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Abstract: Time series forecasting is an important research topic with many practical applications. As
shown earlier, the problems of lossless data compression and prediction are very similar mathemati-
cally. In this article, we propose several forecasting methods based on real-world data compressors.
We consider predicting univariate and multivariate data, describe how multiple data compressors
can be combined into one forecasting method with automatic selection of the best algorithm for the
input data. The developed forecasting techniques are not inferior to the known ones. We also propose
a way to reduce the computation time of the combined method by using the so-called time-universal
codes. To test the proposed techniques, we make predictions for real-world data such as sunspot
numbers and some social indicators of Novosibirsk region, Russia. The results of our computations
show that the described methods find non-trivial regularities in data, and time universal codes can
reduce the computation time without losing accuracy.

Keywords: time series forecasting; universal coding; data compression; artificial intelligence

1. Introduction

The problem of time series forecasting is to estimate the future values of a process
from a sequence of its observations. This task is important because it has many practical
applications. Examples include predicting future stock prices and air temperature forecast-
ing. Nowadays, there are many different approaches to solving this problem. Classical
statistical models such as exponential smoothing and the autoregressive integrated moving
average (ARIMA) model are very popular, highly accurate, and relatively easy to use. A
detailed description of these methods can be found in [1,2]. Neural networks [3–5] are
also widely used, especially on large datasets. However, there is no best method for all
situations, and the development of new forecasting techniques remains relevant.

This work is based on an information-theoretic approach to time series forecasting. As
is it was shown in [6], the problems of data compression and prediction are closely related
and an asymptotically optimal method for predicting stationary stochastic processes can
be based on a universal code (see also [7]). In [8] it was shown how any lossless data
compression algorithm can be used to predict finite-alphabet and real-valued time series.

In this paper, we do not focus on asymptotic properties of algorithms and consider
using this approach in practical situations. The main contributions of the work are sum-
marized as follows. First, we describe how to use arbitrary data compressors for time
series forecasting. Such compressors are a promising tool for forecasting because many
of them are implementations of universal codes with numerous modifications to increase
the level of compression in real-world situations. It is important to note that modern data
compression techniques are based on several different approaches to universal coding: the
Burrows-Wheeler Transform (BWT) [9], the Prediction by Partial Matching (PPM) [10] algo-
rithm, the Lempel-Ziv family of algorithms [11,12], among others. Some algorithms [13–15]
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search for a compact context-free grammar that unambiguously represents the sequence
for compression, one can see this approach as a kind of artificial intelligence. In previous
works, only some theoretical possibilities of using universal codes for prediction without
any practical applications were described [8], or the use of one universal code for prediction
was presented [7].

Secondly, we propose an adaptive approach to time series forecasting, which is useful
in situations when we do not know in advance which data compressor is optimal for a
given time series.

Thirdly, we describe how the proposed techniques can be using to predict multivariate
data. To test the proposed techniques, we make forecasts for real-world data such as
sunspot numbers and some social indicators of Novosibirsk region, Russia.

It should be noted that our approach can be complemented with well-known time
series transformation and adjustment techniques. For example, in this work, we use
differencing and smoothing in the computational experiments.

The rest of the paper is structured as follows. In the next section, we describe the
mathematical foundations of using arbitrary data compression techniques for forecasting
finite-alphabet time series. After that, we describe generalizations of the model to real-
valued and multivariate cases. Then we give some examples of the practical use of the
presented techniques. Next, we propose an adaptive algorithm that can significantly reduce
computation time when multiple data compressors are used. Further, we use the proposed
algorithm to predict sunspot numbers. At the end of the paper, we describe the limitations
of the proposed approach and make some conclusions.

2. Data Compression and Prediction
2.1. Predicting Finite-Alphabet Time Series

Time series with finite alphabets are most convenient for forecasting using data
compression algorithms. Suppose we have a sequence X = x1, x2, . . . , xt, xi ∈ A, where A
is a finite set (an alphabet), and we want to give a prediction for xt+1, xt+2, . . . , xt+h, h ∈ Z+.

Denote as An the set of all sequences of lengths n over A and A∗ =
∞⋃

i=0
Ai. A uniquely

decodable data compression method (or code) ϕ is a set of mappings ϕn : An → {0, 1}∗,
n = 1, 2, . . ., such that for any sequence of words x1, x2, . . . , xm, xi ∈ An, m ≥ 1, the
sequence ϕn(x1), ϕn(x2), . . . , ϕn(xm) can be uniquely decoded as x1, x2, . . . , xm. The
compressed size (in bits) of sequence α we denote as |ϕ(α)|. We can get a probability
distribution on An using ϕ by

Pϕ(X) = 2−|ϕ(X)|/ ∑
Y∈At

2−|ϕ(Y)|. (1)

A code ϕ is called universal if for any stationary and ergodic measure P

lim
t→∞
|ϕ(x1, x2, . . . , xt)|/t = H(P)

with probability 1, and

lim
t→∞

E(|ϕ(x1, x2, . . . , xt)|)/t = H(P),

where H(P) is the entropy rate [16] of P, E( f ) is the expected value of f . In [8] it was
shown that if P is a stationary and ergodic stochastic process and ϕ is a universal code, (1)
in certain sense is a nonparametric estimate of the unknown probability measure P(X).
More precisely, the following theorem was proved.

Theorem 1. If P is a stationary ergodic measure and ϕ is a universal code, then the following
equalities hold:



Mathematics 2021, 9, 284 3 of 11

1. lim
t→∞

1
t
(− logP(x1, x2, . . . , xt)− (− logPϕ(x1, x2, . . . , xt))) = 0 with probability 1,

2. lim
t→∞

1
t ∑

X∈At
P(X) log(P(X)/Pϕ(X)) = 0,

3. lim
t→∞

1
t ∑

X∈At
P(X)|P(X)− Pϕ(X)| = 0.

We can use (1) to estimate the conditional probability that xt+1 = y1, xt+2 = y2, . . . , xt+h =
yh for some Y ∈ Ah as

Pϕ(Y|X) = Pϕ(xt+1 = y1, xt+2 = y2, . . . , xt+h = yh|x1, x2, . . . , xt) =
Pϕ(x1, x2, . . . , xt, y1, y2, . . . , yh)

Pϕ(x1, x2, . . . , xt)
=

2−|ϕ(x1,x2,...,xt ,y1,y2,...,yh)|

∑
(z1,z2,...,zh)∈Ah

2−|ϕ(x1,x2,...,xt ,z1,z2,...,zh)|
.

(2)

As we can see from (2), the conditional probability of Y ∈ Ah depends on how well Y
can be compressed after X (relative to any other Z ∈ Ah).

Suppose that A is a finite set of integers, Pϕ(xt+j = a|X) =
∑

Y=(y1,...,yj−1,a,yj+1,...,yh)∈Ah
Pϕ(Y|X). We can give a point forecast as x̂t+j = ∑

a∈A
aPϕ(xt+j =

a|X) (i.e., compute the mean over the marginal distribution for step j).

Example 1. Consider the following sequence:

X = 0001110001110001.

Suppose we want to make a forecast for its next two values using gzip [17] as ϕ. Assume that
the alphabet A of the underlying process is {0, 1}. We need to compress every sequence of the form
XZ, where Z ∈ A2. The compression results along with the calculated conditional probabilities
Pgzip(Z|X) are presented in Table 1.

Table 1. The results of compressing the sequences from Example 1 and the calculated conditional
probabilities.

Sequence XZ Gzip(XZ), Bytes Gzip(XZ), Bits ≈ PGzip(Z|X)

000111000111000100 37 296 0
000111000111000101 37 296 0
000111000111000110 36 288 0.004
000111000111000111 35 280 0.996

For instance, Pgzip(11|0001110001110001) = 2−280/(2−296 + 2−296 + 2−288 + 2−280) ≈
0.996 and

Pgzip(0|0001110001110001)= Pgzip(00|0001110001110001) + Pgzip(01|0001110001110001) ≈ 0 + 0 = 0,

Pgzip(1|0001110001110001)= Pgzip(10|0001110001110001) + Pgzip(11|0001110001110001)

≈ 0.004 + 0.996 = 1.
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Suppose we have a finite set of data compression algorithms F = {ϕ1, ϕ2, . . . , ϕk}. If
we do not know which ϕ ∈ F is the best predictor for a given series X, we can mix the
conditional probability distributions yielded by each compressor from F by

PF(xt+1 = y1, xt+2 = y2, . . . , xt+h = yh|x1, x2, . . . , xt) =

k
∑

i=1
ωi2−|ϕi(x1,x2,...,xt ,y1,y2,...,yh)|

∑
(z1,z2,...,zh)∈Ah

k
∑

i=1
ωi2−|ϕi(x1,x2,...,xt ,z1,z2,...,zh)|

,
(3)

where ωi ≥ 0,
k
∑

i=1
ωi = 1.

Note that (3) works in such a way that the highest probability gets Y ∈ Ah such
that |ϕs(XY)| = min

Z∈Ah ,ϕ∈F
|ϕ(XZ)| for some ϕs ∈ F, i.e., (3) selects the best compressor ϕs

“automatically”.

2.2. Predicting Real-Valued Time Series

Many time series that can be found in practice are sequences of real numbers. To
predict such a series using data compression algorithms, we need to convert it to a sequence
of integers (with loss of information, obviously). This process of conversion is known as
quantization. Consider a sequence X = x1, x2, . . . , xt, where xi ∈ R. Denote its minimal
and maximal elements as m and M respectively: m = min

1≤i≤t
{xi}, M = max

1≤i≤t
{xi}. Probably

the simplest way of conversion is to split [m; M] into a finite number n of disjoint numbered
intervals {q1, q2, . . . , qn} of equal length and replace each xi with its corresponding interval
number: if xi ∈ qj, then replace xi with j. Later, we can perform the inverse conversion,
replacing the indices, for example, with the medians of the corresponding intervals.

Now, we consider the question how to select the number of intervals n. On the one
hand, if this value is too small, some important regularities may be missing in the converted
series. On the other hand, if n is too large, a data compressor may not be able to capture
the regularities due to noise in the data. One possible solution of this problem is to employ
an approach similar to that used in (3). Let n be some positive power of 2: l = log2 n is
an integer greater than zero. We can mix the probability distributions, obtained using
partitions into 2k intervals, 1 ≤ k ≤ l, with some weights. The partition yielded the smallest
code length will have the greatest impact on the final result. Denote the number of interval
that contains xi in partition into 2k intervals as x[k]i . Then the mixed probability distribution
can be defined as

Pϕ(x[l]1 , x[l]2 , . . . , x[l]t ) =

l
∑

k=1
ωk2−|ϕ(x[k]1 ,x[k]2 ,...,x[k]t )|+t(l−k)

l
∑

k=1
∑

Z∈At
k

ωk2−|ϕ(Z)|+t(l−k)
, (4)

where Ak = {0, 1, . . . , 2k − 1} is a set of interval numbers, ωk—non-negative weights,
l

∑
k=1

ωk = 1.

2.3. Predicting Multivariate Data

In some practical situations, it is required to predict several related series. In such
cases, we can try to utilize the connection between them to improve the accuracy of our
forecasts. For example, air temperature and barometric pressure are related, and it might
make sense to predict them together. Many univariate time series forecasting techniques
have generalizations to the multivariate (or vector) case [18–21].
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The approach based on data compression algorithms can be used in a multivari-
ate setting too. Suppose we have a vector time series X̄ = x̄1, x̄2, . . . , x̄t, where x̄i =

(xi1, xi2, . . . , xid)
T , d < ∞, xij ∈ R. Let’s find the minimal and maximal values for each

coordinate: mj = min
1≤i≤t

{xij}, Mj = max
1≤i≤t

{xij}, 1 ≤ j ≤ d. As in the previous section, we

split each interval [mj; Mj] into a finite number of intervals n and thus obtain nd d-cubes.
Then we need to number these cubes and replace each point x̄i with the number of the
cube it falls into. As a result, we get an integer sequence that can be predicted using the
previously described methods.

2.4. Experiments

In this section, we use the proposed method to predict real-world data. Along with the
point forecasts (which are the means of the corresponding distributions), we provide 95%
confidence intervals for them. To estimate these intervals, we used the following strategy.
Suppose that we want to make an h-step ahead prediction for time series X = x1, x2, . . . , xt.
Let s be bt/2c. For each series Xs, Xs+1, . . . , Xt−h, where Xi = x1, x2, . . . , xi, we made
an h-step forecast X̂h

i = x̂i+1, x̂i+2, . . . , x̂i+h and calculated the residuals for each step:
rij = xi+j − x̂i+j, 1 ≤ j ≤ h. Then we computed the standard deviations of the residuals

as σj =

√
1

t− h− s + 1

t−h
∑

i=s
(rij − r̄j)

2, where r̄j = (
t−h
∑

i=s
rij)/(t− h− s + 1). The confidence

interval for x̂t+j was calculated as [x̂t+j − 2σj; x̂t+j + 2σj].

Example 2. Suppose we have a series

X = 1.1, 1.2, 1.3, 1.2, 1.4

and we want to make a 2-step forecast. As was explained previously, we make 2-step ahead
predictions for the series

X2 = 1.1, 1.2

and
X3 = 1.1, 1.2, 1.3.

Suppose that our forecast for X2 is 1.3, 1.4 and our forecast for X3 is 1.4, 1.5. Then the standard
deviations of the residuals for steps 1 and 2 are

σ1 =

√
((0 + 0.1)2 + (−0.2 + 0.1)2)/2 = 0.1

and
σ2 =

√
((−0.2 + 0.15)2 + (−0.1 + 0.15)2)/2 = 0.05.

If our forecast for X is 1.3, 1.5, our confidence interval for the first step is [1.3− 2 · 0.1; 1.3 +
2 · 0.1] = [1.1; 1.5], for the second step is [1.5− 2 · 0.05; 1.5 + 2 · 0.05] = [1.4; 1.6].

To get all the predictions presented below, we used the following set of data compres-
sion algorithms, combined using (3):

1. lcacomp (https://code.google.com/archive/p/lcacomp/)—a grammar-based data
compressor proposed in [22];

2. Re-Pair (https://github.com/nicolaprezza/Re-Pair)—a grammar-based compressor,
the implementation is described in [23];

3. zstd (https://github.com/facebook/zstd)—a fast lossless data compression algorithm,
developed by Facebook;

4. bzip2 (https://www.sourceware.org/bzip2)—a data compressor based on the Burrows-
Wheeler transform;

5. zlib (https://zlib.net/)—a data compression library that implements the DEFLATE
algorithm;

https://code.google.com/archive/p/lcacomp/
https://github.com/nicolaprezza/Re-Pair
https://github.com/facebook/zstd
https://www.sourceware.org/bzip2
https://zlib.net/
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6. ppmd (https://github.com/Shelwien/ppmd_sh)—an implementation of the predic-
tion by partial matching (PPM) algorithm;

7. zpaq (https://github.com/zpaq/zpaq)—a journaling archiver optimized for user-
level incremental backup of directory trees;

8. automaton (https://github.com/kchirikhin/itp)—our implementation of an algo-
rithm based on multihead sensing finite automata [24].

We mixed these compressors with the same weights, that is, in (3) ωi = 1/8.
Several simple techniques of data transformation also were used. First, to remove

trends in data we took the first difference: yi = xi − xi−1. Secondly, we used smoothing:
yi = (2xi + xi−1 + xi−2)/4.

Let us move on to forecasting some indicators of Novosibirsk region. In the first
example, we predict the annual number of unemployed persons in the region. In Figure 1a
this series along with our 4-step forecast with confidence intervals is presented. Since this
series is a real-valued one, we used partitions of its range of values into 2, 4 and 8 intervals
in (4). According to our forecast, in the next four years the indicator will be higher than the
current level.
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Figure 1. (a) Average annual number of unemployed persons in Novosibirsk region. (b) Average
annual monetary income of the population in Novosibirsk region.

In the second example, we predict the average annual monetary income of the popu-
lation in the region. The results are shown in Figure 1b. The forecast shows that in the next
4 years the trend will continue and by 2023 the indicator will be near 35,000 rubles per year.

Our implementation is available at https://github.com/kchirikhin/itp.

3. Adaptive Method of Forecasting

As noted in Section 2.1, multiple data compression algorithms can be combined into
one method of forecasting (almost) without loss of accuracy using (3). The only issue
is computation time—we need to compress all sequences with every data compression
algorithm that we include in our combination. In this section, we consider a way to
significantly reduce computation time while maintaining near-optimal accuracy. This can
be achieved using the so-called time-universal codes.

3.1. Time-Universal Codes

Suppose we want to compress a sequence X = x1, x2, . . . , xn, xi belongs to some
finite alphabet A. Also suppose we have a finite set of data compression algorithms
F = {ϕ1, ϕ2, . . . , ϕk} and we want to compress X with ϕs ∈ F that yields the smallest code
length. The obvious way to find ϕs is to compress X with each ϕi and then to choose the
best one. After that, we need to store s along with ϕs(X) in order to be able to decompress
the original data. Binary representation < q > of any integer q from 0 to k− 1 requires
no more than dlog2 ke bits, therefore our final code word would be < s > ϕs(X) with

https://github.com/Shelwien/ppmd_sh
https://github.com/zpaq/zpaq
https://github.com/kchirikhin/itp
https://github.com/kchirikhin/itp
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length dlog2 ke + |ϕs(X)| bits. This approach works well but requires additional time
proportional to k. The goal is to compress X with the best compressor using relatively
small additional time.

Time-universal codes were proposed in [25] and allow making the portion of extra
time asymptotically as small as desired. Let vi be the time ϕi spends on encoding a single
letter of X, v = max

1≤i≤k
vi. Thus, an upper bound for time needed to encode X using any

ϕ ∈ F is T = vn. Denote as δT the amount of extra time we have to select a close to optimal
data compressor from F for X, where δ is a positive constant. The total time of selection and
compression becomes no more than T + δT = T(1 + δ). Time-adaptive and time-universal
codes are defined as follows.

Definition 1. Any method of data compression that encodes a sequence x1, x2, . . . , xn, n > 0,
xi ∈ A by a binary word of the length dlog2 ke+ |ϕs(x1, x2, . . . , xn)| for some ϕs ∈ F and the
time of encoding is not greater than T(1 + δ) is called as time-adaptive code and denoted as Φ̂δ

compr.

Definition 2. If for a time-adaptive code Φ̂δ
compr the following equation is valid

lim
n→∞

|Φ̂δ
compr(x1, x2, . . . , xn)|

n
= min

1,...,k
lim

n→∞

|ϕi(x1, x2, . . . , xn)|
n

,

this code is called time-universal.

In [25] was proposed the following simple algorithm and proved that it yields a time
universal code:

1. Calculate r = bδT/kvc;
2. Find ϕs ∈ F such that |ϕs(x1, x2, . . . , xr)| = min

i=1,...,k
|ϕi(x1, x2, . . . , xr)|, 1 ≤ s ≤ k;

3. Compress x1, x2, . . . , xn using ϕs and make the code word < s > ϕs(x1, x2, . . . , xn).

In this work, we implemented this algorithm and used it to predict real-world time series.

3.2. Experiments

In this section, we consider sunspot numbers forecasting. Sunspots are temporary
spots on the Sun with reduced surface temperature that appear darker than the surrounding
areas. The sunspot number time series is provided by the WDC-SILSO (World Data
Center—Sunspot Index and Long-term Solar Observations) [26]. The daily, monthly, yearly
and 13-month smoothed monthly total sunspot numbers can be found on the SILSO
site http://www.sidc.be/silso/datafiles. Here we used the monthly mean total sunspot
number series.

We accessed the SILSO site on 20 June 2020, at that time the series had 3257 observa-
tions. The entire series is shown in Figure 2. It has an obvious cyclical component and it’s
known that the approximate cycle lengths is 11 years [27].

The Space Weather Services (SWS) of the Australian Bureau of Meteorology issues
forecasts for the WDC-SILSO sunspot numbers and maintains an archive of this forecasts
(http://listserver.ips.gov.au/pipermail/ips-ssn-predictions/), so we can compare our
forecasts with them. In July 2015, SILSO adjusted the original data and SWS moved to the
new version in the forecasts in February 2016. We started making predictions from that
date, thus after each element with the number greater than 3205 (which corresponds to
January 2016), before adding it to the end of the series, we made a 4-step forecast.

http://www.sidc.be/silso/datafiles
http://listserver.ips.gov.au/pipermail/ips-ssn-predictions/
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Figure 2. Monthly mean sunspot numbers.

In order to select a (close to) optimal compressor for this series, we tried to use from
10% to 100% of its values with step 10%. For instance, when 10% of the values were used, δ
was 8× 0.1 = 0.8 since we had 8 algorithms. In Section 2.4, the maximal number of intervals
we considered when quantizing was 8; in this section, we increased this value to 16. In
everything else, we used the same methodology as in Section 2.4.

For brevity, let us denote the combination of all 8 algorithms, obtained using (3), as
joint method.Code lengths for different compressors, obtained by compressing the entire
series (100% of values), are presented in Table 2. We can see that by code length zstd is the
best compressor for this series and hence it will have the greatest contribution to the result
of the joint method. For 10% trough 40% of the series values the best compressor by code
lengths is ppmd, then for 50–100% zstd becomes the best compressor. The code length for
ppmd and zstd are shown in Table 3.

Table 2. Compressed sizes of the sunspot number series (the minimum values obtained using
partitions into 2, 4, 8 and 16 intervals).

Data Compressor Code Length (Bits) Data Compressor Code Length (Bits)

zstd 8400 rp 10,488
ppmd 8528 zpaq 10,808
bzip2 9504 lcacomp 16,352
zlib 9864 automat. 63,120

To assess the accuracy of our forecasts, we calculated the mean absolute error (MAE),
defined as the mean of the absolute values of the residuals, for each step 1–4. The MAEs
of ppmd’s and zstd’s forecasts are presented in Table 4. We can see that ppmd was a bit
more accurate than zstd. We tried to add more values for prediction (from 2800 to 3205),
and in that case zstd was slightly more accurate for steps 1–3 (the mean absolute errors are
presented in Table 5). For step 4, ppmd was more accurate.
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Table 3. Compressed sizes of 10–100% of the sunspot number series values for zstd and ppmd (the
minimum values obtained using partitions into 2, 4, 8 and 16 intervals).

Data Compressor 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

zstd 1248 2160 2992 3656 4416 5216 6024 6840 7672 8400
ppmd 1104 1944 2664 3592 4488 5296 6088 6952 7840 8528

We ran the program 5 times using all 8 algorithms and 5 more times using the adaptive
algorithm (50% of the values were used to select the best compressor). The average time
required to compute one 4-step forecast was 9945.46 s. in the former case and 564.63 s. in
the latter. Thus, we reduced the computation time by more than 17 times without loss
of accuracy.

Table 4. Average absolute errors of the forecasts of the mean monthly sunspot numbers.

Step 1 2 3 4

ppmd 7.2 9.2 10.1 10.2
zstd 8.1 10.3 11.8 13.3

ppmd+zstd 8.1 10.3 11.8 13.3
The joint method 8.1 10.3 11.8 13.3

SWS 8.3 9.1 9.7 9.8

Table 5. Average absolute errors of the forecasts of the mean monthly sunspot numbers (the number
of predictions increased by 405).

Step 1 2 3 4

ppmd 16.5 19.1 20.4 21.6
zstd 16.4 18.7 20.0 22.1

4. Model Limitations

The presented model has some limitations. First, it is suitable for prediction of data
with no trend pattern. But, as was shown in Section 2.4, to overcome this limitation some
additional techniques such as differencing or time series decomposition [28] can be used.
Secondly, the computational complexity of the model is high: if we make forecast for h
steps ahead, |A|h sequences have to be compressed. This means that it cannot be directly
applied in long-term forecasting or in a setting when it is required to compute predictions
very quickly. While sacrificing accuracy, we can still make long-term forecasts using the
following approach. Suppose we have a series X = x1, x2, . . . , xt and we want to predict its
next h values. For simplicity, assume that t and h are even numbers, but the generalization is
obvious. We can split X into two separate time series Xodd = x1, x3, . . . , xt−1 and Xeven =
x2, x4, . . . , xt. Then we predict xt+1, xt+3, . . . , xt+h−1 using Xodd and xt+2, xt+4, . . . , xt+h
using Xeven. This allows us reduce the number of sequences to compress from |A|h to
2|A|h/2. It is clear that we can go further and split X into more than two series. Another
obvious way to speed up computations is to choose small n when quantizing.

5. Discussion

In our opinion, the results of computations show that the proposed method has good
accuracy. The adaptive approach to forecasting can significantly reduce computation time
without loss in effectiveness if multiple compressors are used.

It is important to note that some time series can contain complex regularities. For
example, the dynamics of financial time series can be influenced by the participants of the
corresponding processes, and this can lead to the emergence of subtle patterns in the data.
Another example is the time series arising in the study of space objects. Such series can
contain various nonstationarities like attenuation and non-periodic changes. Thus, in our
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opinion, forecasting methods that allow finding unusual patterns may be of interest to
many researchers. Patterns of the indicated types that occur in text data can be found by
modern archivers. Therefore, we believe that the use of data compressors implicitly allows
the use of various techniques of finding patterns, including artificial intelligence methods
beyond neural networks.

In further research, a more elaborate strategy for optimal algorithms selection in
the adaptive method can be developed. For example, one can use multidimensional
optimization techniques for this purpose.

6. Conclusions

It turns out that from a mathematical point of view, data compression and prediction
can be thought of together, allowing ideas from one area to be used in another. From a prac-
tical point of view, many of the data compression techniques implemented in software can
be used in time series forecasting. Efficient data compression algorithms to be developed
in the future can be combined with existing ones using the described approach.
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