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Abstract: We discuss the solvability of a fairly general class of systems of perturbed Hammerstein
integral equations with functional terms that depend on several parameters. The nonlinearities
and the functionals are allowed to depend on the components of the system and their derivatives.
The results are applicable to systems of nonlocal second order ordinary differential equations subject
to functional boundary conditions, this is illustrated in an example. Our approach is based on the
classical fixed point index.
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1. Introduction

Nonlocal differential equations have seen recently growing attention by researchers,
both in the context of ODEs and PDEs. One motivation for studying this class of equations
is that nonlocal terms often occur in physical models, we refer the reader to the paper by
Stanćzy [1] for nonlocalities involving averaging processes, and to the review by Ma [2] for
Kirchhoff-type problems.

In the context of ODEs and radial solutions of PDEs in annular domains, a recent and
very interesting paper is the one by Goodrich [3]. Goodrich studied the existence of one
positive solution of the nonlocal ODE

− A
(∫ 1

0
|u(s)|q ds

)
u′′(t) = λ f (t, u(t)), t ∈ (0, 1), (1)

where q ≥ 1 and λ is a parameter, subject to the Dirichlet boundary conditions (BCs)

u(0) = u(1) = 0. (2)

The approach in [3] relies on classical fixed point index theory applied in the cone of
positive continuous functions

K̂ :=
{

w ∈ C[0, 1] :
∫ 1

0
w(s) ds ≥ ĉ1‖w‖∞, min

t∈[a,b]
w(t) ≥ ĉ2‖w‖∞, w ≥ 0

}
, (3)

where ‖w‖∞ := supt∈[0,1] |w(t)|. Goodrich also studied in [3] the following generalization
of (1), namely

−
(

A
(∫ 1

0
|u(s)|q ds

))β
u′′(t) = λ( f (t, u(t)))α, t ∈ (0, 1),

where α, β are positive constants, subject to (2).
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Here we proceed in a different way; rather than studying a specific boundary value
problem (BVP), we provide new results regarding the existence and non-existence of non-
zero solutions of the following class of systems of integral equations with functional
terms, namely

ui(t) = λi

∫ 1

0
ki(t, s) fi(s, u(s), u′(s), wi[u]) ds + ∑

j=1,2
ηijγij(t)hij[u], t ∈ [0, 1], (4)

where i = 1, 2, . . . , n, u = (u1, . . . , un), u′ = (u′1, . . . , u′n), fi are continuous, γij are continu-
ously differentiable, hij and wi are suitable functionals, λi and ηij are positive parameters.

When dealing with systems of second-order BVPs, the functional terms wi occurring
in (4) can be used to incorporate the nonlocalities that appear in the differential equations,
while the functionals hij originate directly from the BCs. In the context of positive solutions,
the idea of incorporating the nonlocal terms of differential equations within the nonlin-
earities has been exploited in the case of equations by Fijałkowski and Przeradzki [4] and
Enguiça and Sanchez [5], while the case of systems of second-order elliptic operators has
been considered by the author [6,7]. We seek solutions of the system (4) in a product of
cones of a kind that differs from (3); in particular, we work on products of cones in the
space C1[0, 1] where the functions are positive on a subinterval of [0, 1] and are allowed to
change sign elsewhere, this follows the line of research initiated by the author and Webb
in [8]. We stress that ours is a larger cone than the one used by the author and Minhós [9],
where some additional constraints on the growth of the derivatives are embedded within
the cone, a setting not applicable to the present class of systems due to the assumptions
on the kernels. As in the case of elliptic equations [7], our approach can cover different
kinds of nonlocalities in the differential equations and several types of BCs: local, nonlocal,
linear and nonlinear. There exists a wide literature on nonlocal/nonlinear BCs, we refer
the reader to the papers [10,11] and references therein.

The proof of the existence result relies on the classical fixed point index, while for the
non-existence we use an elementary argument. We conclude by illustrating, in an example,
how our theoretical results can be applied to a system of nonlocal second-order ODEs that
presents coupling between the components of the system in the nonlocal terms occurring
in the equations and in the BCs.

2. Existence and Nonexistence of Nontrivial Solutions

We discuss the solvability of the system of perturbed integral equations of the type

ui(t) = Fi(u)(t) + ∑
j=1,2

ηijγij(t)hij[u], t ∈ [0, 1], i = 1, 2, . . . , n, (5)

where

Fi(u)(t) := λi

∫ 1

0
ki(t, s) fi(s, u(s), u′(s), wi[u]) ds,

u = (u1, . . . , un), u′ = (u′1, . . . , u′n). We make the following assumptions on the terms that
occur in (5).

(C1) For every i = 1, . . . , n, ki : [0, 1] × [0, 1] → R is measurable in s for every t and
continuous in t for almost every (a.e.) s, that is, for every τ ∈ [0, 1] we have

lim
t→τ
|ki(t, s)− ki(τ, s)| = 0 for a.e. s ∈ [0, 1].

(C2) There exist a subinterval [ai, bi] ⊆ [0, 1], a constant c̃i = c̃i(ai, bi) ∈ (0, 1] and a function
Φi0 ∈ L1(0, 1) such that |ki(t, s)| ≤ Φi0(s) for t ∈ [0, 1] and a.e. s ∈ [0, 1] and

ki(t, s) ≥ c̃iΦi0(s) for t ∈ [ai, bi] and a. e. s ∈ [0, 1].
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(C3) For every i = 1, . . . , n,
∂ki
∂t

is measurable in s for every t, continuous in t except
possibly at the point t = s where there can be a jump discontinuity, that is, right and

left limits both exist, and there exists Φi1(s) ∈ L1(0, 1) such that
∣∣∣∂ki

∂t
(t, s)

∣∣∣ ≤ Φi1(s)

for t ∈ [0, 1] and a.e., s ∈ [0, 1].
(C4) For every i = 1, . . . , n, fi : [0, 1]×R2n × [0,+∞)→ [0,+∞) is continuous.
(C5) For every i = 1, . . . , n and j = 1, 2, we have γij ∈ C1[0, 1] and there exists a constant

cij = cij(ai, bi) ∈ (0, 1] such that γij(t) ≥ cij‖γij‖∞ for every t ∈ [ai, bi].
(C6) For every i = 1, . . . , n and j = 1, 2, we have λi, ηij,∈ [0,+∞).

We work in the product space
n

∏
i=1

C1[0, 1] endowed with the norm

‖u‖ := max
i=1,...,n

{‖ui‖C1},

where ‖ui‖C1 := max{‖ui‖∞, ‖u′i‖∞}. We recall that a cone C of a real Banach space X is a
closed set with C+ C ⊂ C, µC ⊂ C for all µ ≥ 0 and C ∩ (−C) = {0}. Here we utilize the

cone K ⊂
n

∏
i=1

C1[0, 1] defined by

K :=
{

u ∈
n

∏
i=1

K̃i
}

,

where
K̃i := {w ∈ C1[0, 1] : min

t∈[ai ,bi ]
w(t) ≥ ci‖w‖∞},

here ci = min{c̃i, ci1, ci2}. Note that K 6= {0} since 1̂ ∈ K, here 1̂ denotes the function with
each component constant and equal to 1 for every t ∈ [0, 1]. We require the nonlinear
functionals hij and wi to act positively on the cone K and to be compact, that is:

(C7) For every i = 1, . . . , n and j = 1, 2, hij : K → [0,+∞) is continuous and maps bounded
sets into bounded sets.

(C8) For every i = 1, . . . , n, wi : K → [0,+∞) is continuous and maps bounded sets into
bounded sets.

We define the operator T as

Tu :=
(
Tiu
)

i=1...n,

where
Ti(u)(t) = Fi(u)(t) + ∑

j=1,2
ηijγij(t)hij[u], t ∈ [0, 1], i = 1, 2, . . . , n.

With the assumptions above, it is routine to show that T maps K to K and the com-
pactness follows by a careful use of the Arzelà-Ascoli theorem.

Remark 1. In condition (C4) it is possible to weaken the continuity of the functions fi, in favor
of Carathéodory-type assumptions. We have refrained to do so in order to keep the manuscript as
readable as possible.

The next result summarizes the main properties of the classical fixed point index for
compact maps, for more details we refer the reader to [12,13]. In what follows the closure
and the boundary of subsets of a cone K are understood to be relative to K.

Proposition 1. Let X be a real Banach space and let C ⊂ X be a cone. Let D be an open bounded
set of X with 0 ∈ DC and DC 6= C, where DC = D ∩ C. Assume that T : DC → C is a
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compact operator such that x 6= Tx for x ∈ ∂DC. Then the fixed point index iC(T, DC) has the
following properties:

(i) If there exists e ∈ C \ {0} such that x 6= Tx + λe for all x ∈ ∂DC and all λ > 0,
then iC(T, DC) = 0.

(ii) If Tx 6= λx for all x ∈ ∂DC and all λ > 1, then iC(T, DC) = 1.
(iii) Let D1 be open bounded in X such that D1

C ⊂ DC. If iC(T, DC) = 1 and iC(T, D1
C) = 0,

then T has a fixed point in DC \ D1
C. The same holds if iC(T, DC) = 0 and iC(T, D1

C) = 1.

For ρ ∈ (0, ∞), we define the set

Kρ := {u ∈ K : ‖u‖ < ρ}

and the quantities

wi,ρ := inf
u∈∂Kρ

wi[u], wi,ρ := sup
u∈∂Kρ

wi[u], hij,ρ := inf
u∈∂Kρ

hij[u], hij,ρ := sup
u∈∂Kρ

hij[u].

Lemma 1. Assume that u 6= Tu on ∂Kρ and suppose that

(I1
ρ) there exists ρ > 0, such that

max
i=1,...,n

l=0,1

{λi f i,ρ

mil
+ ∑

j=1,2
ηij‖γ

(l)
ij ‖∞hij,ρ

}
≤ ρ, (6)

where

f i,ρ := max
Ii,ρ

fi(t, x1, . . . , x2n, w), Ii,ρ := [0, 1]× [−ρ, ρ]2n × [wi,ρ, wi,ρ],

1
mil

:=


sup

t∈[0,1]

∫ 1

0
|ki(t, s)| ds, l = 0,

sup
t∈[0,1]

∫ 1

0

∣∣∣∂ki
∂t

(t, s)
∣∣∣ ds, l = 1.

.

Then we have iK(T, Kρ) = 1.

Proof. We prove that σu 6= Tu for every u ∈ ∂Kρ and every σ > 1. If this does not hold,
then there exist u ∈ ∂Kρ and σ > 1 such that σu = Tu. Note that if ‖u‖ = ρ then there
exists i0 ∈ {1, . . . n} such that either ‖ui0‖∞ = ρ or ‖u′i0‖∞ = ρ.

We show the case ‖u′i0‖∞ = ρ, the case ‖ui0‖∞ = ρ can be treated with a similar
argument. For t ∈ [0, 1] we have

σu′i0(t) =λi0

∫ 1

0

∂ki0
∂t

(t, s) fi0(s, u(s), u′(s), wi0 [u]) ds + ∑
j=1,2

ηi0 jγ
′
i0 j(t)hi0 j[u]. (7)

From (7) we obtain, for t ∈ [0, 1],

σ|u′i0(t)| ≤ λi0

∫ 1

0

∣∣∣∂ki0
∂t

(t, s)
∣∣∣ fi0(s, u(s), u′(s), wi0 [u]) ds + ∑

j=1,2
ηi0 j|γ′i0 j(t)|hi0 j[u]

≤ λi0 f i0,ρ
1

mi01
+ ∑

j=1,2
ηi0 j‖γ′i0 j‖∞hi0 j,ρ ≤ ρ. (8)

Taking in (8) the supremum for t ∈ [0, 1] yields σ ≤ 1, a contradiction. Therefore we
obtain iK(T, Kρ) = 1.
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Lemma 2. Assume that u 6= Tu on ∂Kρ and that

(I0
ρ) there exist ρ > 0 and δ̃i, δi1, δi2 ∈ [0,+∞), such that for every i ∈ {1, . . . , n} we have

fi(t, x1, . . . , x2n, w) ≥ δ̃ixi, on [ai, bi]×
2n

∏
j=1

[θjρ, ρ]× [wi,ρ, wi,ρ],

hij,ρ[u] ≥ δij‖ui‖∞, for every u ∈ ∂Kρ and j = 1, 2,

and
min

i=1,...,n

{
λi δ̃i c̃i

1
Mi

+ ∑
j=1,2

ηijcijδij‖γij‖∞

}
≥ 1, (9)

where
1

Mi
:= inf

t∈[ai ,bi ]

∫ ai

ai

ki(t, s) ds, θj :=

{
−1, j 6= i,
0, j = i.

Then we have iK(T, Kρ) = 0.

Proof. We show that u 6= Tu + σ1̂ for every u ∈ ∂Kρ and every σ > 0. If not, there exists
u ∈ ∂Kρ and σ > 0 such that u = Tu + σ1̂.

Then there exist i0 ∈ {1, . . . , n} and ρ̃ such that 0 < ρ̃ = ‖ui0‖∞ ≤ ‖u‖ = ρ. For every
t ∈ [ai, bi] we have

ρ̃ ≥ ui0(t) = λi0

∫ 1

0
ki0(t, s) fi0(s, u(s), u′(s), wi0 [u]) ds + ∑

j=1,2
ηi0 jγi0 j(t)hi0 j[u] + σ

≥ λi0

∫ bi

ai

ki0(t, s)δ̃i0 ui0(s) ds + ∑
j=1,2

ηi0 jγi0 j(t)δi0 j‖ui0‖∞ + σ

≥ λi0 δ̃i0 c̃i0 ρ̃
1

Mi0
+ ∑

j=1,2
ηi0 jci0 jδi0 j‖γi0 j‖∞ρ̃ + σ ≥ ρ̃ + σ,

a contradiction, since σ > 0. Therefore we obtain iK(T, Kρ) = 0.

In the next Lemma, we restrict the growth of the nonlinearities in only one of the
components.

Lemma 3. Assume that u 6= Tu on ∂Kρ and that

(I0
ρ)

? there exist ρ > 0 and i0 ∈ {1, . . . , n} such that

λi0 f
i0,ρ

Mi0
+ ∑

j=1,2
ηi0 jci0 j‖γi0 j‖∞hi0 j,ρ ≥ ρ, (10)

where

f
i,ρ

:= min
Ji,ρ

fi(t, x1, . . . , x2n, w), Ji,ρ := [ai, bi]×
2n

∏
j=1

[θjρ, ρ]× [wi,ρ, wi,ρ].

Then we have iK(T, Kρ) = 0.
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Proof. We show that u 6= Tu + σ1̂ for every u ∈ ∂Kρ and every σ > 0. If not, there exists
u ∈ ∂Kρ and σ > 0 such that u = Tu + σ1̂. Note that ‖ui0‖∞ ≤ ‖u‖ = ρ, therefore for every
t ∈ [ai, bi] we have

ρ ≥ ui0(t) = λi0

∫ 1

0
ki0(t, s) fi0(s, u(s), u′(s), wi0 [u]) ds + ∑

j=1,2
ηi0 jγi0 j(t)hi0 j[u] + σ

≥ λi0

∫ bi

ai

ki0(t, s) f
i0,ρ

ds + ∑
j=1,2

ηi0 jγi0 j(t)hi0 j,ρ + σ

≥ λi0 f
i0,ρ

1
Mi0

+ ∑
j=1,2

ηi0 jci0 jhi0 j,ρ + σ ≥ ρ + σ,

a contradiction, since σ > 0. Therefore we obtain iK(T, Kρ) = 0.

With these ingredients we can state the following existence and localization result.

Theorem 1. Assume that either of the following conditions holds.

(S) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < ρ2 such that (I0
ρ1
) and (I1

ρ2
) are satisfied.

(S)? There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < ρ2 such that (I0
ρ1
)? and (I1

ρ2
) are satisfied.

Then the system (5) has at least one solution u ∈ K, with ρ1 ≤ ‖u‖ ≤ ρ2.

Proof. We prove the result under the assumption (S), the other case is similar. If T has
fixed point either on ∂Kρ1 or on ∂Kρ2 we are done. If this is not the case, by Lemma 2
we have iK(T, Kρ1) = 0 and by Lemma 1 we obtain iK(T, Kρ2) = 1. Therefore we have
iK(T, Kρ2 \ Kρ1) = 1, which proves the result.

We now provide a non-existence result that allows different growths in the components
of the system.

Theorem 2. Let I ,J ⊂ {1, . . . , n} be such that I ∩ J = ∅ and I ∪ J = {1, . . . , n} and
assume that there exists ρ > 0 such that the following conditions are satisfied:

(NI )There exist ξ̃i, ξi1, ξi2 ∈ [0,+∞) such that, for every i ∈ I we have

fi(t, x1, . . . , x2n, w) ≤ ξ̃i|xi|, on [0, 1]× [−ρ, ρ]2n ×
[

inf
u∈Kρ

wi[u], sup
u∈Kρ

wi[u]
]
,

hij[u] ≤ ξij‖ui‖∞, for every u ∈ Kρ and j = 1, 2,

max
i∈I

{λi ξ̃i
mi0

+ ∑
j=1,2

ηijξij‖γij‖∞

}
< 1. (11)

(NJ )There exist δ̃i, δi1, δi2 ∈ [0,+∞), such that for every i ∈ J we have

fi(t, x1, . . . , x2n, w) ≥ δ̃ixi, on [ai, bi]×
2n

∏
j=1

[θjρ, ρ]×
[

inf
u∈Kρ

wi[u], sup
u∈Kρ

wi[u]
]
,

hij[u] ≥ δij‖ui‖∞, for every u ∈ Kρ and j = 1, 2,

and

min
i∈J

{λi δ̃i c̃i
Mi

+ ∑
j=1,2

ηijcijδij‖γij‖∞

}
> 1, (12)

Then the system (5) has at most the zero solution in Kρ.
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Proof. Assume that there exist u ∈ Kρ \ {0} such that Tu = u. Then there exists i0 ∈ {1, . . . , n}
and ρ̃ ∈ (0, ρ] such that ‖ui0‖∞ = ρ̃.

If i0 ∈ I , then, by means of the assumptions in (NI ), for every t ∈ [0, 1] we have

|ui0(t)| ≤ λi0

∫ 1

0
|ki0(t, s)| fi0(s, u(s), u′(s), wi0 [u]) ds + ∑

j=1,2
ηi0 j|γi0 j(t)|hi0 j[u]

≤ λi0

∫ 1

0
|ki0(t, s)|ξ̃i0 |ui0(s)| ds + ∑

j=1,2
ηi0 j|γi0 j(t)|ξi0 j‖ui0‖∞

≤
(

λi0 ξ̃i0
1

mi00
+ ∑

j=1,2
ηi0 jξi0 j‖γi0 j‖∞

)
ρ̃ < ρ̃. (13)

Passing to the supremum for t ∈ [0, 1] in (13) gives ρ̃ < ρ̃, a contradiction.
If i0 ∈ J , then the assumptions in (NJ ) imply that, for every t ∈ [ai, bi], we have

ρ̃ ≥ ui0(t) = λi0

∫ 1

0
ki0(t, s) fi0(s, u(s), u′(s), wi0 [u]) ds + ∑

j=1,2
ηi0 jγi0 j(t)hi0 j[u]

≥ λi0

∫ bi

ai

ki0(t, s)δ̃i0 ui0(s) ds + ∑
j=1,2

ηi0 jγi0 j(t)δi0 j‖ui0‖∞

≥
(

λi0 δ̃i0 c̃i0
1

Mi0
+ ∑

j=1,2
ηi0 jci0 jδi0 j‖γi0 j‖∞

)
ρ̃ > ρ̃,

a contradiction.

We conclude with the following example, which illustrates the applicability of the
above results.

Example 1. Consider the system
−
(
eu2(

1
2 ) +

∫ 1
0 (u

′
1(t))

2 dt
)
u′′1 (t) = λ1eu1(t)(1 + (u′2(t))

2), t ∈ [0, 1],

−e(
∫ 1

0 (u
′
1(t)+u′2(t))

2 dt)u′′2 = λ2(u2(t)u′1(t))
2, t ∈ [0, 1],

u′1(0) + η11h11[(u1, u2)] = 0, 1
4 u′1(1) + u1(

1
2 ) = 0,

u′2(0) + η21h21[(u1, u2)] = 0, 1
4 u2(

1
2 ) + u2(1) = 0,

(14)

where

h11[(u1, u2)] =
(
u′1(

1
2
)
)2

+
(
u′2(

1
2
)
)2 and h21[(u1, u2)] = (u2(

1
2
))2

∫ 1

0
(u′1(t))

2 dt.

We investigate the existence and nonexistence of solutions of the system (14) with a norm
of less than or equal to 1. In particular, we show that within a certain region of the parameters
λ1, λ2, η11, η21 at least one non-trivial solution exists, while within another region the problem does
not have a solution.

The system (14) can be written in the form{
u1(t) = η11γ11(t)h11[(u1, u2)] + λ1

∫ 1
0 k1(t, s) f1(s, u1(s), u2(s), u′1(s), u′2(s), w1[(u1, u2)]) ds,

u2(t) = η21γ21(t)h21[(u1, u2)] + λ2
∫ 1

0 k2(t, s) f2(s, u1(s), u2(s), u′1(s), u′2(s), w1[(u1, u2)]) ds,

where

f1(t, u1(t), u2(t), u′1(t), u′2(t), w1[(u1, u2)] = eu1(t)(1 + (u′2(t))
2)w1[(u1, u2)],

f2(t, u1(t), u2(t), u′1(t), u′2(t), w1[(u1, u2)] = (u2(t)u′1(t))
2w2[(u1, u2)],
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γ11(t) =
3
4
− t, w1[(u1, u2)] =

(
eu2(

1
2 ) +

∫ 1

0
(u′1(t))

2 dt
)−1,

k1(t, s) =
1
4
+

{
1
2 − s, s ≤ 1

2 ,
0, s > 1

2 ,
−
{

t− s, s ≤ t,
0, s > t,

γ21(t) =
( 9

10
− t
)

, w2[(u1, u2)] = e−
∫ 1

0 (u
′
1(t)+u′2(t))

2 dt,

k2(t, s) =
4
5
(1− s) +

{
1
5 (

1
2 − s), s ≤ 1

2

0, s > 1
2
−
{

t− s, s ≤ t
0, s > t.

The kernel k1 is non-negative in for t ∈ [0, 3/4] and can change sign for t ∈ [3/4, 1].
The computation of the constants related to k1 and γ11 can be found for example in [10,14] and
references therein, and read as follows

Φ10(s) = ‖γ11‖∞ =
3
4

,
1

m10
=

3
8

.

The choice of [a1, b1] = [0, 3
8 ] yields c1 = c̃1 = c11 = 1

3 , 1
M1

= 9
64 . Furthermore note that

γ′11(t) := −1,
∂k1

∂t
(t, s) =

{
−1, s < t,
0, s > t,

and thus we obtain
1 = ‖γ′11‖ = Φ11(s) =

1
m11

.

The kernel k2 is non-negative in for t ∈ [0, 1/2] but can change sign for t ∈ [1/2, 1]. In
this case Φ20 = (1− s) and fixing [a2, b2] = [0, 1

2 ] gives c̃2 = 2
5 , see [8]. By direct calculation

we obtain
‖γ21‖∞ =

9
10

,
1

m20
=

21
40

, c21 =
4
9

,
1

M2
=

2
5

,

thus we have c2 = c̃2 = 2
5 . Reasoning as above yields

1 = ‖γ′21‖ = Φ21(s) =
1

m21
.

Note that for (u1, u2) ∈ K1 we have

(1 + e)−1 ≤ w1[(u1, u2)] ≤ e and e−4 ≤ w2[(u1, u2)] ≤ 1,

thus we have
f 1,1 ≤ 2e2, f 2,1 ≤ 1, h11,1 ≤ 2, h21,1 ≤ 1.

Therefore (6) is satisfied if the parameters λ1, λ2, η11, η21 satisfy the restriction

max
{

2(e2λ1 + η11), λ2 + η21

}
≤ 1. (15)

Note that f
1,ρ0
≥ e−ρ0(1 + e)−1 for 0 < ρ0 < 1, therefore (10) is satified if λ1 > 0 and ρ0 is

sufficiently small.
If the coefficients satisfy (15) and λ1 > 0, by Theorem 1 we obtain a non-zero solution in K

with ‖(u1, u2)‖ ≤ 1; this happens for example for λ1 = 1/20, η11 = 1/10, λ2 = η21 = 1/2.
Now fix J = {1} and I = {2}. Observe that

f1(t, x1, . . . , x2n, w) ≥ 21
30

x1, on [0, 3/4]×
2n

∏
j=1

[θj, 1]×
[
(1 + e)−1, e

]
,
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h11[u] ≥ 0, for every u ∈ K1,

thus the inequality (12) is satisfied for

λ1 >
640
21

. (16)

Furthermore note that we have

f2(t, x1, . . . , x2n, w) ≤ |x2|, on [0, 1]× [−1, 1]2n ×
[
e−4, 1

]
,

h21[u] ≤ ‖u2‖∞, for every u ∈ K1,

thus the condition (11) is satified if {
λ2

21
40

+ η21
9

10

}
< 1. (17)

Note that the trivial solution does not satisfy the system (14); Theorem 2 yields that the
system (14) has no solutions in K with norm less than or equal to 1 whenever (16) and (17) are
satisfied; this happens for example when λ1 = 31, η11 = λ2 = η21 = 1.
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