
mathematics

Article

Fuzzy Automata as Coalgebras

Ai Liu 1 , Shun Wang 2, Luis Soares Barbosa 3 and Meng Sun 2,*

����������
�������

Citation: Liu, A.; Wang, S.; Barbosa,

L.S.; Sun, M. Fuzzy Automata as

Coalgebras. Mathematics 2021, 9, 272.

https://doi.org/10.3390/math9030272

Academic Editor: Tadashi Dohi

Received: 17 December 2020

Accepted: 25 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan;
liuai@hiroshima-u.ac.jp

2 School of Mathematical Sciences, Peking University, Beijing 100871, China; wshun94@pku.edu.cn
3 INL (International Iberian Nanotechnology Laboratory) & INESC TEC, Universidade do Minho,

4704-553 Braga, Portugal; lsb@di.uminho.pt
* Correspondence: sunm@pku.edu.cn

Abstract: The coalgebraic method is of great significance to research in process algebra, modal logic,
object-oriented design and component-based software engineering. In recent years, fuzzy control
has been widely used in many fields, such as handwriting recognition and the control of robots or
air conditioners. It is then an interesting topic to analyze the behavior of fuzzy automata from a
coalgebraic point of view. This paper models different types of fuzzy automata as coalgebras with a
monad structure capturing fuzzy behavior. Based on the coalgebraic models, we can define a notion
of fuzzy language and consider several versions of bisimulation for fuzzy automata. A group of
combinators is defined to compose fuzzy automata of two branches: state transition and output
function. A case study illustrates the coalgebraic models proposed and their composition.

Keywords: fuzzy automata; coalgebra; fuzzy language; bisimulation; composition

1. Introduction

Control logic plays an important role in component-based programming in deciding
a run-time mechanisms and rules of composition. Precise control needs meticulous im-
plementation so that many applications may be expensive and inefficient. To tackle this
problem, there is an increasing interest in using fuzzy logic in many new areas. As a very
efficient method for handling imprecise properties, fuzzy logic then provides a systematic
approach to incorporating approximate reasoning into such systems so that fuzzy imple-
mentations are not only cheaper and faster than precise ones, but also more understandable
for users [1,2]. Therefore, some devices that profit from the use of vagueness in their overall
operation have emerged and the related theory is described in [3]. For instance, the fuzzy
principal component analysis method, based on the variance contribution rate of the prin-
cipal component combined with the fuzzy theory to obtain a reasonable correction weight,
is used to refine quantitative and qualitative index data of innovation service capability
[4]. Moreover, this approach makes sense not only at the control level, but also at the test
level [5].

Fuzzy control systems incorporate a number of components driven by fuzzy logic [6].
Most of them are rule-based systems that exchange information through interfaces. Tech-
nically, the modeling approach of fuzzy control systems contains three aspects: an input
stage, a processing stage and an output stage, whose details are as follows.

• The input stage transforms an input into a value. The method is to abstract the relation
of an input and its corresponding vague value into a point in a coordinate system,
where the horizontal axis stands for the input domain and the vertical axis stands for
the vagueness domain.

• The processing stage involves inference rules and generates a result for each input,
and then combines the results of the rule. In this stage, logical inference rules are used
to describe the connection between cause and effect. The rules are of the form

Mathematics 2021, 9, 272. https://doi.org/10.3390/math9030272 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8222-2157
https://orcid.org/0000-0002-5037-2588
https://orcid.org/0000-0001-6550-7396
https://doi.org/10.3390/math9030272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9030272
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/3/272?type=check_update&version=2

Mathematics 2021, 9, 272 2 of 21

If 〈condition〉 then 〈conclusion〉.

Such rules provide information for the decision of control variables.
• The output stage processes the combined results from the processing stage and

converts them to a specific control value. For instance, common techniques for
conversion process includes max-min inference, max-membership principle and
mean-max membership.

Automata theory has a long history in modeling systems and applications which can
be realized as a set of states and transitions between them depending on some inputs. Fuzzy
finite-state automata (FFA) incorporate fuzziness into the internal state representation and
output of these computational systems [7]. Depending on the non-fuzzy output labels
associated with (final) states or transitions, there are different classes of FFA: FFA with final
states, FFA without final states, Fuzzy Moore FA and Fuzzy Mealy FA [8]. There are also
works considering fuzzy output maps, such as fuzzy Mealy machines and fuzzy Moore
machines [9,10]. Fuzzy automata have been studied from different aspects. In order to
study behavior control, a novel method to compute the membership values of the next
states of a fuzzy automaton with an averaging function between the membership value of
the input, and the membership value of the current state is proposed in [11]; the behaviors
of lattice-valued nondeterministic fuzzy automata are compared through two language
equivalence relations which have different discriminating power in [12]. Categories of
deterministic fuzzy automata and fuzzy languages based on a complete residuated lattice
with zero divisors are introduced in [13], a common framework for fuzzy type automata is
developed in relationships with morphisms of monads in [14], and the concept of fuzzy
regular language accepted by fuzzy finite automata is purposed in [15]. Describing systems
that behave in the same way in the sense that one system simulates the other and vice
versa, several notions of (approximate) bismulation relations are investigated in [16–18].

Along the past two decades, coalgebra has emerged as a well established general
framework for the study of the behavior of various kinds of automata [19–21]. There is in
particular a generalized determinization construction from automata to coalgebras, includ-
ing partial Mealy machines, (structured) Moore automata, Rabin probabilistic automata,
and pushdown automata [22]. A survey and hierarchy of probabilistic systems as coalge-
bras is discussed in [23]. It connects probabilistic verification with coalgebraic modeling
and compares expressiveness of system types by natural transformations between functors.
Hybrid automata specifying both discrete and continuous behavior can also be modeled as
coalgebras [24]. A coalgebraic perspective supporting a generic theory of hybrid automata
with a rich palette of definitions and results is studied in [25]. In addition, a coalgebraic
semantics framework for quantum systems is developed in [26]. One obvious advantage of
the coalgebraic view is that it induces a simple and intuitive notion of bisimulation between
coalgebras, a notion originally stemming from the world of labeled transition systems and
process algebra [27–29]. Witnessed by the notion of coalgebra homomorphism, bisimulation
on coalgebras can be defined by commutative diagrams and shown to be formally dual
to congruence on algebra [30,31]. Moreover, there is a general framework for the study of
components as concrete coalgebras and the development of the corresponding calculi [32].

A recent thesis [33] proposes a coalgebraic approach to fuzzy automata, which obtains
the following results: (a) a coalgebraic definition of the fuzzy language recognized by a
fuzzy automaton, (b) the definition of a functor describing the determinization process
of a fuzzy automata via a generalization of the powerset construction, (c) a coalgebraic
definition of bisimulation on fuzzy automata allowing the construction of a quotient fuzzy
automaton. However, it only considers the output as the current membership value for the
current state. Moreover, a coalgebraic theory of fuzzy transition systems and their concrete
fuzzy bisimulation is studied in [34]. The authors resort to relational lifting that is one
of the most used methods in bisimulation research, leading to an algorithm for testing
bisimulation in [35], and group-by-group fuzzy bisimulation and its corresponding modal
logic in [36]. Nevertheless, the output stage is omitted. To consider different types of fuzzy
automata, our main contributions are as follows:

Mathematics 2021, 9, 272 3 of 21

• Explore the fuzzy-set monad to serve as the basis to a coalgebraic approach;
• Provide a coalgebraic framework for different types of fuzzy automata, where the

notions of fuzzy language and bisimulation can be addressed;
• Define appropriate combinators for composing fuzzy automata from two branches:state

transition and output function.

Thus, we not only consider fuzzy language respecting the controlling behavior and
bisimulation relations for fuzzy automata, but also study the composition mechanism in
our coalgebraic framework.

This paper is structured as follows. Section 2 introduces different types of fuzzy
automata. Section 3 recalls the definition of the fuzzy-set monad and studies its properties.
Section 4 defines the coalgebraic models for fuzzy automata, the notion of fuzzy language
and considers several versions of bisimulation. Section 5 develops a series of combinators
for composing fuzzy automata. Section 6 discusses a case study. Section 7 concludes and
raises some topics for future work.

2. Fuzzy Automata

In a complex controlled system driven by fuzzy logic, a fuzzy automaton is the basic
unit which contains fuzzy processors and input/output interfaces. Considering fuzzy
output maps, we focus on three types of fuzzy automata: Fuzzy Moore Automata (FMrA),
Fuzzy Mealy Automata (FMlA) and Fuzzy Unified Automata (FUA). FMrA and FMlA are
obtained by modifying the definitions of fuzzy Moore machine and fuzzy Mealy machine
in [8]. Unlike the definition of fuzzy Mealy machine in [8] requiring two functions, one
to describe the next state and the other to describe the output, a fuzzy Mealy machine
is equipped with one fuzzy function to characterize completely the next state and the
output produced in [9]. For distinction between them, we name the latter one as FUA. For
simplicity, initial and final states are ignored for the moment.

Definition 1 (Fuzzy Moore Automata (FMrA)). A fuzzy Moore automaton is a 5-tuple
p = (X, I, O, α, e) where

• X is a set of states.
• I is a set of input symbols.
• O is a set of output symbols.
• α : X× I → [0, 1]X is a fuzzy transition function.
• e : X → [0, 1]O is a fuzzy output function.

Note that each non-fuzzy output map e′ : X → O corresponds to a function e : X → [0, 1]O

such that e(x) = δe′(x), where δk(t) = δ(t− k) and δ is the Dirac function.

Definition 2 (Fuzzy Mealy Automata (FMlA)). A fuzzy Mealy automaton is a 5-tuple
p = (X, I, O, α, e) where

• X, I, O, α : X× I → [0, 1]X are defined as in FMrA.
• e : X× I → [0, 1]O is a fuzzy input-output function.

Note that each non-fuzzy output map e′ : X× I → O corresponds to a fuzzy input-output function
e : X× I → [0, 1]O where e(x, i) = δe′(x,i).

Given an FMrA (X, I, O, α, e), it is easy to construct an FMlA (X, I, O, α, e′) where
e′(x, i) = e(x) without loss of information, so we regard it as a subcase of FMlA and
concentrate on the study of FMlA as coalgebras.

Definition 3 (Fuzzy Unified Automata (FUA)). A fuzzy unified automaton is a 4-tuple
p = (X, I, O, β) where

• X, I, O are defined as in FMrA.
• β : X× I → [0, 1]X×O is a fuzzy input-transition-output function.

Mathematics 2021, 9, 272 4 of 21

In classical methods, two operations F1 : [0, 1] × [0, 1] → [0, 1] and F2 : [0, 1]∗ →
[0, 1] should be defined to to define the language accepted by an automaton [7]. Instead,
we intend to define the notion of fuzzy language with the aid of the fuzzy-set monad.

3. Fuzzy-Set Monad
3.1. Fuzzy Set

The fuzzy set theory [37] was developed by Lotfi A. Zadeh in 1965. The main purpose
of using fuzzy sets is to deal with vague data under some given properties. For example,
consider a finite set of real numbers S ⊆ R and the property “close to 0”. This property
seems ambiguous because there is not an explicit criterion to judge whether objects are
closed to 0. We want to ask within what distance we can say “one real number is close
to 0”. To make it precise, the one should figure out a function which fits the property.
For example,

ψS(x) = max{0, 1− 1
m
|x|}, x ∈ [−m, m]

where m = maxs∈S|s|. This function is called the membership function and indicates that
the closer the data s ∈ S is to 0, the closer the membership value ψS(s) is to 0. Obvi-
ouly, data from which the distance to 0 are equal have the same membership value, i.e.,
ψS(s) = ψS(−s). However, the selection of membership function is not unique and usually
depends on the goal of application.

Definition 4 (Residuated Lattice [33]). A residuated lattice is an algebra K = (K,∧,∨,⊗,→
, 0, 1) with four binary and two nullary operations satisfying:

1 (K,∧,∨, 0, 1) is a lattice with the partial order ≤ which is defined by “x ≤ y if and only if
x ∨ y = y”. The greatest (least) element is 1(0) that for all x ∈ K, x ≤ 1(x ≥ 0);

2 (K,⊗, 1) is a commutative monoid with the unit element 1;
3 For x, y, z ∈ K, x ≤ y→ z if and only if x⊗ y ≤ z.

Especially, if (K,∧,∨, 0, 1) is a complete lattice, then K is called a complete residuated lattice.

Residuated lattices are the algebraic structure that characterizes fuzzy components.

Example 1. The Boolean algebra (2,∧,∨,¬) is a residuated lattice (2,∧′,∨′,⊗′,→′, 0, 1). In
this expression, 2 = {0, 1} is the set of elements. ∧′,∨′ correspond to ∧ and ∨ operations in
Boolean algebra, respectively. Multiplication ⊗′ is defined as ∧. The residuate operation→′ comes
as x →′ y := ¬x ∨ y.

Definition 5 (Fuzzy Subset [33]). Given a set X, a fuzzy subset over K of X is a function
φ : X → K that assigns to each object x ∈ X a membership value. The set of all fuzzy subsets of X
is denoted by ZK(X) and obviously ZK(X) = KX. In the sequel, we use the shorthand notation
Z(X) to represent ZK(X).

Note that Z can be interpreted as an endofunctor on Set where

Z(f) :KX → KY

κ 7→ λy.
∨

x∈ f−1(y)

κ(x)

for any f : X → Y. Note that ∨
x∈X

κ(x) = ∨{κ(x)|x ∈ X}.

Mathematics 2021, 9, 272 5 of 21

3.2. Properties of Fuzzy-Set Monad

The fuzzy-set monad on Set is defined in [33]. In this section, we will firstly recall the
definition and then prove this monad is strong and commutative. Although every monad
in Set is strong, we include the explicit contribution to build up intuitions.

Definition 6 (The fuzzy-set Monad [33]). Fuzzy-set monadZ = (Z, η, µ) overK = (K,∧,∨,⊗,
→, 0, 1) satisfies for a set X

• η : Id⇒ Z satisfies that

ηX(x)(y) =

{
1 x = y

0 otherwise,
x, y ∈ X,

• µ : Z2 ⇒ Z satisfies that

µX(Φ) =
⋃

ψ∈Z(X)

Φ(ψ)~ ψ, Φ ∈ Z2(X).

where
(
⋃
i∈I

φi)(x) =
∨
i∈I

φi(x) x ∈ X, φi ∈ Z(X)

and
(a~ φ)(x) = a⊗ φ(x) a ∈ K, x ∈ X, φ ∈ Z(X)

Definition 7 (Strong monad [21]). A strong monad is a monad T = (T, η, µ) equipped with a left
tensorial strength σX,Y : T(X)×Y → T(X×Y) that commutes with the unit and multiplication
of the monad:

X×Y X×Y

T(X)×Y T(X×Y)

id

ηX × id ηX×Y

σX,Y

T2(X)×Y T(T(X)×Y) T2(X×Y)

T(X)×Y T(X×Y)

σT(X),Y T(σX,Y)

µX × id µX×Y

σX,Y

Theorem 1. The triple Z = (Z, η, µ) is a strong monad.

Proof. Firstly, define a left tensorial strength with components σX,Y : Z(X) × Y →
Z(X×Y) as

σX,Y(ψ, y) = λx, λy′.(ψ(x)⊗ ηY(y)(y′))

that commute appropriately with trivial projection and associativity isomorphisms for
f : X → Z and g : Y →W:

Z(X)× 1 Z(X× 1)

Z(X)

Z(X)×Y Z(X×Y)

Z(Z)×W Z(Z×W)

σX,1

Zπ1π1

σX,Y

Z(f)× g Z(f × g)

σZ,W

Mathematics 2021, 9, 272 6 of 21

(Z(X)×Y)× Z Z(X×Y)× Z Z((X×Y)× Z)

Z(X)× (Y× Z) Z(X× (Y× Z))

σX,Y × id σX×Y,Z

∼= ∼=

σX,Y×Z

For the unit,
σX,Y · (ηX × id)(x, y)

= { Definition of × }
σX,Y(ηX(x), y)

= { Definition of σ }
⊗ ·(ηX(x)× ηY(y))

= { Definition of η }
ηX×Y(x, y).

For the multiplication, we have to show that µX×Y · Z(σX,Y) · σZK(X),Y = σX,Y · (µX × id).
For a pair (Φ, y) ∈ Z2(X)×Y,

µX×Y · Z(σX,Y) · σZ(X),Y(Φ, y)

={ Definition of σ }
µX×Y · Z(σX,Y)(⊗ · (Φ× ηY(y)))

={ Definition of Z, σ }
µX×Y(

⋃
(ψ,y′)∈Z(X)×Y

⊗ · (Φ× ηY(y))(ψ, y′)~ ηZ(X×Y)(σX,Y(ψ, y′)))

={ ⊗ · (f × g)(x, y) = f (x)⊗ g(y) }
µX×Y(

⋃
(ψ,y′)∈Z(X)×Y

(Φ(ψ)⊗ ηY(y)(y′))~ ηZ(X×Y)(σX,Y(ψ, y′)))

={ Definition of η }
µX×Y(

⋃
ψ∈Z(X)

Φ(ψ)~ ηZ(X×Y)(σX,Y(ψ, y)))

={ Definition of σ }
µX×Y(

⋃
ψ∈Z(X)

Φ(ψ)~ ηZ(X×Y)(⊗ · (ψ× ηY(y))))

={ Definition of µ }⋃
ψ′∈Z(X×Y)

(
⋃

ψ∈Z(X)

Φ(ψ)~ ηZ(X×Y)(⊗ · (ψ× ηY(y)))(ψ′))~ ψ′

={ Definition of η }⋃
ψ∈Z(X)

Φ(ψ)~ (⊗ · (ψ× ηY(y))

Mathematics 2021, 9, 272 7 of 21

For the right side of the equation,

σX,Y · (µX × id)(Φ, y)

={ Definition of µ }
σX,Y(

⋃
ψ∈Z(X)

Φ(ψ)~ ψ, y)

={ Definition of σ }
⊗ ·((

⋃
ψ∈Z(X)

Φ(ψ)~ ψ)× ηY(y))

={ Distributive law: ⊗ · (∪i fi × g) = ∪i(⊗ · (fi × g)) }⋃
ψ∈Z(X)

⊗ · (Φ(ψ)~ ψ× ηY(y))

={ Constant Φ(ψ) }⋃
ψ∈Z(X)

Φ(ψ)~ (⊗ · (ψ× ηY(y)).

In the proof of Theorem 1, we defined a left tensorial strength σ with components
σX,Y : Z(X)×Y → Z(X×Y) as

σX,Y(ψ, y) = ⊗ · (ψ, ηY(y)) = λx, λy′.(ψ(x)⊗ ηY(y)(y′)).

Of course, a “swapped” tensorial strength σ′ with components σ′X,Y : X × Z(Y) →
Z(X×Y) can be obtained by applying swapping operation from the left tensorial strength:

(X× Z(Y) s−−→∼=
Z(Y)× X

σY,X−−→ Z(Y× X)
Z(s)
−−−→∼=

Z(X×Y)).

where s =̂ 〈π2, π1〉 is product communicating. Formally,

σ′X,Y = ⊗ · (ηX(x)× φ) = λx′.λy.(ηX(x)(x′)⊗ φ(y)).

With both σX,Y and σ′X,Y, there are two ways to obtain Z(X) × Z(Y) → Z(X × Y),
as depicted in the following diagram. If the diagram commutes, then Z is commutative
with left and right strength natural transformations σX,Y, σ′X,Y. We use γ : Z(X)× Z(Y)→
Z(X×Y) to denote the composed arrow.

Z(X)× Z(Y)

Z(X× Z(Y)) Z2(X×Y)

Z(X×Y)

Z(Z(X)×Y) Z2(X×Y)

σX,Z(Y)

Z(σ′X,Y)

µX×Y

σ′
Z(X),Y

Z(σX,Y)

µX×Y

Theorem 2. The triple (Z, η, µ) is a commutative monad.

Mathematics 2021, 9, 272 8 of 21

Proof. To show the diagram is commutative, select a pair of membership functions
(ψ1, ψ2) ∈ Z(X)× Z(Y), then

µX×Y · Z(σ′X,Y) · σX,Z(Y)(ψ1, ψ2)

={ Definition of σ }
µX×Y(Z(σ

′
X,Y)(⊗ · (ψ1 × ηZ(Y)(ψ2))))

={ Definition of Z }
µX×Y(

⋃
(x,ψ)∈X×Z(Y)

⊗ · (ψ1 × ηZ(Y)(ψ2))(x, ψ)~ ηZ(X×Y)(σ
′
X,Y(x, ψ)))

={ ⊗ · (f × g)(x, y) = f (x)⊗ g(y) }
µX×Y(

⋃
(x,ψ)∈X×Z(Y)

(ψ1(x)⊗ ηZ(Y)(ψ2)(ψ))~ ηZ(X×Y)(σ
′
X,Y(x, ψ)))

={ Definition of η }
µX×Y(

⋃
x∈X

ψ1(x)~ ηZ(X×Y)(σ
′
X,Y(x, ψ2)))

={ Definition of σ′ }
µX×Y(

⋃
x∈X

ψ1(x)~ ηZ(X×Y)(⊗ · (ηX(x)× ψ2)))

={ Definition of µ }⋃
ψ′∈Z(X×Y)

(
⋃

x∈X
ψ1(x)~ ηZ(X×Y)(⊗ · (ηX(x)× ψ2))(ψ

′)~ ψ′)

={ Definition of η }⋃
x∈X

(ψ1(x)~ (⊗ · (ηX(x)× ψ2)))

=̂{ Denotation }
f1

For the right side of the equation,

µX×Y · Z(σX,Y) · σ′Z(X),Y(ψ1, ψ2)

={ Definition of σ }
µX×Y(Z(σX,Y)(⊗ · (ηZ(X)(ψ1)× ψ2)))

={ Definition of Z }
µX×Y(

⋃
(ψ,y)∈Z(X)×Y

⊗ · (ηZ(X)(ψ1)× ψ2)(ψ, y)~ ηZ(X×Y)(σX,Y(ψ, y)))

={ ⊗ · (f × g)(x, y) = f (x)⊗ g(y) }
µX×Y(

⋃
(ψ,y)∈Z(X)×Y

(ηZ(X)(ψ1)(ψ)⊗ ψ2(y))~ ηZ(X×Y)(σX,Y(ψ, y)))

={ Definition of η }
µX×Y(

⋃
y∈Y

ψ2(y)⊗ ηZ(X×Y)(σX,Y(ψ1, y)))

={ Definition of σ }

Mathematics 2021, 9, 272 9 of 21

µX×Y(
⋃

y∈Y
ψ2(y)~ ηZ(X×Y)(⊗ · (ψ1 × ηY(y))))

={ Definition of µ }⋃
ψ′∈Z(X×Y)

(
⋃

y∈Y
ψ2(y)~ ηZ(X×Y)(⊗ · (ψ1 × ηY(y)))(ψ′)~ ψ′)

={ Definition of η }⋃
y∈Y

(ψ2(y)~ (⊗ · (ψ1 × ηY(y))))

=̂ { Denotation }
f2

Note that f1(x, y) = ψ1(x) ⊗ ψ2(y) = ⊗ · (ψ1 × ψ2)(x, y) = f2(x, y). Hence the
diagram commutes.

4. Going Coalgebraic
4.1. Coalgebraic Models

Since the automata introduced in Section 2 are defined over the interval [0, 1], we
assume the fuzzy-set monad Z = (Z, η, µ) is also defined over some complete residuated
lattice ([0, 1], min, max,⊗,→, 0, 1). The corresponding coalgebraic models are based on the
fuzzy-set monad.

Example 2 ([33]). Note that ([0, 1], min, max, 0, 1) is a complete lattice. Then there are several
ways to construct complete residuated lattices ([0, 1], min, max,⊗,→, 0, 1); namely

• Define
x⊗ y = max(x + y− 1, 0)

x → y = min(1− x + y, 1)

for x, y ∈ [0, 1]. Then, ([0, 1], min, max,⊗,→, 0, 1) is a complete residuated lattice corre-
sponding to the standard Lukasiewicz algebra.

• Define
x⊗ y = min(x + y− 1, 0)

x → y

{
1 if x ≤ y
y if y < x

for x, y ∈ [0, 1]. Then, ([0, 1], min, max,⊗,→, 0, 1) is a complete residuated lattice corre-
sponding to the standard Gödel algebra.

• Define
x⊗ y = x · y

x → y

{
1 if x ≤ y
y
x if y < x

for x, y ∈ [0, 1]. Then, ([0, 1], min, max,⊗,→, 0, 1) is a complete residuated lattice corre-
sponding to the standard product algebra.

Consider the two functors FI,O = Z(− ×O)I and Tl,O = Z(−)I × Z(O)I . Given a
FMlA (X, I, O, α, e), the corresponding TI,O-coalgebra is (X, 〈α, e〉 : X → Z(X)I × Z(O)I)
where f is the curried version of f . Given a FUA (X, I, O, β), the corresponding FI,O-
coalgebra is (X, β : X → Z(X×O)I). Obviously, there is a natural transformation θ from
TI,O to FI,O:

θ(〈 f , g〉)(i) = γ(〈 f (i), g(i)〉)

Mathematics 2021, 9, 272 10 of 21

for f ∈ Z(X)I , g ∈ Z(O)I and i ∈ I. In the sequel, FI,O-coalgebras provide a universal
framework for defining fuzzy language and bisimulation for different fuzzy automata
while TI,O-coalgebras serve as a basis for composition calculi of fuzzy Mealy automata.

4.2. Fuzzy Language

In [33], fuzzy automata with initial fuzzy subsets and final fuzzy subsets are equipped
with the notion of fuzzy language over a set of input symbols. Due to the type of their
initial/final fuzzy subsets, that notion can not be naturally extended to the case involving
output. Here we consider the notion of fuzzy language over a set of input symbols and a
set of output symbols based on FI,O-coalgebras.

Definition 8. Let (X, f) be an FI,O-coalgebra. Define f ∗ : X → Z(X×O∗)I∗ as follows:

f ∗(x)(i)(y, o) = f (x)(i)(y, o)

f ∗(x)(∅)(y, ∅) =

{
1 if x = y
0 if x 6= y

f ∗(x)(i)(y, ∅) = 0

f ∗(x)(∅)(y, o) = 0

f ∗(x)(wi)(y, vo) =
∨

z∈X
f ∗(x)(w)(z, v)⊗ f ∗(z)(i)(y, o)

for ∀x, y ∈ X, i ∈ I, o ∈ O, w ∈ I∗, v ∈ O∗. Note that ∅ represents the empty input/output.

Lemma 1. Given an FI,O-coalgebra (X, f), ∀x, y ∈ X, w ∈ I∗, v ∈ O∗, if |w| 6= |v| then

f ∗(x)(w)(y, v) = 0.

Proof. First, we prove the result for |w| > |v| by induction on |w| = n. Let x, y ∈ X, w ∈ I∗,
v ∈ O∗. If n = 0, there exists no v such that |v| < 0 and hence the result holds. If n = 1,
then v = ∅ and the result holds by the Definition 8. Assume that the result is true for
all |w| ∈ I∗ such that |w| = n− 1, n > 1. Now there are two cases: |v| = ∅ and |v| 6= ∅.
For the case |v| = ∅, let |w| = w′i, where |w| = n, i ∈ I, and then

f ∗(x)(w′i)(y, ∅) =
∨

z∈X
f ∗(x)(w′)(z, ∅)⊗ f ∗(z)(i)(y, ∅).

By the induction hypothesis, f ∗(x)(w′)(z, ∅) = f ∗(z)(i)(y, ∅) = 0 and thus the result
holds. For the case |v| 6= ∅, let w = w′i, v = v′o where |w| = n > |y|, i ∈ I, o ∈ O and then

f ∗(x)(w′i)(y, v′o) =
∨

z∈X
f ∗(x)(w′)(z, v′)⊗ f ∗(z)(i)(y, o).

By the induction hypothesis, f ∗(x)(w′)(z, v′) = 0 and hence ∀z ∈ X, f ∗(x)(w′)(z, v′)⊗
f ∗(z)(i)(y, o) = 0. Therefore, the result holds.

Second, by a similar proof, we can prove the result holds for |w| < |v| by induction
on |y| = n.

Lemma 2. Given an FI,O-coalgebra (X, f), ∀x, y ∈ X, w1, w2 ∈ I∗, v1, v2 ∈ O∗, if |w1| = |v1|
and |w2| = |v2|, then

f ∗(x)(w1w2)(y, v1v2) =
∨

z∈X
f ∗(x)(w1)(z, v1)⊗ f ∗(z)(w2)(y, v2)

Mathematics 2021, 9, 272 11 of 21

Proof. The results can be proved by induction on |w2| = n. If n = 0, then w2 = v2 = ∅
and w1w2 = w1, v1v2 = v1. Since f ∗(x)(∅)(y, ∅) is 1 when x = y and f ∗(x)(∅)(y, ∅) is
0 otherwise,

f ∗(x)(w1)(y, v1) =
∨

z∈X
f ∗(x)(w1)(z, v1)⊗ f ∗(z)(∅)(y, ∅)

holds, which completes the proof of the base case. Now assume that the result is true
for all |w2| = n− 1, n > 0. Let w2 = w′i and v2 = v′o, where |w′| = |v′| = n− 1, i ∈ I,
o ∈ O. Then

f ∗(x)(w1w2)(y, v1v2)

= f ∗(x)(w1w′i)(y, v1v′o)

=
∨

z∈X
f ∗(x)(w1w′)(z, v1v′)⊗ f ∗(z)(i)(y, o)

=
∨

z∈X
(
∨

r∈X
f ∗(x)(w1)(r, v1)⊗ f ∗(r)(w′)(y, v′))⊗ f ∗(z)(i)(y, o)

=
∨

z∈X
(
∨

r∈X
f ∗(x)(w1)(r, v1)⊗ f ∗(r)(w′)(y, v′)⊗ f ∗(z)(i)(y, o))

=
∨

r∈X
(
∨

z∈X
f ∗(x)(w1)(r, v1)⊗ f ∗(r)(w′)(y, v′)⊗ f ∗(z)(i)(y, o))

=
∨

r∈X
(f ∗(x)(w1)(r, v1)⊗

∨
z∈X

f ∗(r)(w′)(y, v′)⊗ f ∗(z)(i)(y, o))

=
∨

r∈X
f ∗(x)(w1)(r, v1)⊗ f ∗(r)(w′i)(y, v′o)

=
∨

r∈X
f ∗(x)(w1)(r, v1)⊗ f ∗(r)(w2)(y, v2)

Now we consider a generic fuzzy language for FI,O-coalgebras and naturally obtain
the definition for the fuzzy language accepted by a fuzzy automaton.

Definition 9 (Fuzzy language). A fuzzy language over an input set I and an output set O (with
membership values over K), is a fuzzy subset of (IO)∗, that is a function φ : (IO)∗ → [0, 1].

Example 3. For instance, let I = {i1, i2}, O = {o1, o2}. A fuzzy language φ can be defined as
φ(i1o1) = 0.6, φ(i1o2) = 0.8, φ(i2o1) = 0.5, φ(i2o2) = 1 and φ(s) = 0, ∀s ∈ (IO)∗, |s| 6= 2.

Definition 10. Consider an FI,O-coalgebra (X, f : X → Z(X ×O)I). For w = i1o1i2o2 · · · ∈
(IO)∗, define wi = i1i2 · · · and wo = o1o2 · · · . Given an initial fuzzy state ε ∈ Z(X) and a final
fuzzy state τ ∈ Z(X), the fuzzy language L f recognized by (X, f) is defined by

L f (w) =
∨

x,y∈X
ε(x)⊗ f ∗(x)(wi)(y, wo)⊗ τ(y), w ∈ (IO)∗.

Naturally, the fuzzy language recognized by a FUA (X, I, O, β) is the one recognized by its
corresponding FI,O-coalgebra (X, β).

When considering the language recognized by an FMlA, the membership values of
the next state and the output must be integrated, which can be captured by the natural
transformation θ.

Definition 11. The fuzzy language recognized by a FMlA (X, I, O, α, e) is the one recognized by
the corresponding FI,O-coalgebra (X, θ(〈α, e〉)).

Mathematics 2021, 9, 272 12 of 21

4.3. Bisimulation

Let us now discuss the notion of bisimulation for fuzzy automata. In fact, coalgebra
theory provides a generic notion of bisimulation on H-coalgebras for any functor H [20].

Definition 12 (H-bisimulation). Given two H-coalgebras (X, f : X → H(X)) and (Y, g :
Y → H(Y)), an H-bisimulation between them is a relation R ⊆ X×Y such that there exists an
H-coalgebra (R, h : R→ H(R)) making the following diagram to commute.

X R

H(X) H(R)

Y

H(Y)

π1

f h

H(π1)

π2

g

H(π2)

Theorem 3. Given two TI,O-coalgebras (X, f) and (Y, g), if R ⊆ X × Y is a TI,O-bisimulation,
then R is an FI,O-bisimulation between (X, θ ◦ f) and (X, θ ◦ g).

Proof. The proof of the result is immediate from the definition.

We now consider concrete bisimulations for different types of fuzzy automata. Since
FMrA can be easily transformed to FMlA, we only focus on bisimulation for FMlA and FUA.

Given a FMlA (X, I, O, α, e), denote a transition x
i,v1−−→
o,v2

x′ if α(x, i)(x′) = v1, e(x, i)(o) = v2.

Given a FUA (X, I, O, β), denote a transition x
i|v|o−−→ x′ if β(x, i)(x′, o) = v.

Definition 13 (Bisimulation for FMlA). Given two FMlA (X, I, O, α, e) and (Y, I, O, α′, e′),
R ⊆ X×Y is a concrete bisimulation if it satisfies the following properties.

• For (x, y) ∈ R, if x
i,v1−−→
o,v2

x′, there exists y′ ∈ Y, such that y
i,v1−−→
o,v2

y′ and (x′, y′) ∈ R.

• For (x, y) ∈ R, if y
i,v1−−→
o,v2

y′, there exists x′ ∈ X, such that x
i,v1−−→
o,v2

x′ and (x′, y′) ∈ R.

Definition 14 (Bisimulation for FUA). Given two FUA p = (X, I, O, β) and q = (Y, I, O, β′),
R ⊆ X×Y is a concrete bisimulation if it satisfies the following properties.

• For (x, y) ∈ R, if x
i|v|o−−→ x′, there exists y′ ∈ Y, such that y

i|v|o−−→ y′ and (x′, y′) ∈ R.

• For (x, y) ∈ R, if y
i|v|o−−→ y′, there exists x′ ∈ X, such that x

i|v|o−−→ x′ and (x′, y′) ∈ R.

Theorem 4. Given two FMlA (X, I, O, α, e) and (Y, I, O, α′, e′), R is a concrete bisimulation if
and only if R is a TI,O-bisimulation between their corresponding TI,O-coalgebras.

Proof. The proof of the result is immediate from the definition.

Theorem 5. Given two FUA (X, I, O, β) and (Y, I, O, β′), R is a concrete bisimulation if and
only if R is an FI,O-bisimulation between their corresponding FI,O-coalgebras.

Proof. The proof of the result is immediate from the definition.

Since the core idea of fuzzy automata is fuzzing, the concrete bisimulation induced by
coalgebraic bisimulation seems to be too strict. To find a more suitable characterization of
bisimulation of fuzzy automata, we introduce the notion of approximate ε-bisimulation,
which requires that membership values for states in an approximate ε-bisimulation of two
transition branches should have a difference less than ε.

Mathematics 2021, 9, 272 13 of 21

Definition 15 (ε-Bisimulation for FMlA). Given two FMlA (X, I, O, α, e) and (Y, I, O, α′, e′),
a relation R ⊆ X×Y is an approximate ε-bisimulation (ε > 0) if for all (x, y) ∈ R:

• If x
i,v1−−→
o,v2

x′, there exists y′ ∈ Y, such that y
i,u1−−→
o,u2

y′, |u1 − v1| ≤ ε, |u2 − v2| ≤ ε and

(x′, y′) ∈ R.

• If y
i,u1−−→
o,u2

y′, there exists x′ ∈ X, such that x
i,v1−−→
o,v2

x′, |u1 − v1| ≤ ε, |u2 − v2| ≤ ε and

(x′, y′) ∈ R.

Example 4. Consider two FMlA (X, I, O, α, e) and (Y, I, O, α′, e′), where X = {x1, x2}, Y =
{y1, y2}, I = {i}, O = {o}, α(x1, i)(x2) = 0.6, e(x1, i)(o) = 0.4, α′(y1, i)(y2) = 0.5, e′(y1, i)(o)
= 0.5. Then, R = {(x1, y1), (x2, y2)} is an approximate 0.1-bisimulation.

Definition 16 (ε-Bisimulation for FUA). Given two FUA (X, I, O, β) and (Y, I, O, β′), a rela-
tion R ⊆ X×Y is an approximate ε-bisimulation (ε > 0) if for all (x, y) ∈ R,

• If x
i|u|o−−→ x′, then there exists y′ such that y

i|v|o−−→ y′, |u− v| ≤ ε and (x′, y′) ∈ R;

• If y
i|v|o−−→ y′, then there exists x′ such that x

i|u|o−−→ x′, |u− v| ≤ ε and (x′, y′) ∈ R.

Example 5. Consider two FUA (X, I, O, β) and (Y, I, O, β′), where X = {x1, x2}, Y = {y1, y2},
I = {i}, O = {o}, β(x1, i)(x2, o) = 0.8, β′(y1, i)(y2, o) = 0.7. Then, R = {(x1, y1), (x2, y2)} is
an approximate 0.1-bisimulation.

Proposition 1. For approximate ε-bisimulation, we have

1. R is an approximate ε-bisimulation if and only if R−1 is an approximate ε-bisimulation.
2. If Ri is an approximate εi-bisimulation for i = 1, 2, then R1 ◦ R2 is an approximate (ε1 + ε2)

-bisimulation.
3. If Ri is an approximate εi-bisimulation, then ∪iRi is an approximate maxi{εi}-bisimulation.

Proof. The proof of the result is immediate from the definition.

5. Composition for FMlA

A family of combinators for B(− × O)I-coalgebras where B is a monad, such as
sequential composition (;), parallel (�), choice (�) and concurrency (�) combinators
were introduced in [32]. Therefore, the composition of FUA can be naturally instanti-
ated. However, an FMlA assigns different membership values to the next state and the
corresponding output, which should be separated for composition. With some abuse of
notation, we construct sequential composition (;), parallel (�), choice (�) and concur-
rency (�) combinators for FMlA. Consider three fuzzy Mealy automata p, q, r with the
corresponding coalgebras

JpK = (Xp, 〈αp, ep〉 : Xp → Z(Xp)
I × Z(O)I)

JqK = (Xq, 〈αq, eq〉 : Xq → Z(Xq)
J × Z(R)J)

JrK = (Xr, 〈αr, er〉 : Xr → Z(Xr)
O × Z(R)O).

(?)

Some standard isomorphisms in Set are used in the definitions of combinators:

a :A× B× C → A× (B× C)

s :A× B→ B× A

xr :A× B× C → A× C× B

m :A× B× (C× D)→ A× C× (B× D)

dist :A× (B + C)→ A× B + A× C

Mathematics 2021, 9, 272 14 of 21

Furthermore, combinators a+, s+, xr+, m+ are the corresponding isomorphisms for sums
in Set. Finally, the inverse of an isomorphism i is denoted by i−1.

The sequential composition combinator ; requires the compatibility of interfaces. The
sequential composition of p, r actually shares the data which is sent out from p. From a
coalgebraic point of view, it is a TI,R-coalgebra

Jp; rK = (Xp × Xr, 〈αp;r, ep;r〉)

where αp;r is defined as:

Xp × Xr × I xr−→ Xp × I × Xr
〈αp ,ep〉×id−−−−−−→ Z(Xp)× Z(O)× Xr

a◦xr−−→ Z(Xp)× (Xr × Z(O))

id×σ′Xr ,O−−−−−→ Z(Xp)× Z(Xr ×O)
id×Zαr−−−−→ Z(Xp)× ZZ(Xr)

γ◦(id×µ)−−−−−→ Z(Xp × Xr)

and ep;r is defined as:

Xp × Xr × I xr−→ Xp × I × Xr
ep×id−−−→ Z(O)× Xr

σ′Xr ,O◦s−−−−→ Z(Xr ×O)
Zer−−→ ZZ(R)

µ−→ Z(R)

The parallel combinator � corresponds to synchronous product and composes two
coalgebras into one with their inputs (outputs) merged together. The parallel p� q produces
an output belonging to O× R after receiving an input belonging to I × J. Coalgebraically,
the semantics of the parallel combinator is a TI×J,O×R-coalgebra

Jp� qK = (Xp × Xp, 〈αp�q, ep�q〉)

where αp�q is defined as:

Xp × Xq × (I × J) m−→ Xp × I × (Xq × J)
αp×αq−−−→ Z(Xp)× Z(Xq)

γ−→ Z(Xp × Xq)

and ep�q is defined as

Xp × Xq × (I × J) m−→ Xp × I × (Xq × J)
ep×eq−−−→ Z(O)× Z(R)

γ−→ Z(O× R)

The choice p� q allows the environment to choose either to input a value of type I or
one of type J, which will trigger the corresponding automata, producing the associated
output. A formal definition is

Jp� qK = (Xp × Xq, 〈αp�q, ep�q〉)

where αp�q is defined as

Xp × Xq × (I + J) dist−−→ Xp × Xq × I + Xp × Xq × J xr+a−−−→ Xp × I × Xq + Xp × (Xq × J)

αp×id+ id×αq−−−−−−−−→ Z(Xp)× Xq + Xp × Z(Xq)
[σXp ,Xq ,σ′Xp ,Xq]−−−−−−−−→ Z(Xp × Xq)

and ep�q is defined as

Xp × Xq × (I + J) dist−−→ Xp × Xq × I + Xp × Xq × J xr+a−−−→ Xp × I × Xq + Xp × (Xq × J)
ep◦π1+eq◦π2−−−−−−−→ Z(O) + Z(R)

[Z(ι1),Z(ι2)]−−−−−−−→ Z(O + R)

Mathematics 2021, 9, 272 15 of 21

The concurrency combinator � combines choice and parallel, in the sense that two
fuzzy Mealy automata p and q can be executed depending on the input supplied. Let
I � J = I + J + I × J and O� R = O + R + O× R. The semantics of � is given by

Jp� qK = (Xp × Xq, 〈αp�q, ep�q〉)

where αp�q is defined as

Xp × Xq × (I � J) dist−−→ Xp × Xq × (I + J) + Xp × Xq × (I × J)
αp�q+αp�q−−−−−−→ Z(Xp × Xq) + Z(Xp × Xq)

[Z(id),Z(id)]−−−−−−−→ Z(Xp × Xq)

and ep�q is defined as

Xp × Xq × (I � J) dist−−→ Xp × Xq × (I + J) + Xp × Xq × (I × J)
ep�q+ep�q−−−−−−→ Z(O + R) + Z(O× R)

[Z(ι1),Z(ι2)]−−−−−−−→ Z(O� R)

In coalgebra theory, it is [20] shown that the graph of a TI,O-homomorphism is a
TI,O-bisimulation and the greatest TI,O-bisimulation is an equivalence relationship ∼. Thus
for two given FMlA p, q, if there exists a TI,O-homomorphism between their corresponding
coalgebras JpK, JqK, we denote p ∼ q.

Theorem 6. For appropriately typed FMlA p, q, r, p′, q′,

(p; q); r ∼ p; (q; r)

(p� p′); (q� q′) ∼ (p; q)� (p′, q′)

(p� p′); (q� q′) ∼ (p; q)� (p′, q′)

(p� p′); (q� q′) ∼ (p; q)� (p′, q′)

Proof. The proof proceeds by pointwise induction. For the first law, if we assume

αp(x1, i)(x′1) = k1, ep(x1, i)(j) = t1

αq(x2, j)(x′2) = k2, eq(x2, j)(o) = t2

αr(x3, o)(x′3) = k3, er(x3, o)(h) = t3

we can obtain
α(p;q);r(x1, x2, x3)(i)(x′1, x′2, x′3)

=k1 ⊗ k2 ⊗ k3 ⊗ t1 ⊗ t2

=αp;(q;r)(x1, (x2, x3))(i)(x′1, (x′2, x′3))

e(p;q);r(x1, x2, x3)(i)(h)

=t1 ⊗ t2 ⊗ t3

=ep;(q;r)(x1, (x2, x3))(i)(h)

With these equations, it is easy to show a is a TI,O-homomorphism from J(p; q); rK to
Jp; (q; r)K. Other laws can be proved similarly.

Connecting FMlA through isomorphisms leads to a bisimilarity up to an isomorphic
rearranging of input types and output types. Let f , g be isomorphic rearrangements
of input types and output types respectively. We use p{ f , g} to denote the FMlA after
arranging the input and the output types in the FMlA p.

Mathematics 2021, 9, 272 16 of 21

Theorem 7. For appropriately typed FMlA p, q, r,

p� q ∼ (q� p){s, s}
p� q ∼ q� p{s+, s+}
p� q ∼ q� p{s+ + s, s+ + s}

(p� q)� r ∼ p� (q� r){a, a−1}
(p� q)� r ∼ p� (q� r){a+, a−1

+ }
(p� q)� r ∼ p� (q� r){a∗, a−1

∗ }

where a∗ is a natural isomorphism from (A� B)� C to A� (B� C) and its inverse is denoted
by a−1

∗ .

Proof. Similar to Theorem 6.

The two theorems demonstrate that our combinators are well defined. In the sequel,
we compare them with the ones in [32] up to the natural transformation θ through a
theorem and an example.

Theorem 8. Given two FMlA p, q with the corresponding coalgebras in (?), the following equa-
tions holds.

θ(〈αp�q, ep�q〉) = θ(〈αp, ep〉)� θ(〈αq, eq〉)
θ(〈αp�q, ep�q〉) = θ(〈αp, ep〉)� θ(〈αq, eq〉)
θ(〈αp�q, ep�q〉) = θ(〈αp, ep〉)� θ(〈αq, eq〉)

where �,�,� correspond to our combinators in the left side and the ones for composing FI,O-
coalgebras in [32] in the right side.

Proof. The proof proceeds by pointwise induction. For the first law, if we assume

αp(x1, i)(x′1) = k1, ep(x1, i)(j) = t1

αq(x2, j)(x′2) = k2, eq(x2, j)(o) = t2

we obtain
θ(〈αp�q, ep�q〉)((x1, x2), i)((x′1, x′2), o)

=αp�q((x1, x2), i)(x′1, x′2)⊗ ep�q((x1, x2), i)(o)

=(k1 ⊗ k2)⊗ (t1 ⊗ t2)

=(k1 ⊗ t1)⊗ (k2 ⊗ t2)

=θ(〈αp, ep〉)(x1, i)(x′1, o)⊗ θ(〈αq, eq〉)(x2, i)(x′2, o)

=θ(〈αp, ep〉)� θ(〈αq, eq〉)

Other laws can be proved similarly.

Note that the case for the sequential composition combinator does not always hold. Ac-
tually, this depends on the complete residuated lattice used, since the state transition of the
first component is considered twice, which can be demonstrated by the following example.

Example 6. Recall the standard product algebra in Example 2. Consider two FMlA p =
({x1, x2}, {a}, {b}, αp, ep) and r = ({y1, y2}, {b}, {c}, αr, er) where αp(x1, a)(x2) = 0.4,
ep(x1, a)(b) = 0.5 and αr(y1, b)(y2) = 0.8, er(y1, b)(c) = 0.5. Then we can obtain Jp; rK =
(U, 〈αp;r, ep;r〉) where U = {(xi, yj)|i, j = 1, 2}, αp;r((x1, y1), a)(x2, y2) = 0.4× 0.5× 0.8 =
0.16 and ep;r((x1, y1), a)(c) = 0.5× 0.5 = 0.25. Therefore

θ(〈αp;r, ep;r〉)((x1, y1), a)((x2, y2), c) = 0.16× 0.25 = 0.04.

Mathematics 2021, 9, 272 17 of 21

However, θ(〈αp, ep〉)(x1, a)(x2, b) = 0.4 × 0.5 = 0.2 and θ(〈αr, er〉)(x1, a)(x2, b) =
0.8× 0.5 = 0.4. Thus,

θ(〈αp, ep〉); θ(〈αr, er〉)((x1, y1), a)((x2, y2), c) = 0.2× 0.4 = 0.08.

Oppositely, if we consider the standard Gödel algebra, the two values will be both 0.4.

6. Case Study

In the sequel, we illustrate the use of fuzzy components by means of a concrete
example. For simplicity, we consider an non-fuzzy input-output function and compose
components with FI,O-coalgebras. Consider the following example of a steam turbine.

I I′×

p∆× ∆q

�pidq Temp pidq Press� �

(I I)× (I′ I′)×

(I [0, 1])× (I′ [0, 1])×

pmq

(I I′)× ([0, 1] [0, 1])×

�pΨ1q pΨ2q

(O [0, 1])×
Setting (Defuzzification Process)

[MIN,MAX]

The system is composed of two fuzzification components Temp,Press and a defuzzifi-
cation component Setting with corresponding membership functions illustrated in Figure 1.
Note that ∆ represents the copy operation.

(a) Temp (b) Press

(c) Setting

Figure 1. The graphs of membership functions.

In practice, the components Temp and Press execute in parallel. Each one will produce
a membership value corresponding to the state and membership function after receiving a

Mathematics 2021, 9, 272 18 of 21

mode signal. After that, the minimum of the two output values will become the input of
Setting. The membership function of the Setting component is determined by the following
rules (for simplicity, only whose conditions with temperature COOL are displayed).

rule 1 : If temperature is COOL and pressure is WEAK then throttle is P3.

rule 2 : If temperature is COOL and pressure is LOW then throttle is P2.

rule 3 : If temperature is COOL and pressure is OK then throttle is Z.

rule 4 : If temperature is COOL and pressure is STRONG then throttle is N2.

rule 5 : If temperature is COOL and pressure is HIGH then throttle is N3.

· · ·

The output functions are considered as non-fuzzy in this example.

(i) The coalgebraic semantic of component Temp

JTempK = (T, θ〈αt, et〉) : T → Z(T × [0, 1])I)

is actually an FI,[0,1]-coalgebra. In this model, states are the temperature over T = [T0, T9],
inputs are operation modes over set I = {COLD,COOL,NORMAL,WARM,HOT} that are decided
by users. The fuzzy transition function is constant on the temperature and given by
αt : T × I → [0, 1]T with

〈t, COLD〉 7→ φCOL, 〈t, COOL〉 7→ φCOO, 〈t, NORMAL〉 7→ φNOR, 〈t, WARM〉 7→ φWAR, 〈t, HOT〉 7→ φHOT

for all t ∈ [T0, T9] ⊆ R. The output function et : T × I → [0, 1] is defined by
(t, i) 7→ eval(αt(t, i), t) where eval is an evaluation function. As a concrete example,
suppose the fuzzy subset for the NORMAL mode is the function

φNOR(t) = max{0,
2

T3 − T6
(t− T3 + T6

2
) + 1}.

Then the membership value (output) over state T3+T6
2 under the mode NORMAL is

et(
T3+T6

2 , NORMAL) = eval(φNOR, T3+T6
2) = 1.

(ii) Press is a component whose state space P is given by the pressure in the steam turbine
and inputs are over the set I′ = {WEAK,LOW,OK,STRONG,HIGH}, which represent the
mode triggered by the users. The output of this component is the membership value
corresponding to the current fuzzy state. The dynamics of this component is

JPressK = (P, θ〈αp, ep〉) : P→ Z(P× [0, 1])I′)

with the transition and output functions defined as αp : P× I′ → Z(P):

〈p, WEAK〉 7→ φWEAK , 〈p, LOW〉 7→ φLOW , 〈p, OK〉 7→ φOK , 〈p, STRONG〉 7→ φSTRONG , 〈p, HIGH〉 7→ φHIGH

for p ∈ P and
op : P× I′ → [0, 1] : (p, i′) 7→ ev(αp(p, i′), p).

(iii) The dynamics of Rule and And components are denoted by pΨ1q and pΨ2qwhere

pΨ1q = (1, η(1×O) · 〈id, Ψ1〉 : 1→ Z(1×O)I×I′).

In this expression O is the output set determined by the output function, namely,

Ψ1 : 1× (I × I′)→ O

Mathematics 2021, 9, 272 19 of 21

Ψ1(?, (i, i′)) =



P3 i = COOL∧ i′ = WEAK

P2 i′ = COOL∧ LOW
Z i′ = COOL∧ OK

N2 i′ = COOL∧ STRONG
N3 i′ = COOL∧ HIGH
· · ·

1 = {∗} is the singleton set. The notation p fq is the representation of function
f : A → B, which is defined as a coalgebra p fq = (∗ ∈ 1, cp fq), where cp fq =

1× A
id× f−−→ 1× B

η(1×B)−−−→ Z(1× B). The definition of Ψ2 is similar, given a pair of
inputs of [0, 1], it outputs the minimum value of the two.

(iv) The last component Setting works as follows. Through the channel it interacts with
Temp and Press. It receives the mode information and a membership value as the
current state. The mode information determines which membership function is
accessible for the component. Then the component outputs an area whose boundary
consists of the horizontal axis and the graph of the membership function. Formally,
this model is represented by a coalgebra

JSettingK = (D, θ〈αs, es〉) : D → Z(D× P(R2))O×[0,1])

where D = [MIN, MAX] is an interval of real numbers. The output function is defined
as es(d, (o, r)) = {(x, y)|0 ≤ y ≤ min{αs(x, (o, r)), r}, x ∈ [MIN, MAX]}. Resorting to
centroid defuzzification technique, the output stage processes combine areas and
produce a control value, which will participate in the control of the system.

7. Conclusions and Future Work

The present work aims at addressing fuzzy automata from a coalgebraic perspective.
Our starting point was studying the fuzzy-set monad further. We defined a left tensorial
strength and a right tensorial strength, and proved it is a strong and commutative monad.
With these properties, we modeled different types of fuzzy automata as coalgebraic models
with the same transition structure. Based on these coalgebraic models, we defined the
notions of fuzzy language bisimulation between fuzzy automata. Moreover, we developed
some compositional combinators for fuzzy Mealy automata of two kinds: state transition
and output function and compared it with the classical component calculi in [32]. Finally,
through a case study, we discussed the application of our component calculi.

Besides these fundamental results, there are several topics left to explore. One is to
define a notion of refinement [38] of fuzzy automata, to specify an inclusion relation of fuzzy
behaviour. Fuzzy automata may involve complex behaviour such as non-deterministic
transitions or branched transitions with probability [23,39]. Therefore another topic for
future work is to develop more complex versions of fuzzy automata and analyze their
behavior and discuss their properties, namely of the suitable notions of bisimulation as
in [15,35,36].

Author Contributions: Conceptualization, M.S. and L.S.B.; methodology, A.L. and S.W.; formal
analysis, A.L. and S.W.; investigation, A.L.; writing—original draft preparation, A.L. and S.W.;
writing—review and editing, M.S. and L.S.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been supported by the Guangdong Science and Technology Department
(Grant No. 2018B010107004) and the National Natural Science Foundation of China under grant No.
61772038, 61532019 and 61272160. L.S.B. was supported by the ERDF—European Regional Devel-
opment Fund through the Operational Programme for Competitiveness and Internationalisation-
COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT,
within project KLEE - POCI-01-0145-FEDER-030947.

Mathematics 2021, 9, 272 20 of 21

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work is also supported by Hiroshima University. Many thanks to the
reviewers and editors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tanaka, K. An Introduction to Fuzzy Logic for Practical Applications; Springer: Berlin/Heidelberg, Germany, 1997.
2. Zadeh, L.A. Soft Computing and Fuzzy Logic. IEEE Softw. 1994, 11, 48–56. [CrossRef]
3. Syropoulos, A.; Grammenos, T. Fuzzy Computation; A Modern Introduction to Fuzzy Mathematics; John Wiley & Sons: Hoboken,

NJ, USA, 2020; pp. 191–214. [CrossRef]
4. Wu, H.; Gu, X.; Zhen, L. Fuzzy Principal Component Analysis Model on Evaluating Innovation Service Capability. Sci. Program.

2020, 2020, 8834901. [CrossRef]
5. Böhme, M.; Pham, V.; Roychoudhury, A. Coverage-Based Greybox Fuzzing as Markov Chain. IEEE Trans. Softw. Eng. 2019,

45, 489–506. [CrossRef]
6. Simon, D.J. Introduction to Fuzzy Control. In Embedded Systems Programming; Electrical Engineering & Computer Science Faculty

Publications: Cambridge, MA, USA, 2003; Volume 16, pp. 55–56.
7. Doostfatemeh, M.; Kremer, S.C. New directions in fuzzy automata. Int. J. Approx. Reason. 2005, 38, 175–214. [CrossRef]
8. Chaudhari, S.R.; Desai, A.S. On fuzzy Mealy and Moore machines. Bull. Pure Appl. Math 2010, 4, 375–384.
9. Mordeson, J.N.; Nair, P.S. Fuzzy Mealy machines. Kybernetes 1966, 25, 18–33. [CrossRef]
10. Li, Y.; Pedrycz, W. The equivalence between fuzzy Mealy and fuzzy Moore machines. Soft Comput. 2006, 10, 953–959. [CrossRef]
11. Todinca, D.; Sora, I.; Butoianu, D.; Precup, R. A Novel Method to Compute the Membership Value of the States of Fuzzy Automata.

In Proceedings of the 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI),
Timisoara, Romania, 17–19 May 2018; pp. 107–112. [CrossRef]

12. Pan, H.; Li, Y.; Cao, Y.; Li, P. Nondeterministic fuzzy automata with membership values in complete residuated lattices. Int. J.
Approx. Reason. 2017, 82, 22–38. [CrossRef]

13. Tiwari, S.P.; Pal, P. On a category of deterministic fuzzy automata. In 11th Conference of the European Society for Fuzzy Logic and
Technology (EUSFLAT 2019); Atlantis Studies in Uncertainty Modelling; Atlantis Press: Paris, France, 2019; Volume 1. [CrossRef]

14. Mockor, J. Monads and a common framework for fuzzy type automata. Int. J. Gen. Syst. 2019, 48, 406–442. [CrossRef]
15. Singh, A.K.; Tiwari, S.P. Fuzzy Regular Languages Based on Residuated Lattice. New Math. Nat. Comput. 2020, 16, 363–376.

[CrossRef]
16. Yang, C.; Li, Y. Approximate bisimulations and state reduction of fuzzy automata under fuzzy similarity measures. Fuzzy Sets

Syst. 2020, 391, 72–95. [CrossRef]
17. Yang, C.; Li, Y. ε-Bisimulation Relations for Fuzzy Automata. IEEE Trans. Fuzzy Syst. 2018, 26, 2017–2029. [CrossRef]
18. Yang, C.; Li, Y. Approximate bisimulation relations for fuzzy automata. Soft Comput. 2018, 22, 4535–4547. [CrossRef]
19. Rutten, J.J.M.M. Automata and coinduction (an exercise in coalgebra). In International Conference on Concurrency Theory, Proceedings

of the CONCUR 1998: CONCUR’98 Concurrency Theory, Nice, France, 8–11 September 1998; Springer: Berlin/Heidelberg, Germany,
1998; Volume 1466, pp. 194–218.

20. Rutten, J.J.M.M. Universal coalgebra: A theory of systems. Theor. Comput. Sci. 2000, 249, 3–80. [CrossRef]
21. Jacobs, B. Introduction to Coalgebra: Towards Mathematics of States and Observation; Cambridge Tracts in Theoretical Computer

Science; Cambridge University Press: Cambridge, UK, 2016; Volume 59.
22. Silva, A.; Bonchi, F.; Bonsangue, M.M.; Rutten, J.J.M.M. Generalizing determinization from automata to coalgebras. Log. Methods

Comput. Sci. 2013, 9. [CrossRef]
23. Sokolova, A. Coalgebraic Analysis of Probabilistic Systems. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The

Netherlands, 2005.
24. Neves, R.; Barbosa, L.S. Hybrid Automata as Coalgebras. In International Colloquium on Theoretical Aspects of Computing, Proceedings

of the ICTAC 2016: Theoretical Aspects of Computing, Taipei, Taiwan, 24–31 October 2016; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 9965, pp. 385–402. [CrossRef]

25. Neves, R.; Barbosa, L.S. Languages and models for hybrid automata: A coalgebraic perspective. Theor. Comput. Sci. 2018,
744, 113–142. [CrossRef]

26. Liu, A.; Sun, M. A Coalgebraic Semantics Framework for Quantum Systems. In International Conference on Formal Engineering
Methods, Proceedings of the ICFEM 2019: Formal Methods and Software Engineering, Shenzhen, China, 5–9 November 2019; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11852, pp. 387–402. [CrossRef]

27. Feng, Y.; Duan, R.; Ying, M. Bisimulation for Quantum Processes. ACM Trans. Program. Lang. Syst. 2012, 34, 1–43. [CrossRef]
28. Larsen, K.G.; Skou, A. Bisimulation through probabilistic testing. Inf. Comput. 1991, 94, 1–28. [CrossRef]

http://doi.org/10.1109/52.329401
http://dx.doi.org/10.1002/9781119445326.ch8
http://dx.doi.org/10.1155/2020/8834901
http://dx.doi.org/10.1109/TSE.2017.2785841
http://dx.doi.org/10.1016/j.ijar.2004.08.001
http://dx.doi.org/10.1108/03684929610116392
http://dx.doi.org/10.1007/s00500-005-0022-x
http://dx.doi.org/10.1109/SACI.2018.8440929
http://dx.doi.org/10.1016/j.ijar.2016.11.020
http://dx.doi.org/10.2991/eusflat-19.2019.31
http://dx.doi.org/10.1080/03081079.2019.1585431
http://dx.doi.org/10.1142/S1793005720500222
http://dx.doi.org/10.1016/j.fss.2019.07.010
http://dx.doi.org/10.1109/TFUZZ.2017.2760278
http://dx.doi.org/10.1007/s00500-017-2913-z
http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://dx.doi.org/10.2168/LMCS-9(1:9)2013
http://dx.doi.org/10.1007/978-3-319-46750-4_22
http://dx.doi.org/10.1016/j.tcs.2017.09.038
http://dx.doi.org/10.1007/978-3-030-32409-4_24
http://dx.doi.org/10.1145/2400676.2400680
http://dx.doi.org/10.1016/0890-5401(91)90030-6

Mathematics 2021, 9, 272 21 of 21

29. Haghverdi, E.; Tabuada, P.; Pappas, G.J. Bisimulation Relations for Dynamical and Control Systems. Electr. Notes Theor. Comput.
Sci. 2002, 69, 120–136. [CrossRef]

30. Jacobs, B. Invariants, Bisimulations and the Correctness of Coalgebraic Refinements. In International Conference on Algebraic
Methodology and Software Technology, Proceedings of the AMAST 1997: Algebraic Methodology and Software Technology, Sydney, Australia,
13–17 December 1997; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1349, pp. 276–291.
[CrossRef]

31. Venema, Y. Algebras and coalgebras. In Handbook of Modal Logic; Studies in Logic and Practical Reasoning; Elsevier B.V.:
Amsterdam, The Netherlands, 2007; Volume 3, pp. 331–426. [CrossRef]

32. Barbosa, L.S. Components as Coalgebras. Ph.D. Thesis, Universidade do Minho, Braga, Portugal, 2001.
33. Guilherme, R.J.P. A Coalgebraic Approach to Fuzzy Automata. Ph.D. Thesis, Universidade Nova De Lisboa, Lisbon, Portugal,

2016.
34. Wu, H.; Chen, Y. Coalgebras for Fuzzy Transition Systems. Electron. Notes Theor. Comput. Sci. 2014, 301, 91–101. [CrossRef]
35. Wu, H.; Chen, Y.; Bu, T.; Deng, Y. Algorithmic and logical characterizations of bisimulations for non-deterministic fuzzy transition

systems. Fuzzy Sets Syst. 2018, 333, 106–123. [CrossRef]
36. Wu, H.; Chen, T.; Han, T.; Chen, Y. Bisimulations for fuzzy transition systems revisited. Int. J. Approx. Reason. 2018, 99, 1–11.

[CrossRef]
37. Nikravesh, M.; Kacprzyk, J.; Zadeh, L.A. Forging New Frontiers: Fuzzy Pioneers I; University of California: Berkeley, CA, USA, 2007.
38. Meng, S.; Barbosa, L.S. Components as coalgebras: The refinement dimension. Theor. Comput. Sci. 2006, 351, 276–294. [CrossRef]
39. Narasimha, M.; Cleaveland, R.; Iyer, S.P. The role of observations in probabilistic open systems. Electr. Notes Theor. Comput. Sci.

1999, 25, 133–144. [CrossRef]

http://dx.doi.org/10.1016/S1571-0661(04)80562-0
http://dx.doi.org/10.1007/BFb0000458
http://dx.doi.org/10.1016/s1570-2464(07)80009-7
http://dx.doi.org/10.1016/j.entcs.2014.01.008
http://dx.doi.org/10.1016/j.fss.2017.02.008
http://dx.doi.org/10.1016/j.ijar.2018.04.010
http://dx.doi.org/10.1016/j.tcs.2005.09.072
http://dx.doi.org/10.1016/S1571-0661(04)00138-0

	Introduction
	Fuzzy Automata
	Fuzzy-Set Monad
	Fuzzy Set
	Properties of Fuzzy-Set Monad

	Going Coalgebraic
	Coalgebraic Models
	Fuzzy Language
	Bisimulation

	Composition for FMlA
	Case Study
	Conclusions and Future Work
	References

