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Abstract: Learning tasks are implemented via mappings of the sampled data set, including both
the classical and the quantum framework. Biomedical data characterizing complex diseases such
as cancer typically require an algorithmic support for clinical decisions, especially for early stage
tumors that typify breast cancer patients, which are still controllable in a therapeutic and surgical way.
Our case study consists of the prediction during the pre-operative stage of lymph node metastasis
in breast cancer patients resulting in a negative diagnosis after clinical and radiological exams.
The classifier adopted to establish a baseline is characterized by the result invariance for the order
permutation of the input features, and it exploits stratifications in the training procedure. The
quantum one mimics support vector machine mapping in a high-dimensional feature space, yielded
by encoding into qubits, while being characterized by complexity. Feature selection is exploited to
study the performances associated with a low number of features, thus implemented in a feasible
time. Wide variations in sensitivity and specificity are observed in the selected optimal classifiers
during cross-validations for both classification system types, with an easier detection of negative or
positive cases depending on the choice between the two training schemes. Clinical practice is still far
from being reached, even if the flexible structure of quantum-inspired classifier circuits guarantees
further developments to rule interactions among features: this preliminary study is solely intended
to provide an overview of the particular tree tensor network scheme in a simplified version adopting
just product states, as well as to introduce typical machine learning procedures consisting of feature
selection and classifier performance evaluation.

Keywords: early stage cancer; input data; feature space

1. Introduction

Machine learning procedures consist of a map composition aiming at the approximation
of a certain concept, representing a truth mapping of each sampled object to a label [1,2].
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Labels are known for each element in the supervised framework, while in the unsupervised
one, this information is lost; fortunately, we configure our application in the first case. The
previously mentioned procedures are defined as classification systems [1] or hypotheses [2],
whose numerical implementation takes as inputs the experimental outcomes. These data can
be already prepared in a format and quantity useful for further elaboration; otherwise, they
require an intermediate step to extract the most important information, commonly known as
features. Such preparation of input features of the classifier strongly depends on the scheme
exploited for the discrimination among available information.

Machine learning applications have been thoroughly explored in the last few decades
for many clinical purposes. The reason can be found in the exponential growth of large
publicly available databases, which have fostered the design and development of novel
strategies for data management and analysis. In particular, machine learning strategies
have proven their effectiveness in computer-aided detection systems in several applica-
tions, such as modeling aging processes [3-5], predicting the onset of several pathological
conditions [6-11], or exploring genetic patterns [12-14]. However, the cross-talk between
data yielded by different sources is still a developing research field (e.g., radiomics, do-
siomics) based on the existence of a wide variety of algorithmic schemes able to implement
the interplay of features.

Quantum machine learning spans a wide variety of algorithms covering both super-
vised and unsupervised approaches. The basis offered by some examples such as k-means,
k-medians, support vector machine, principal component analysis, and neural networks
is exploited for the associated quantum version primarily aiming at the achievement of
a speed-up in computation [15-20]. The improvement in the predictive capabilities is
examined in our case study by means of classical hardware, even if our introductory
analysis deals with the small subspace consisting of product states. The inclusion of the
full Hilbert space is targeted by truly quantum machine learning, whose computational
complexity is managed by the tensor networks representation of states, based on tensor
rank decompositions [21-23]. Recent developments are focused on the implementation of
graphical models, applied even in radiological therapy optimization [24,25], and also, med-
ical imaging techniques are extensively studied for tomography and magnetic resonance
applications [26,27].

The use of such quantum algorithmic schemes further extends the applicable engi-
neered interactions among variables, as we apply in our preliminary study of a quantum-
inspired classifier circuit involving bioinformatics data, where the interaction is ruled by
Hamiltonian terms imposing an energy cost between feature pairs in a multi-layer hierar-
chical structure. This approach driven by data science represents a resource concerning the
management of the computational complexity characterizing systems endowed with an
intractable number of degrees of freedom [28].

Cancer is a complex disease involving multiple data types, which may represent an
obstacle for clinical and radiological diagnosis, especially in early stage cases. Algorithms
supporting such kinds of decisions represent a valuable capability to face the complexity
implied by the interplay among variables. The identification of patients characterized by
metastatic diffusion of cancer cells has to deal with the following transition: a tumor mass
requires a high quantity of resources, thus inducing modifications of vessels with respect
to a healthy organ [29]. A local resource imbalance of the affected organ may dynamically
involve the whole organ network through a cancer cell migration event. A predictive
model needs to characterize this abrupt change of the scale concerned with the disease
effects, thus imposing a careful choice of features, e.g., biomarkers for the specific topic to
which we are referring.

In the biomedical framework, features are generally called prognostic factors, typical
for the studied pathology, which establishes causal relations among them that may involve
multiple variables for a single effect. The data quantity and quality of retrospective cases
strongly influence the performances of the applied machine learning procedures. Both
attributes are limited in medicine to achieve low measurement invasiveness. On the
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other hand, the time and costs required by intra-operative analysis of excised lymph
nodes in breast cancer, together with threatening pathologies possibly caused by such a
biopsy [30-32], have boosted the research into efficient algorithmic methods, as well as
measurement setup engineering.

In breast cancer cases, the detection of lymph node metastasis in pre-operative stages
can sensibly optimize care quality and efficiency, as well as patient safety [33]. Those not
affected by clinical or radiological exams are said to be clinically negative, but among these
cases, false negative patients are included, especially when they are characterized as early
stage tumors. The decision making process for a complex disease like cancer is made harder
also by the choice of features, thus defining a crucial step towards personalized medicine,
especially in the early stage characterized by a low informative content of singularly
considered prognostic factors. Within this framework, clinical decision support systems
can act in a complementary way with clinical and radiological exams, such that patient’s
status is described more efficiently by relevant features.

The computational complexity characterizing the quantum-inspired classifier limits
the presented performance analysis to up to three features, and we keep the same number
of included prognostic factors in the classical one to provide a baseline. The algorithmic
scheme adopted for the latter is based on the predictive model of CancerMath (CM) [34-36],
a web-calculator estimating the probability of cancer cell migration towards lymph nodes.
The last adopts a stratified format for some input data, as usually made for some medical
information, thus suggesting to test two versions of the quantum-inspired classifier with
an emerging interplay between the selection of true positive or true negative cases. In
summary, we use different classification systems, so their comparison is purely qualitative.

2. Materials and Methods

Our data set is composed of histological outcomes of 634 patients registered in the
period 2015-2018 and referred to Istituto Tumori “Giovanni Paolo II” in Bari, Italy, which
were clinically negative in instrumental examination. The features used by the classifiers
consist of the age at diagnosis, tumor size (diameter, measured in mm), histological subtype
(ductal, lobular, special type), estrogen receptor expression (ER, %), progesterone receptor
expression (PgR, %), cellular marker for proliferation (Ki67, %), histological grade (grading,
Elston-Ellis scale: G1, G2, G3), human epidermal growth factor receptor-2 (Her2/neu:
0,1%,2%,3%), multiple tumors (Pos/Neg), the in situ component (Pos/Neg), and the
lymph nodes status (Pos/Neg) required in our supervised learning approach, as described
in Table 1.

Immunohistochemical analysis carried out by the sub-specialty department of breast
disease in our institute yielded measurements of histological grade and expression of ER,
PgR, Ki67 antigen associated with cell proliferation, and Her2/neu. The in situ component
consisted of the presence of cancer in breast ducts, which usually remains in the tube
without dangerous development in the external environment, while multiple tumors
expressed the observation of more than one nodule.

Originally, ER, PgR, and Ki67 were percentage values, which were converted into
binary variables for the CM and one of the two quantum-inspired classifiers by imposing a
threshold equal to 1% for ER and PgR, while 21% for Ki67. The tumor size was expressed
according to a categorical variable associated with intervals, which was converted selecting
the midpoint: Tla € (1,5], T1b € (5,10], Tlc € (10,20], and T2 € (20, 50]. The retrospective
observational study was approved by our Institute’s Scientific Board.
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Table 1. Observed number of patients with positive lymph nodes according to the considered prognostic factors.
No. of Patients No. of Positive No. of Patients No. of Positive
Overall ER
634 214 negative 64 21
Age positive 570 193
<40 33 14 PgR
41-50 128 46 negative 146 49
51-60 151 50 positive 488 165
61-70 163 54 Ki67
71-80 114 33 negative 397 116
>80 45 17 positive 237 98
Diameter (mm) Her2/neu
Tla (>1, <5) 31 3 0 471 161
T1b (>5, <10) 125 18 1t 78 23
Tlc (>10, <20) 281 88 2+ 46 21
T2 (>20, <50) 197 105 3+ 39 9
Histological type Grading
ductal 511 185 G1 175 35
lobular 67 20 G2 286 111
special type 56 9 G3 173 68
Multiple tumors In situ component
negative 492 153 negative 265 100
positive 142 61 positive 369 114

2.1. Classification Systems: The CancerMath Example

Automated classification serves as a support in clinical decisions, getting as inputs
bioinformatics data recorded for each patient. Our data set D = {xq,...,xy} is a sample
of the outcomes population set Q) yielded by multiple types of sensors s : () — D. Another
map takes any sampled data into the label set £ = {¢1,...,¢,}, T : Q — £, named the
truth or concept mapping, whose approximation through a hypothesis lies at the heart of
classification systems theory. The concept mapping T defines a partition of the population
set Q = Q1 U---UQy, where Qp = {w € Q: T(w) = £}, with Q; N Q; = & for every
i #1121

The hypothesis mapping corresponds to the classification system A : Q — £, given by
the composition of sensors s with a feature map ¥ and a subsequent classifier c¢. Depending
on the data set format, the feature map has to support the identification of attributes for
classification: in practice, it has to extract characterizing features from the raw data subject
tothe map ¥ : D — F, where F is the feature space. To conclude the aforementioned
composition, we introduce a classifier ¢ : 7 — L, such that the classification system reads
A = coV¥os[1]. Itis important to stress that a dependence on the parameters for both
the feature map and the classifier can be introduced; we consider just the latter, with a
specific choice of the parameter set for the CM and the two versions of quantum-inspired
classifiers. Moreover, the feature map consists of the identity for most of the variables
in the CM classifier with the exception of ER, PgR, and Ki67, each one mapped into two
strata by imposing a threshold (1%, 1%, and 21%, respectively) and age with 6 strata as
shown in Table 1. Instead the quantum case adopts a high-dimensional feature space, thus
mimicking support vector machines. Finally, the histological type is used as a categorical
variable in the CM classifier, while the 3 cases shown in Table 1 are converted into two
binary features for both quantum-inspired classifiers. The latter is distinguished just by the
adoption of a continuous or binary version of ER, PgR, and Ki67. Input feature formats for
each case are summarized in Table 2.
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Table 2. Sampled data set stratifications for CancerMath CM and quantum-inspired classifiers Q, Q.

. Histological
Age ER-PgR-Ki67 Subtype
CM 6 strata binary 3 strata
Q continuous binary 2 binary features
Q continuous continuous 2 binary features

We denote the data as xf, i =1,...,N, where the index j runs over patients in the

dataset, j =1, ..., M, such that we have a data set per patient Di = {le, ey x]N} yielded
by some sensors. We choose as a reference classifier the scheme adopted by CM, an
open-source cancer web-calculator [34-36]. The online code is not endowed with any
training procedure, and it imposes pre-set parameters, while we implement it following
literature instructions [34,35]. The algorithm implements a probabilistic model for the
diffusion of cancer cells belonging to the primary lesion. The fundamental building block
consists of a probabilistic estimation of the migration event to lymph nodes expressed by
an exponential model:

Cg(x]) — 1 — e7Q11x£Hig{, (1)

]1, .. .,xé\]) and le is fixed as the diameter datum of the primary cancer

where ¥/ = (x
mass, g{ are the parameters associated with the remaining data, in our case with N = 10
regarding age, grading, histological type, ER (Pos/Neg with cut-off 1%), PgR (Pos/Neg
with cut-off 1%), Ki67 (Pos/Neg with cut-off 21%), Her2/neu (0, 11, 27, 3%), multiple
tumors (Pos/Neg), the in situ component (Pos/Neg), while Q,, is a parameter referring to
the whole population. We choose the notation g = (gy, . .., gn) because the index 1 refers to
the diameter x}, which is not endowed with a training parameter, with each g; containing
components g? with & labeling a specific stratum for each feature [37], listed in Table 1:
depending on the ones a patient belongs to, a set of g{ is chosen among these components.
The values of both Q,, and the parameters g; are determined using a training procedure
in the training set, yielding a measure of the prognostic factor impact as a statistically
independent cause [34,35]. During this stage, the mean diffusion probability with a uniform
weight has to be evaluated in each stratum of the training set composed by M,  patients,

1 1N
e (M) = ca(x)=1— et )
gf( in) M;p ]; gi( ) M; Jg’

In the first part of the training procedure, the g; parameters are initially assumed
equal to one, and the parameter Q, is evaluated by equating the observed statistical
frequency of positive lymph nodes in the whole data set with the expected mean diffusion
probability, a function expressed by Equation (2) with known patient’s diameters and
unknown parameter Q,, which is determined numerically. Then, the value of Qj, is set
in each stratum, and the same procedure is carried out for each range of values of the
prognostic factors. The value of parameter g? is determined again by solving the equation
between the observed statistical frequency of positive lymph nodes, corresponding to each
patient’s stratum deduced in Table 1 and the mean diffusion probability in Equation (2).

Corresponding to missing data, the parameter ng is imposed equal to 1 to avoid any
influence on the product of Equation (1).

We have to underline that the presented procedure imposes unit parameters for
all remaining variables during the calculation corresponding to a certain stratum. This
translates into a commutative classifier with respect to data ordering: given a permutation
7T € Sy, the property cg(x/) = cg(7t(x/)) is verified, while this does not hold true in the
following. We define this scheme as classical because of this property.
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2.2. Least-Squares Problem via Quantum Measurements

Data are considered with a scaled range in the interval [0, 1], once we divide each
value by max; D;, where D; = {x},...,xM} are the considered datum values varying in
the whole set of patients.

For quantum-inspired classifiers, we define a reproducing kernel Hilbert space through
another feature map ¢ : D — F, applied subsequently to the one presented in Table 2,
whose elements are named qubits [19,21,22]:

»
=
=]
Nl NN

z]{% € R?, 3)

such that the feature vector of the considered set of N features is ¥/ = @X S R2".

The encoded quantum data are classified using a quantum circuit Uy, in our case
consisting of a tree tensor network circuit endowed with D parameters 6 = (6;,...,6p),
which is composed by a sequence of two-qubit nearest-neighbor unitaries, halving the
output lines of the qubits after each gate of the circuit. Each qubit line is a representation
of the degrees of freedom introduced in Equation (3), as shown in Figure 1a, where they
are contracted with a rotation endowed with two graphical legs associated with row and
column indices:

Ry(6) = e % — 1 cos(6) — ioy sin(6) = (Zfrf((g)) _Czls?g)))) €50(2), @)

implemented according to the 2 x 2 identity matrix 1 and the generator 0, belonging to
the set of generators of the group SU(2), known as Pauli matrices:

w=(10) o= (o) == ) ®

where the labels x, y, z are commonly used in physics.

/g Y /)
(c) (d)

Figure 1. An index contraction is represented in (a), which rules a generic nearest-neighbors interaction in (b) for a Hilbert

space tensor product. In (c), the graphical representation of a CNOT gate, which is included in the simple gate of (d),

encircled by the orange dashed line [21].
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These matrices implement any elaboration of qubits, representing a description of
quantum magnetic spins, once we refer to components with respect to a chosen frame

aligned with the z-axis:
1 0
¥ = (o)’ Y= (1) ©

with associated projectors P = ll+2¢72, P = % that are used in the following, together

with the spin flip ox9;(|) = ¥ (1), representing the quantum version of the classical bits
NOT gate.

The spin description allows us to model any gate involving a qubit pair as an interac-
tion implemented in the tensor product of their feature spaces, graphically represented in
Figure 1b: the two qubits are in a superposition (1 = atp; + + by | and o = a'ipr 4 + 0", |,
with a,4’, b, b’ scalars, interacting according to a Hamiltonian, which implements a two
spin interaction Hiyp; ® ¢. A simple example consists of the Ising-type Hamiltonian
H = Jo; ® 0; where | is a coupling constant that is tuned such that an antiparallel
(1) ® ¥y (1)) or parallel (1) ® Py(y)) configuration is energetically favored [38]. Sys-
tems composed by more than two qubits require the adoption of successive interactions
implemented between spin pairs: this circuit structure characterizes our case study with
emerging non-equivalent three qubits circuits. The mathematical motivation underlying
this evidence is twofold, because we can refer to the particular interaction we wish to engi-
neer, even if the non-commutativity characterizing the sequential application of matrices is
more fundamental.

We chose a quantum circuit implementing a CNOT gate interaction in Figure 1c,
representing the quantum version of classical bits exclusive OR (XOR):

CNOT =0x ®@P; +1® Py, @)

whose structure suggests the name target qubit for the one in the first feature space in the
tensor product, while the second is named the control qubit. Indeed, if the last is a spin up
state, the target qubit is subject to a spin flip (e.g., CNOT ¢ ® ¢4 = 9| ® 1p;), otherwise
no elaboration is implemented (e.g., CNOT 3 ® | = ¢ @ ¢)).

Our application takes into account a particular structure given by two arbitrary single-
qubit rotations followed by a CNOT [21,39], as shown in Figure 1d, thus implementing the
interaction between data:

H = CNOT Ry(61) ® Ry(62), (8)

where parameters 6; and 6 are tuned. The qubit line associated with the target qubit is
further elaborated by another rotation, as shown in Figure 2. In a general circuit involving
more than two qubits, the achievement of a single-qubit line by the halving iterative
procedure is followed by the aforementioned rotation and its measurement through a
projection onto the spin up component. We compute the associated expectation value to
define a score:

M=P 1, M9<‘¥f) = (Ug¥, M Up¥), )

where we are explicitly referring to the qubit pair circuit represented in Figure 2.

Each patient belonging to our data set is endowed with a class label y/ = {0,1},
respectively negative or positive regarding the metastatic diffusion to lymph nodes. The
knowledge of the patient’s label establishes the supervised learning framework, which
allows us to exploit the definition of a cost functional in a training set composed by
M’ patients:

1 M

70 = 5 (v -4 w

j=1
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whose minimization corresponds to the achievement of the minimal mean squared error
in the output of the classifier. The key idea consists of the least-squares reformulation of
support vector machines [17].

Ry(61) Ry(65) Ry(65) Ry(6h)

e

BB~ —5 e

R, (0:) Ry(0:)

e

) o— o

Figure 2. Representation of the score given by the expectation value in Equation (9).

The trick underlying kernel methods, as support vector machines, pursues the map-
ping of not linearly separable initial data, in a high-dimensional space where a hyperplane
separating classes can be used. The involved computational complexity is measured by the
number of line contractions linked with the dimension of feature vectors, as well as by the
number D of parameters, which grows linearly with N in the adopted scheme.

The last part of the training procedure concerns the variation in the order of each
patient’s data, because the tensor product is not commutative. Moreover, the circuit
structure can be different, as depicted in Figure 3 for the three-qubit case.

Ry(95) Ry(GS)
D e e
Ry(63)
ROHM  RG6»M ROHM  R©6»M
4 ° A )
Ry(91). R,(6>) I XCS) | Ry(93)+ R, R,(65)
® ® ° °® ° °® ) °®
U ¥ U 12 ¥s 1z U vs
(a) (b) (c)

Figure 3. Feature selection circuits scheme, where lines not further elaborated are omitted. The two-qubit case is represented

in panel (a), while two non-equivalent three-qubit circuits are shown in panels (b,c).

2.3. Performance Evaluation

The data set is characterized by a given number of negative n and positive p patients
as shown in Table 1. The classifier predictions involve true positives tp and true negatives
tn, so we introduce:

tn+tp
n+p’

t t
specificity = ;” sensitivity = ?”, 11)

accuracy =

whose choice is recommended in biomedicine to highlight the missing detection by a
clinical test or a predictive model of a particular status of patients. The imbalanced data
set considered in our case study requires a careful evaluation of each metric, because the
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abundance of negative cases can yield a sufficiently high accuracy even if positive patients
are prevalently misclassified.

The score threshold characterizes a single classifier, and its variation in the interval
[0,1] defines a family of classifiers [1], whose performances are summarized by receiver
operating characteristic (ROC) curves, given by points in the plane (1-specificity, sensitivity),
using the area under the ROC curve (AUC). The optimal threshold is identified by Youden’s
index on ROC curves [40]:

J = sensitivity — specificity + 1, (12)

where its maximization takes place with the selected imbalanced data set, thus implying
that a stable performance in the validation set has to concern the same ratio of positive and
negative cases [41].

Optimal classifiers are selected during the training procedure, whose test is able to
characterize their resilience with respect to sample variation if a test set not belonging to
the training one is chosen. A k-fold cross-validation deals with this issue by partitioning
the data set into k parts, k — 1 of which are selected to represent the training set, while the
remaining one is the test set. The overall method takes into account k rounds to switch the
test role, thus collecting scores of the whole data set. To avoid any influence on the partition
given by the patients ordering, we implement multiple cross-validations characterized by a
randomly chosen order in the patients’ list: the statistics of previously mentioned learning
metrics is collected in terms of the median, first, and third quartile as shown in Table 3.

Table 3. Performances of classifiers trained over the whole dataset evaluated on 10 ten-fold cross-
validation rounds and summarized in terms of the median, first, and third quartile. At the top, the
quantum-inspired classifier gets percentage values for ER, PgR, and Ki67; at the bottom, their binary
version is given.

AUC (%) Accuracy (%) Specificity (%) Sensitivity (%)
Q> 63.1 (62.7-63.3) 65.5 (65.1-65.8) 68.7 (67.6-70.0) 59.3 (57.0-60.3)
Q" 64.7 (64.1-65.1)  69.5 (61.8-70.2)  84.9 (59.3-87.9)  39.5 (36.066.8)
oM 67.4 (674-675) 617 (60.6-62.8)  55.6 (51.9-59.5)  73.6 (69.6-77.1)
Q) 59.5 (59.1-59.8)  65.3 (64.7-65.9)  76.0 (75.5-78.3)  43.2 (41.1-44.4)
cm?) 65.6 (65.4-65.8)  65.8 (65.1-65.8)  69.1 (67.6-69.1)  59.3 (59.3-59.8)
AUC (%) Accuracy (%) Specificity (%) Sensitivity (%)
Q, 62.2 (62.0-622)  68.3(65.5-69.1) 832 (75.0-84.8)  39.5 (38.8-46.7)
Ql 65.5 (65.3-65.7)  64.3 (63.7-65.0) 657 (62.9-68.6)  61.7 (58.4-65.0)
oM’ 68.1(67.8-68.5)  62.0 (61.8-62.5)  54.1 (53.6-55.7)  77.8 (76.6-78.5)
QY 61.8 (60.3-62.8) 692 (67.7-70.2)  85.6(84.8-86.7)  37.6 (36.0-37.9)
oM’ 66.1 (65.7-66.2)  57.4(57.1-58.0)  44.3 (429-462)  83.2 (81.8-85.6)
3. Results

The first stage of the forward stepwise feature selection takes into account any variable
pair and associated permutation, according to the circuit depicted in Figure 3a. The
histogram of AUC indices yielded by a ten-fold cross-validation of the quantum-inspired
classifier adopting a percentage value for ER, PgR, and Ki67 implemented per variable pair
is shown in Figure 4a, while in Figure 4b, a binary format of such features is introduced for
the quantum circuit, where shaded bars refer to cases endowed with the diameter as the
first feature in the input. The highest value in Figure 4a equals 0.633, corresponding to the
pair (diameter, PgR), whose classifier is denoted as Qo, while in Figure 4b, it is yielded by
(age, diameter) equal to 0.620, so defining the classifier Q’5.
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Figure 4. Histograms for the feature selection of the best performing feature pair in (a,b) and triplets in (c,d); orange bars

refer to Figure 3b, while for the blue ones, see Figure 3c.

In the next feature selection stage, we keep these pairs and add as a third feature any
one of the remaining variables, then including any permutation of the triplet. These inputs
for the two non-equivalent circuit schemes in Figure 3b,c are ranked as previously explained
according to associated AUC indices. The resulting histograms are represented in Figure
4c, with the best performing triplets yielding 0.654 and 0.600 for respectively (diameter,
PgR, grading) and (Ki67, PgR, diameter), with classifiers Qéa) and Qéb). The same features
are included in two CM classifiers denoted as CMéa) and CMéb). The performances given
by the quantum version employing binary ER, PgR, and Ki67 are collected in Figure 4d,
where (diameter, age, ductal-lobular) yields 0.648 and (diameter, ER, age) is the triplet for

0.604, indicated as Q’ éa) and Q' éb) respectively. It is important to stress that the histological
subtype pair ductal-lobular is caused by the conversion of the categorical variable into two
binary features, so for the corresponding CM classifiers CM’ é”) and CM' éb)
(diameter, age, histological subtype) in the first one.

Once most important features are selected, we test the performance statistics in 10
ten-fold cross-validation rounds, listed in Table 3. The distributions of the AUC index show
a similar trend between corresponding selected classifiers. CM cases are always related
to higher values of sensitivity, with the exception of CMéb), while vice versa, quantum
cases yield higher specificity ranges with a widely separated sensitivity, with the exception

we consider

of Q/ éa) and partially Q,. The data set imbalance provides a low informative accuracy,

assuming its maximum values for Qéa) and Q' éb), characterized by a high number of false
negative patients.

4. Discussion

The translation of an automated decision procedure based on machine learning tech-
niques into an optimization problem leads to the research for optimal therapeutic plans
conceived for each patient and weighted by certain features included in the predictive
model, as personalized medicine predicts [42-44]. A priority role is played by the identifi-
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cation of most relevant prognostic factors in the detection of patient status, especially when
we are dealing with complex diseases like cancer.

A prognostic subset of factors may behave as noise or a signal for a specific patient
class, thus inducing our research for an optimal trade-off between specificity and sensitivity,
as shown in Table 3. A limited separation between them is observed just for Q/ é”), CMéb),
and Q,, while remaining cases report the association of quantum-inspired classifiers with

specificity and CM ones with sensitivity. The highest value of sensitivity among quantum

circuits is obtained through Q' éﬂ): the use of a binary version for biomarkers in the data set
eases the recognition of positive patients, thus confirming the commonly used medicine
data format for some prognostic factors to exalt this class.

The circuit structure in Figure 3b,c influences the AUC index histograms shown in
Figure 4c,d. The most important qubit along the central line of Figure 3c works as the
target one for both gates, a role causing an increasing width of the distribution of AUC
indices with respect to the circuit in Figure 3b, where the central qubit is no longer the most
important one, representing still the target one in the first gate, but it becomes a control
qubit in the next layer. Nevertheless, the interquartile ranges in Table 3 represent evidence
of the output stability for ng) and Q' gb), contrary to the wide range of Qg”), signaling
a required extension of the presented preliminary study to include a higher number of
features.

The currently adopted intra-operative procedure yields a sensitivity in the range
87.5-100%, while regarding the specificity, the range is equal to 90.5-100% [45—47]; there-
fore, algorithmic methods with this purpose have to exceed these thresholds. Nevertheless,
the application of the CM classifier for a different patients data set, but targeting the
same clinical issue, reports comparable performances even if exploiting a wider set of
features [48]. The most balanced classifier in terms of sensitivity and specificity of this pre-

liminary study corresponds to the the quantum-inspired Q’ éa), which seems to highlight the
role played by the included histological subtype, emerging through the quantum circuit.

Some predictive models for lymph node status in the literature make use of genetic
data for the classification of a specific kind of patient, selected through ER and Her2 values,
obtaining an AUC index of 0.883 [49]. The lymphovascular invasion datum is included in
another study, yielding an AUC equal to 0.750 [50]; its absence in our data set is due to the
associated exam occurring in post-operative stages.

Tools provided by radiomic analysis represent a crucial step forward in performance
improvements. Imaging techniques, like diffusion wavelet and dynamic contrast-enhanced
magnetic resonance imaging, are able to include new information, as well as multiple data
elaboration methods [51-54]. Nevertheless, clinically negative patients are not generally
subjected to magnetic resonance imaging, but only to first level instrumental investiga-
tions such as mammography and ultrasound, whose recordings are jointly used with
histopathological data to predict the probability of lymph node metastasis, thus obtaining
high performance results [55,56]. Radiomic studies about these imaging categories aimed
at the prediction of the lymph node involvement are sparse, unlike those focused on the
detection and characterization of breast lesions [57-64].

The feature map adopted in our case study with real components severely limits the
number of included prognostic factors, thus yielding a quantum-inspired classifier still not
characterized by clearly distinguished performances with respect to the chosen classical
one. The presented preliminary study serves as an exploratory survey in this emerging
applied biomedical framework for quantum computing.

5. Conclusions and Future Developments

At this stage in the feature selection, the reported performances completely hinder any
clinical practice of the presented quantum classifiers as a clinical decision support system.
The training procedure of the CM classifier leads to an opposite result concerning sensi-
tivity with respect to the exalted specificity in quantum-inspired cases. The performances
observed for the CM classification are comparable to those recently obtained in a larger
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data set by the same classifier endowed with a higher number of features, while this kind
of bioinformatics data was not previously targeted in the quantum framework.

To overcome the presented results, we will implement truly quantum machine learning
in a twofold way: feature vectors are generally defined through complex scalars, while real
coefficients are adopted in this preliminary study, and the exploration of the full Hilbert
space not limited to just product states has to be included. Recent developments of quantum
supervised learning via tensor networks show that the combination of classical elaboration
schemes, as convolutional neural networks, with matrix product state encodings yield
high level performances, whose application in biomedical data categorization will surely
represent a resource. In addition, the exploitation of quantum Bayesian networks will
enhance the investigation of causal relations well beyond the capabilities offered by naive
Bayes classifiers.
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