1{; _ X X — / & m—klfr _ X .
* = Sol(H) /@; XoW)ly|"™ | ¥(zy)p(—zy)d”zd”y o Ro(x)|x[" ¥ (x)p(—x)d"x
In case (i), we have that ¥ = | - |'/2x;; hence, by Lemmas 1 and 2

o= TP D) [ ot
P
_ { Lo P Dx(p)" = (1= p )" ni(p) 7 xoi = 1
(1= p~ ) =D (p) T (x0i, ); cond(xoxi) =7 >0
_ { Q- p A= p"F () A= PGP Koxi Iz =1
(1= p )2 i (p) T (o, ¥); cond(xoxi) =r >0,

because e;(7tp, x0) = Ly(m —k+1/2, 7y, %0) ! - Is and

3 L(s, Xoxi) - L(s, Xox;), 7p = 7(Xi, X)),
L,(s, Ty, — * ] P A]
P( P XO) { L(S/X()Xi)/ Ty = U(Xi/%j)r
part (i) follows.

|12

In case (ii), we have that ¥ = v,, Xi; hence, we compute

I5

Enp" Do) [ xo(xx)g(—p )

_ { Lo mp"E "D (p)" + (1= p~) 7" 2xi(p) 7Y Kok gy = 1
—r(1 = p ) k=D i (p) T (xoxi ); cond (xox;) =7 >0

P d ()" ’k’%)clf(p)‘lﬂp‘1
= (1-pH)(A-p" "2 x5(p))?
—r(1—p~ ) k=2 i (p) T (xoxi, ¥);  cond(xoxi) =1 >0,

; XoXi lz;=1;

Nl—

where the second equality follows from the identity Y- nx" = x(1 — x)~2. The result
then follows. O

5. Extremal p-Adic L-Functions

If 1, = (X1, x2) or o(x1, x2) with x; unramified, then the Hecke polynomial X? -
apX +€(p)p**! = (x — a)(x — B), where & = p!/2x;(p) L. This implies that, if 7 = a has
small enough valuation, then we can always construct v(a)-admissible distributions y
and piy = py + py .- Infact, if 71, = 71(x1, x2) and x is also unramified, we can sometimes
construct a second vy, (8)-admissible distribution p.

By previous computations, the interpolation property implies that, for any locally
polynomial character x = xo(x)x" € Cr(Z},Cp),

4 1
ofm eP(nPrXO) : L(m —k+ E/ 7-[/)(0)'

y Xdpa =
z; sz

with
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(1=p ) A =e(p)a )10 P xoxa gy =1

ep( 7T ,X =
p( ' 0) { (1 - p 1) 1prm0¢ T(XOXZ/ IP)/ COI’Id(X()Xz) =7r>0.

This interpolation formula coincides (up to constant) with the classical interpolation
formula of the distribution jif , that is defined in Section 3.2. Indeed, it is easy to prove that
goi is proportional to (pjjfl p(Vo) (see Equation (15)); hence, the fact that ;tjjf, . 1 proportional
to ui follows from (4), (11) and property (9). In fact, if ¥ is a character, then all of the the
admissible p-adic distributions that are constructed in this paper are twists of the p-adic
distributions described in Section 3.2 (also in [3]); hence, for those situations, we only
provide a new interpretation of classical constructions.

The only genuine new construction is for the case ¥ = vy, - | - |1/2

x and 7t = (X, x)-

Theorem 5. Let f € Sy (I'1(N), €) be a newform, and assume that 71, = 7t(x, x). There exists
a (k+ 1) /2-admissible distribution ye"t of Z;, such that, for any locally polynomial character

X = xo(x)x™ € C(Zy;, Cp),

47 1
X .M]efxrt) . 'EEXt(nP/XO) L(Tfl—k-i-z, 7-[/7(0)/

+om
sz
with
P ) 2 -2t XX lz;=1;
ef,Xt(ﬂp/XO) = (k) =p o A0 dzg—
(k=5 _r
R cond (xox) = r > 0.

Proof. The only thing that is left to prove is that y?‘t s (k + 1) /2-admissible, but this
directly follows from Theorem 4 and the fact that

1 _
x5 vy=x(prlpl2ep(p)

-1 k 2
gp:e'p || =

Hence, vp(7) = L +k+0,(x(p)) = L. O
Remark 4. Notice that y‘}"; has been constructed as the sum

ext ext,+ ext,—

Wep =Hrp THey

Definition 4. We call Vje[x; extremal p-adic measure. Because (k+1)/2 < k+ 1, by Proposi-
tion 2, we can extend y?‘;} to a locally analytic measure. Hence, we define the extremal p-adic

L-function

L3015 [, opls oganie

p

Hence, we conclude that, in the conjecturally impossible situation that 71, = 7(x, x),
two p-adic L-functions coexist

Li(fs),  LSN(F,s).

Their corresponding interpolation properties look similar, but they have completely
different Euler factors.
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Alternative Description

In the classical setting that us described in Section 3 () unramified), p-adic distribu-
tions yjfp are given by Equation (4), while extremal p-adic distributions satisfy

[ PSS @ = o Gupnno—e) (p(x X))

w5 P =) (o o) ()

where Vo = (1—p~1)y|"2x(y)1z,(y) and Vi = (1 —p~ ) o, () |y[' 2 x (1) 1pz, ().
Using the relations (13), we compute the action of the Hecke operator T, on Vj + V7:

T,(Vo+ Vi) = (p‘l 1)<V0+V1)+ce;pz(l ;; )(VO+V1)
= V+v)(pr 'y + (Vo+Vi)(py) Y. (ey)
p(p) ceZ/pZ.
1/2y -
- Ay ( P01z, () + D Zz/zwy)lzp(py))
CEL/p
- W/Z b )Za(1+v (y)1z, (y) = 2a(Vo + V1)
1—p D p\Y))1z,\Y 0+ V1),
because a = y = pl/zx(p) L=¢,(p)~1p'2x(p). Similarly,
. 1 p’lc 1 o) = a
Upvo—cezz/pz( - )vo—ep(p)vo@y)CGZZ/pr( ETAD

Hence, Vjy and V; are basis of the generalized eigenspace of Uj, in which Vj is the eigen-
vector and Vp + V; is the newform. This implies that (up to constant) gojf p(Vo) = (pi, where
fa is the p-specialization defined in Section 3.2, while we have that go? p<V0 +V) = gof.

We conclude that, in terms of the classical definitions given in Section 3.2, the extremal
distribution can be described as

xX—a ext,+ _ i + a
/ll(a,n)P(l, p" )d‘ufl’ (x) = alt goff(nJrl)fLt <pn 00) (P).

6. Overconvergent Modular Symbols

Forany r € pQ,let B[Z,,r] = {z € Cp, Ja € Zp, |z —a| < r}. We denote, by A[r], the
ring of affinoid function on B[Z, r]. The ring Alr| has structure of Q-Banach algebra with
the norm || f ||,= SUP. B[z, ] |f(z)|. Denote, by D[r] = Homg, (A[r], Qp), the continuous

dual. It is also a Banach space with the norm

lu(f)]
I = supyea {77
We define
D= lim DI,
v epQr/>r

where the projective limit is taken with respect the usual maps D[r,| — DIrq], r1 > 17.
Because these maps are injective and compact, the space D[r] is endowed with structure
of Frechet space.
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Given an affinoid Qp-algebra R and a character w : Z, — R*,such thatw € A[r] ®Qp R,
we can define an action of the monoid

b
Zo(p) = {< Z d > € My(Zy), pta, plc, ad—bc;«éO}
on A[r]&q,R and D[r]&q, R given by

(rrf) = ware) f(TEE), fe Ao R

(r*om)(f) = (7 = f), v €Xo(p), p€D[r&g,R

Write Dy, [r] for the space D[r] ®Qp R with the corresponding action. Similarly, we define

D},:= lim Dylr] = D'[r]&g,R,
r'epQr >r

where the second equality follows from Lemma 3.2 in [8]. Compatibility with base change
and Lemma 3.5 in [8] imply that, given a morphism of affinoid Q,-algebras ¢ : R — R/, we
have isomorphisms

Dy[r] ®r R' =5 Dyou[r],  Dh[r] ®@r R —» D}y, [r]. (16)

Definition 5. We call the space Homr (Ao, D1,[r]) the space of modular symbols of weight w.
We denote, by Homg (Ao, D [r]), the subgroup of Homr (Ao, D1, [r]) of elements that are fixed or
multiplied by —1 by the involution given by ( ).

The action of £y(p) on D},[r] induces an action of U, on Homi" (A, D}, [r]) given by
the Formula (5).

Assume that R is reduced and its norm | - | extends the norm of Q,. Write as usual
vp(x) = —log|x|/log p, so that v,(p) = 1. Let us consider

R{{T}}:= { Y a,T", ay € R, lign(vp(an) —nv) =ooforallv € R}.

n>0
Given F(T) € R{{T}} and v € R,
N(F,v) := max{n € N, vy(a,) — nv = infy, (vp(an) —mv)}.

A polynomial Q(T) € R[T] C R{{T}} is v-dominant if it has degree N(Q,v) and,
for all x € Sp(R), we have N(Q,v) = N(Qx,v). We say that F(T) € R{{T}} is v-adapted
if there exists a (unique) decomposition F(T) = Q(T) - G(T), where Q(T) € R[T] is a
v-dominant polynomial of degree N(F,v) and Q(0) = G(0) = 1.

Because Hom:! (Ag, Dy|r]) satisfies property (Pr) of Section 2 of [12] and Up acts
compactly, then one can define the characteristic power series F(T) € R{{T}} of U, acting
on Homlj-E (Ao, Dy|r]). We say that R is v-adapted for some v € R, if F is v-adapted. If this
is the case, then we can define the submodule Homg (Ag, Dy[r]) =V of slope bounded by v
modular symbols as the kernel of Q(U,) in Homj (Ag, Dy[r]).

We write Homit (Ao, Df, [r])=V for the intersection

Homg: (Ao, DY [r])=" := Homj (Ag, DL, [r]) N Homi (Ag, Du[r']) =Y

in Hom% (Ao, Dy[r']), for any v’ > r.
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6.1. Control Theorem
Let us consider the character
. k
k: Z; — Q;, X — X",
We have a morphism of X (p)-modules
i : Di[1] — V(k):=V(k)g,;  pi(w)(P) := u(P(1,2)).
This provides a morphism
Pk : Homg (Ao, Df[1]) — Homg" (Ao, V(k)) (17)

Theorem 6 (Steven’s control Theorem). The above morphism induces an isomorphism of Q-
vector spaces
pj : Homg (Ag, Df[1]) ¥ — Homi (Ao, V (k) <K

Proof. See Theorem 7.1 in [13] and Theorem 5.4in [9]. O

6.2. Extremal Modular Symbols
Let f € Sxi2(N,€), as before, and assume that the Hecke polynomial x> — a,x +
e(p)p**1! has a double root «. We have defined admissible locally analytic measures yj’(x;’i

that are characterized by

X—a ext, & _ i L aE a _
o, P )20 = s (=) P

for any P € P(k)g. Our aim is to describe ;tje,x;’i as the evaluation at 0 — oo of certain

overconvergent modular symbol Homg (Ao, Df[0]).

NOtiCe that, lf we Write ng = f —_ (I’l + 1)fa and ')’a’n = ( 1 pan )/

o o = x—a ext,+
/Zn Yo (pk(PﬂZl’)(x)de,p (x) = /g+pnzpp(1, p" >dﬂf,iﬂ (x)

1 L[ a
0(7 ’ q)gn <pn - 00) (P)
1

= o 4’?” (Yan(0 —00))(P)

_ 1\" . B

- (pa) 9L (0—c0)(72hP).

Moreover, the elements 7, | (pk(P)lzp) € Alp™"|foralln € N, a € Zj,, and these

functions form a dense set in U,,>g A[p~"].

Lemma 3. For any divisor D € Ay, the expression

Yam (Pk(P)lzp) — (pla)” : ¢;|W(D)(W;%P>

extends to a measure in ¢ (D) € Df[1].



Mathematics 2021, 9, 234

19 of 26

Proof. We have to show additivity, namely, since

1 hfnﬂ
Ton(06(Pz,) = L v (peneP)iz, ) m ‘—<o / )

b=a mod p"

we have to show that

1 n + 1 1 n+1 n i
(pﬂé) ' q)g”ha,n ( ) (,)/a nP) Z <p¢x> . ¢g”+1|7b,n+1 (D) (,)/br”‘f’lfybp) :

b=a mod p"

Indeed, we have that Yo _H'yb 'ya ., thus the above equation follows from the fact

that g, € Sii2(T, €) satisfies Upg, 11 = 5 T S S I
First, we notice that, by (3), for any P € P (k) Zys

R _ 1\V kil
05D (0P)12,)) = (1) o (raaD)(P) € 4-p ¥ O,

for big enough N, since v, (a) = (k+1)/2.
On the other hand, any locally analytic function is topologically generated by functions
m
of the form PN (x) := (%) 1,4 pn (x), where m € N. The functions ’ya_}\] (pk(P)lzp) are

paN , when m < k; hence, our distribution must be determined by

generated by Py

1

o)) = (

N
poc) '(ngtw\y,,,N(D)(% N (T m]/m)>, m < k.

If m > k, we define g?)eixt(D)(Pf,[N) = lim,,_,c a,, where

w= v x(%) " (%) a8 DB,

. pN
b mod p"; b=a mod pN j<k

The limit converge because {a, }, is Cauchy, indeed by additivity

v =Y L ¥ Y r(s)(j)(b"b)s_jp("z Vg, (D) (P,

N
j<hb=a (p"2) b'=b (p") s=k+1 p

my (b—a\"®
where r(s) = (s)( N ) . Because

I p\S—J )
(prb) plNigk (D) (PI"2) € A pNe. plmm)s= (= og |

we have thata, 1 —a, — 0. Hence, we have extended ¢=, (D) to a locally analytic measure
by continuity, which is determined by the image of locally polynomial functions of degree
atmost k. [
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The above lemma implies that ¢, € Hom(Ag, Df[1]). Let us check that it is T-
equivariant: For any g € T, it is easy to show that g, | 1z, = ’y;lu 1z, where < ,0; ‘? )a

= fiiz Thus by (7)

Pea(@D) @7an (0x(P)1z,)) = 9@D)(r Y, (P 1008720 P)12, ))

1\" . 1
- (W) : q)g”‘"Yg—laln (gD) (grYa,np)
_ 1\" . 1
- (W) : "’g'1\wg4mg(D) (varP)

= §ea(D)(an (pe(P)1z,))
where the last equality has been obtained from the fact that y,-1, ,87,, L €Tand g, is
T-invariant for all 1. One easily checks that ¢ is in the corresponding (* , )-subspace
Pext € Homg (Ao, DY[1]).
From the definition, it is easy to check the following result

Proposition 4. The measures yf,’(;'i and y;’(; can be obtained as

BN = a0 =00) |5, HES = Pext(0 = 00) |,

o oAt e
where Pext *= Pext + Pext:

6.3. Action of U,

Recall that the action of £o(p) on Homr (Ao, D} [1]) provides an action of the Hecke
operator Uy; the aim of this section is to compute U, ¢=,. Notice that it is enough to

compute the image of the functions f, , p := 7, } (pk(P)lzp):

(Upps) D) funp) = L ¢ae1eaD)(veavan (px(P)1z, )

cmod p

= 9a101D) (1511 (p(P)1z,))

1 n—1 N .
= (ptx) : (Pg”_l"y[)n—l (’Ya,lD) ((YO,n—lp)

11\ | 1,1
= () P )
_ 1N\" . -1
- o (p[)() ' q)gn—l‘%z,n (D) (’)/u,np) ’
Because gy = g,—1 — fa, we deduce that

Upfae = @+ (Pg + 67), (18)

where ¢F € Hom% (Ao, D} [1]) is the classical overconvergent modular symbol correspond-
ing through Theorem 6 to the eigenvector with the eigenvalue « given by f,.

6.4. Specialization of ¢,

Theorem 6 asserts that the morphism p; of (17) becomes an isomorphism when we
restrict ourselves to generalized eigenspaces for U, with valuation of the eigenvector
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strictly less than k + 1. We have seen that ¢=, lives in the eigenspace of eigenvalue a,
and we know that v,(a) = (k +1)/2. Thus, it bijectively corresponds to an element of
Homg: (A, V (k). We can easily compute the image P Pext just calculating the image of the
polynomical functions pi(P) 1z,

, 1)’
PEDP)1z,) = (1) - 95(D)(P) = 9 (D))
Thus, p; oL, = q)}i X that corresponds via Eichler-Shimura to the modular form

f — f«. This fact fits with Theorem 6 since f — f, belongs to the generalized eigenspace,
indeed, (U, — a)?(f — fa) = 0.

7. Extremal p-Adic L-Functions in Families
7.1. Weight Space

Let W/Q, be the standard one-dimensional weight space. It is a rigid analytic space
that can classify characters of Z;, namely,

W = Hommt(Z;,Gm).

If L is any normed extension of Qp, we write @ : Z; — L* for the continuous
morphism of groups corresponding to a point w € W(L).

If k € Z, then the morphism k(t) = tk for all t € Z;; defines a point in W(Qp)
that we will also denote by k. Thus Z C W(Q,), and we call points in Z inside W(Qj)
integral weights.

If W = SpR is an admissible affinoid of WV, the immersion Sp(R) = W — W defines
an element K € W(R), such that, for every w € W(Q,) — W(Q,), we have @ = wo K.
By Lemma 3.3 in [8], there exists 7(W) > 1, such that the morphism

Z, — R*,  z+— K(1+ pz)

belongs to A[r(W)](R). We say that W is nice if the points Z N W are dense in W and both
Rand Ro/pRy are PID, where Ry is the unit ball for the supremum norm in R.

7.2. The Eigencurve

For a fixed nice affinoid subdomain W = SpR of W, we can consider the R-modules
Homg (Ao, Dg[r]), for 1 < r < r(W). By Proposition 3.6 in [8], we have that the space
Homg" (Ao, D¢ [r]) is potentially orthonormalizable Banach R-module. The elements of the
Hecke algebra H = Z[T,, (n), Up| act continuously and U), acts compactly.

If we consider Homst (A, DI‘% []), Theorem 3.10 in [8] asserts that, for any w € W(Q,)
and any real number 1 < r < r(W), there natural H-equivariant morphism

Homg (Ag, D [r]) @0 Qp — Homi (A9, Dg[r]) (19)

is always injective and surjective except when w = 0 and the sign + is —1.

The R-modules Homi" (Ao, Dy[r]) for all 1 < r < r(W) are all v-adapted if one is,
in which case we say that W = SpR is v-adapted. If W is v-adapted, the restriction maps
define isomorphisms between the R-modules Homg (Ag, Dg[r])=" forall 1 < r < r(W).
Thus, we obtain an isomorphism

Homg (Ag, DE[r])=" ~ Hom{ (Ao, Da[r])=Y, 1<r<r(W), (20)

as seen in Proposition 3.11 in [8].
The eigencurves C* = W can be constructed as the union of local pieces

Cy, — W =SpR,
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where v € R is a real and W is a nice affinoid subspace adapted to v. By definition,

CVi\/ - SPTW v’

where Tj; , is the R-subalgebra of Endg (Homr (Ao, D1 ¢l ])=Y) generated by the image of
the Hecke algebra H.

Remark 5. The cuspidal parts of Cy;, , and Cyy , coincide by Theorem 3.27 in [8]; hence, we will
sometimes identify certain neighbourhoods of cuspidal points.

7.3. Specialization

Letw € W(Q,) and write Hom (Ao, D1[1]) g” for the image of the composition.

Hom{ (A, DE[1])=" ®g 0 Qp & Homi (Ao, Dg[1])=" o Hom{ (A, D5[1]))="  (21)
In analogy with previous definition, we write T% , for the Q,-subalgebra of the
endomorphism ring Endg, (Homg (A, D:},[l});”) generated by the image of the_ Hecke
algebra H. By definition, there is a correspondence between points x € SpecT% ,(Qp) and
systems of H-eigenvalues appearing in Hom (Ao, D1[1]) ggv' For any such x, we denote,
by
Hom; (Ao, D§[1]) )
the generalized eigenspace of the corresponding eigenvalues. Similarly, we denote, by
("JI‘;V)(X), the localization of T, ®q, Q, at the maximal ideal corresponding to x. We
have that
Homy (80, D§[1]) () = Hom (80, DE[1))=" @z (T )- (22)

Because, by definition Homj (Ao, D;%[l}) ®Rr.w Qp ~ Hom (A, D [1]) , we have
a natural specialization map

. mE +
Sw : TW,V QR,w QP — T‘w,V'

By Lemme 6.6 in [14] the morphism s, is surjective for all w € W(Qj) and its kernel
is nilpotent. In particular,

SpecTs ,(Qp) = x 1 (w)(Qp), K:CE—W.

Given x € SpecT% ,(Qp) C C%IV(QP), we can consider the rigid analytic localization
('H‘ij\,,v)(x) of 'H‘Ij,f,,v ®q, Qp at the maximal ideal corresponding to x. Notice that, if we denote
by Ry the rigid analytic localization of R ®q, Qp at the maximal ideal corresponding to
w, then (leftv,v)(X) is naturally a R,)-algebra. Localizing at x, we obtain a surjective local
morphism of finite local Q,-algebras with nilpotent kernel

s (Ti) (x) Oy Qp — (T) (v)- (23)

Lemma 4. We have that
(Toow) () = Qp[X]/X

where X corresponds to the element of the Hecke algebra Up —a.

Proof. Equation (22) shows that (']I‘jE )(x) is the Q,-subalgebra of the endomorphism
ring Endg, (Homli (Ao, DE })( )) that is generated by the image of the Hecke algebra H.
By Theorem 6, we have

Homr (80, D, [1])( ) Homr (Ao, V(k))(gv = Qp(f’i + @P(pétxt'
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Hence, we can embed
(Tziu,v)(x) — End(Qp(pi + Qp@it) = MZ(QP)'

Hecke operators T, and (n) act by scalar matrices, and the action of the operator U, is
described in Section 6.3. More precisely, X = U, — a is given by the matrix ( § ; ) with

0 0

respect to the basis (ﬁi, (ﬁét Thus, X? = 0 and the result follows. [

Definition 6. Any classical cuspidal non-critical y € C*(Qyp) corresponds to a p-stabilized
normalized cuspidal modular symbol gojf, of weight k(y) + 2. In this situation, we write

+._ 3+
yy T Vf/,a/ .
Analogously, in our irregular situation that is given by x € C*(Q,), we write

ext,+ . extt
Vx T ]’lf,p

7.4. Two Variable p-Adic L-Functions

In this irregular situation, Betina and Williams define, in [7], two variable p-adic L-
functions L'% that interpolate the p-adic L-functions yyi asy € C*(Qp) runs over classical

points in a neighbourhood of x € C*(Qy). In this section, we recall their construction and

we give a relation between L3 and Tl

Proposition 5. The space Hom; (A, D;%[l])(x) is a free (’]I‘va,v)(x)-module of rank one.
Proof. Proposition4.10in[7]. O

Corollary 1. After possibly shrinking W, there exists a connected component V.= Sp(T) C CVJ\[,,V
through x, such that T is Gorestein and

e + t <v
M := Homg (Ao, Dg[1]) ®T%,V T
is a free T-module of rank one.

Proof. Corollary 4.11in [7]. O

From the formalism of Gorestein rings, it follows that the R-linear dual MY :=
Homp (M4, R) is free of rank one over T. Let R be the Q,-algebra of locally analytic
distributions of Z;. We have a natural morphism D*'[1] — R that is provided by the

extension-by-zero map. This induces a morphism ¢ : D;%[l] — R®QPR and a R-linear
morphism

Mel : Homp (Mg, DR[1]) — R&gq,R
¢ — (0 —00))

Because V is a connected component of the eigencurve, M+ is a direct summand of
Homg" (Ao, DIJ% [1])=Y. Thus, the restriction of Mel defines an element of R&q p./\/li.

Definition 7. By choosing a basis of MY over T, the above construction provides
j: A
Ep € R®QpT

called the the two variables p-adic L-function.
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Write Q, [¢] := Q,[X]/(X?), and let us consider the morphism
e T — Ty = (T ) ) — (Tiv) ) @Ry @ == (Tag) (v) = Qplel,
given by (23) and Lemma 4. This provides a point x[e] € V(Qpe]) lying above x € V(Qp).
Theorem 7. Forany y € V(Q,) corresponding to a small slope p-stabilized cuspidal eigenform,
Ly =C*y) py €R,

for some C*(y) € @; We can normalize [,;,t by choosing the right T-basis ¢~ of MY, so that
C*(x) = 1. Moreover, for a good choice of ¢,

Ly (x[e]) = p + a7 ug" e € R @, Qple]-

Proof. The first part of this theorem corresponds to Theorem 5.2 in [7]. Here, we can
extend their arguments to also deduce the second part of the theorem.
By definition
£t 5 v
Mel = ‘CP(P < ’R’@QpMi'

For any point y € V(Qp), write w = (y) € W(Qp). If we denote M) := My ®r

T(y), we have

My DRy Qp = Homg, (M), Ro) ®r,,0 Qp = Homg, (M) @r,w Qp, Qp),

because M (y)isa finite free Ryy-module. By Proposition 4.3 in [7] and the control Theorem
6, the composition (21) provides an isomorphism

M(y) @Ry Qp = Homf (Mg, D[1]) () ~ Homi (Ag, V(w)) )
Qp (f?;t , regular case,
Qp @yi +Qp fP;f ot irregular case.

We observe that, since

Qp, regular case,

Tly) ORuw Qp = { Qple], irregular case,

a T(y) ®R,,w Qp-basis for Mz/y) ®Rw,z_u Qy is given by ¢y with ¢y (gbyi_) =1 ?nd by ((f);‘fext) =0.
Notice first that the point y : T — Q,, factors through Ty) ORyw Qp — Qp, and it fits into
the commutative diagram

Y

T(y) @Ruw Qp

-
_ ff(

MY @rwQ L
(y) “Rww p

Q
Qy

ecause corresponds to the specialization o up to constant, we compute
B i ponds to the specialization of ¢~ up t tant put

CE(y) 1y = C(y) - 9y (0—00) = CF(y) - Mel(@y) = L, () -9y (95) = L (),

for some C*(y) € Qp, so that C*(y) - p* = 4)%. This proves the first assertion. For the
second, notice that C*(x) = 1 and we have the commutative diagram
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x[e] _

T(x) @Ry Qp ~ Qple]
i«pr l—

_ fef(@E)tea f(9Een) _
Mz/x) Ry Qp : Qp [8]

Because by (18) we have (U, — &) §5 = #E. Again, we compute
e HaT e = gy (0—00) + a7 90— 00)e = Mel(¢y ) + ea” "Mel (@ o)
= Ly (xle]) - (95(93) +en 95 (Phen) ) = L7 (x[e]),
and the result follows. [

Notice that there is no canonical choice of ¢;-, even though we impose C*(x) = 1.
In fact, (14 ec) - ¢ with c € Q, is also a basis, so that C*(x) = 1. For any such a change
of basis, we obtain

Ly (xle]) = (1 +ee)  (uy +a1ug%e) = pi + (a7 pg — opde.

The following result does not depend on the choice of the generator ¢=:

Corollary 2. Let t € T the element corresponding to U, — a. Subsequently,

oL} i
—; () € a7 + Qi
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