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Abstract: In this paper, we address one of the most important topics in the field of Social Networks
Analysis: the community detection problem with additional information. That additional information
is modeled by a fuzzy measure that represents the risk of polarization. Particularly, we are interested
in dealing with the problem of taking into account the polarization of nodes in the community
detection problem. Adding this type of information to the community detection problem makes it
more realistic, as a community is more likely to be defined if the corresponding elements are willing
to maintain a peaceful dialogue. The polarization capacity is modeled by a fuzzy measure based on
the JDJpol measure of polarization related to two poles. We also present an efficient algorithm for
finding groups whose elements are no polarized. Hereafter, we work in a real case. It is a network
obtained from Twitter, concerning the political position against the Spanish government taken by
several influential users. We analyze how the partitions obtained change when some additional
information related to how polarized that society is, is added to the problem.

Keywords: networks; community detection; extended fuzzy graphs; polarization; fuzzy sets; ordinal
variation

1. Introduction

The field of Social Networks Analysis (SNA) encompasses a wide range of processes
devoted to the investigation of social structures modeled by complex networks or graphs.
These are models to show schemes of relations between the entities of a complex system,
be it in technological applications, nature, or society, so that the elements of the systems are
described as vertices or nodes, and their interactions as links or edges. Particularly, online
social networks are usually represented by a graph whose nodes are people and whose
edges show relations of different nature: social, friendship, common interests, familiarities,
etc. Thousands of millions of data are constantly generated, so the importance of the
SNA has grown more and more in the recent decades, attracting the interests of many
researchers from different areas. Generally, three analysis levels can be distinguished in
SNA processes: the first, related to individuals; the next, related to the structures and
relationships established by the graph structure; and the last, related to the analysis of
interactions between previous levels.

One of the features shown by complex networks is their internal group structure, a
property which is far from being trivial. Trying to find these structures has become a highly
relevant study topic in the SNA field: the well-known community detection problem.
This problem has evolved into an essential one, having many different applications in
several areas such as biology, sociology, Big Data, or pattern recognition [1–4]. From the
knowledge of the community structure of a complex network, several non-trivial internal
features or organizations can be reached. Furthermore, it facilitates a better understanding
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of the dynamic processes which take place in the network and the inference of some
properties or interactions between the elements.

Therefore, the main goal of applying community detection algorithms to online social
networks is to group individuals—represented by nodes—into communities, with the
intention of knowing the internal structure of a given society. In this light, community
detection and social polarization are closely related. In broader terms, polarization can
be understood as the split of a given population into two opposite groups, both with
significant and similar size. Polarization measures [5,6] provide a single value which shows
all these characteristics, taking into consideration some knowledge about the similarity
between the individuals, the clusters in their population, etc. Thus, the structure of a given
set of individuals impacts the polarization values shown by a given measure, as well as the
presence of polarization—or its degree—determines the topological structure of a network.

Because of the growing importance of the community detection problem, an extensive
range of methods have been proposed to solve it [7–9], among which it is worth highlighting
the Louvain [10] algorithm. It is a fast multi-phase method based on local moving and
modularity optimization [11,12], which provides good quality non-hierarchical partitions
of the set of nodes, without a priori knowledge of the number of communities. Almost all
the methods found in the literature have a point in common: the search of groups is based
on the structural or topological characteristics of the graph [13]. Particularly, the Louvain
algorithm focuses on the edges between the nodes. In this vein, the only information
considered for the definition of groups is the knowledge represented by the graph, without
deeming any additional data. Going a step further, several authors agree on the idea of
adding additional information to the graph, be it in a Game Theory context [14,15], by
considering fuzzy sets [16] or fuzzy graphs [17]. On our part, we consider the inclusion of
some knowledge about the polarization of the elements of a graph when grouping them.
We agree on the importance of having groups whose elements are willing to peaceful
dialogue, so that they are not prone to conflict.

Let us illustrate this idea with a basic example. Let the graph or network be G = (V, E),
consisting of a set V with |V| = 8 nodes by the edges of the set E as it is shown in
Figure 1. Every community detection algorithm based on the graph structure, particularly
on modularity optimization [10,12], organizes the elements into two clusters with 4 each
one, by separating the two wheels, i.e., P = {{1, 2, 3, 4}, {5, 6, 7, 8}}. However, let us
assume some knowledge about political position of the individuals against a government,
represented by the vector O = (+,−,−,+,+,+,−,−), so that if Oi = +, the individual i
is in favor of the government, and the opposite happens when Oi = −. It is fair to accept
that people who hold a similar political ideology, are less prone to conflict with each other
than those who have opposite ideas. On this assumption, a desirable partition could be
Pa = {{1, 4}, {2, 3}, {5, 6}, {7, 8}}.

(a) Classical algorithm partition. (b) Extra-information algorithm partition.
Figure 1. Toy example: a graph with 8 nodes.

Concerning this idea of adding some additional information to the community de-
tection problem, and based on methodology proposed by Gutierrez et al. [18–20] about
the the community detection in graphs based on fuzzy measures, in this study we define
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a new method with the purpose of adding extra-information related to polarization to
the community detection problem in graphs. That additional information is based on the
values given by the polarization measure developed by Guevara et al. [6]. Our goal is to
build a model consisting of a network in combination with a polarization fuzzy measure
whose structure fixes properly the reality. It is the polarization extended fuzzy graph, which
takes both the attitude of the people and structure characteristics of the social network into
consideration. On the basis of this model, we define a community detection method, which,
by having a graph and knowing the membership degree of every individual to two poles,
provides realistic partitions of reality. The choice about several aggregation operators plays
an essential role in this method, as it will be shown in the following pages.

The remainder of the paper is organized as follows. In Section 2, we set the basis of
the paper, by introducing several concepts related to Graph Theory, fuzzy measures study,
and Polarization tools. Then, in Section 3 we work in the definition of a new fuzzy measure
based on a Polarization measure. In combination with a graph, this fuzzy measure sets the
definition of a new tool: the polarization extended fuzzy graph. In parallel, we define the
non-polarization fuzzy measure, to represent the capacity of a set of elements to peacefully
dialogue. From this non-polarization fuzzy measure and a crisp graph, we define the
non-polarization extended fuzzy graph, for which we suggest a particular application
in Section 4, related to searching partitions on it. We show the performance of this new
methodology in a real case, working in the detection of groups in a polarization extended
fuzzy graph whose origin is Twitter. The experiment design and the methodology can be
found in Section 5. We finish this paper in Sections 6 and 7, showing some discussion and
conclusions about the work done.

2. Preliminaries

In this section, we introduce several concepts on which this paper is based. We divide
it into two main parts: one is related to networks and graphs as well as the community
detection problem, and the other is related to Polarization background.

2.1. Graphs, Fuzzy Graphs, and Extended Fuzzy Graphs

Let us consider the crisp graph G = (V, E), whose adjacency matrix is A, which
represents the direct connections between the nodes. Beyond the classical concept of crisp
graph, Rosenfeld introduced the fuzzy graphs [21] based on the fuzzy relations among
the individuals [22]. This tool, very useful to model situations in which there is some
vagueness or uncertainty about the representation of the knowledge, has been widely used
in many fields [23,24]. Nevertheless, from a mathematical point of view, there are some
situations in which fuzzy graphs may be understood as a kind of weighted graphs [25]. An
amplified vision of this model was introduced in [18] by defining the extended fuzzy graph,
a concept based on fuzzy measures. As it is pointed in [26], fuzzy/capacity measures are
fundamental in modeling dependencies among the inputs, and constitute a natural tool for
modeling in multiple criteria decision analysis, aggregation, group decision-making, or
game theory.

Definition 1 (Fuzzy Measure [27]). Let V denote a non empty set. A fuzzy measure is a set
function µ : 2V −→ [0, 1] for which the following holds.

• µ(∅) = 0

• µ(V) = 1

• µ(A) ≤ µ(B), ∀A, B ⊆ V such that A ⊆ B

Then, with the combination of the ability of the graph to model connections between
elements, and the ability of the fuzzy measures to handle the capacity related to any set of
elements, it was defined the extended fuzzy graph. This tool is a graph together with a
fuzzy measure defined over the set of nodes. The incorporation of a fuzzy measure goes far
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from the previous notion of fuzzy graphs, which are limited to the consideration of pairs of
elements. In this vein, by means of a fuzzy measure defined over the set of nodes, we can
represent situations in which more than two nodes are implied, independent of the way
they are connected through the graph. It is obvious that the representation ability of the
extended fuzzy graph goes far from that of the existing tools, so that much more complex
situations can be addressed, with a proper modeling of reality.

Definition 2 (Extended fuzzy graph [18]). Let G = (V, E) denote a graph, and let µ : 2V −→
[0, 1] denote a fuzzy measure defined over the set of nodes V. An extended fuzzy graph is a triplet
G̃ = (V, E, µ), also called crisp graph with fuzzy measure µ.

In the following example, we show how it is possible to represent complex situations
with several information sources by means of an extended fuzzy graph.

Example 1. Let us consider the graph G = (V, E) with 4 nodes (Figure 2). We assume some
knowledge about the political position of the individuals against a government, represented by the
vector O = (+,−,+,−), so that if Oi = ‘+′, the individual i is in favour of the government,
and the opposite happens if Oi = ‘−′. These are strong political opinions, so it is not easy for
individuals with opposite ideas to peaceful dialogue. However, when two individuals with the same
idea are together, they can discuss peacefully at great length. Let the fuzzy measure µ : 2V → [0, 1]
represent somehow the capacity of each feasible group of elements to discuss depending on their
ideology. With the extended fuzzy graph G̃ = (V, E, µ) we represent the connections between the
individuals as well as their ability to peaceful dialogue regarding their political ideas.

µ(S) =



0 if S = ∅
0 if S = {1}, {2}, {3}, {4}
0 if S = {1, 2}, {1, 4}, {2, 3}, {3, 4}
0.5 if S = {1, 3}, {2, 4}
0.5 if S = {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
1 if S = {1, 2, 3, 4}

Figure 2. Extended fuzzy graph G̃ = (V, E, µ).

2.2. Community Detection Problem

One of the main applications of graphs is related to the community detection problem.
Many complex networks usually have an intern modular structure so that the nodes are
organized into modules with dense internal connections, scarcely interconnected externally.
The goal of community detection problem is to find these hidden structures, i.e., to establish
a good partition of the set of nodes.

Some authors understand the community detection problem as an optimization prob-
lem [28]. The modularity Q is one of the most used measures as objective function to
be optimized. This measure, whose value is determined by the topology of the network,
is used to quantify the goodness of a partition. It was first defined by Newman and
Girvan [12] and it is usually denoted by Q.

Many approaches have been proposed in the last decades to face the community
detection problem [7–9,28]. It is worth highlighting the Louvain algorithm [10], one
of the most popular methods in this field, proposed by Blondel et al. in 2008. This
algorithm performs very well, particularly with large networks, for which good quality non-
hierarchical partitions are detected in a very little computing time. It is an iterative multi-
phase method, based on modularity optimization and local moving [11], for which the
variation of modularity, ∆Qi(j) defined in [10], is a key element. This variation represents
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the gain attained if the node i is moved to the community to which j belongs, and it is
calculated in each step of the Louvain algorithm until a maximum of modularity is reached.
The Louvain algorithm is a key point of the methodology which will be proposed in the
following pages, related to the community detection in graphs with additional information.

Example 2. Let us recall the graph of 8 nodes presented in the introduction (Figure 1). There we
affirmed that if the aim is to maximize the modularity, the partition should be P = {{1, 2, 3, 4},
{5, 6, 7, 8}} (particularly, this partition is obtained with the Louvain algorithm). Observe that,
indeed, Q(P) = 0.3889 > 0.1914 = Q(Pa), where Pa = {{1, 4}, {2, 3}, {5, 6}, {7, 8}} is a
desirable partition that could be obtained if the additional information defined by that vector O were
considered.

2.3. Polarization

In the last few decades, both the concept of Polarization and its measurement have
aroused increasing interest in the literature. Due to the new digital technologies, Web
2.0, and social big data analysis, the study of the social conflict is now more reachable
than ever. In broader terms, Polarization can be understood as the split of a given society
into two different and opposite groups along an attitudinal axis. The measurement of
the Polarization is studied in several disciplines [5,29–31]. In this work, we recall the
concept of Polarization based on fuzzy sets developed in [6]. Guevara et al. introduced a
Polarization measure based on the fuzzy set approach, with which it is possible to avoid
the duality Yes/No. Due to the fuzzy sets nature, this measure can deal with numeric,
ordinal, or linguistic variables as well. The main argumentation of that work is based
on the assumption that “reality is not black and white”. When considering the classical
Polarization measures found in the literature, each individual is forced to belong to a
specific position along the Polarization axis [5].

In [6], Aggregation Operators (AO) [22] are used to aggregate the information. AO
were originally defined to aggregate the resulting values of the membership functions of a
fuzzy set. Particularly, overlap functions [32] are used in this measure to show the degree z
of the intersection of both classes with respect to the object c. On the opposite, grouping
functions [33] are used to get the degree z up to which the combination of these classes is
supported. Let us detail the characterization of the JDJpol measure.

We consider the finite set V and the one-dimensional variable X (ordinal or numeric).
We assume that X has two extreme and opposite values or poles: XA and XB. Then,
regarding the value of each element of V on X, we can measure their membership degree
to each of these poles XA and XB.

These membership degrees are represented by the membership functions ηXA , ηXB :
V −→ [0, 1], so that for every i ∈ V, ηXA(i) and ηXB(i) represent the membership degree of
the element i to the extreme pole XA and to the extreme pole XB, respectively.

In this scenario, Polarization exists when almost half the population is placed by the
extreme position XA, and the other half is placed by the extreme position XB. In Figure 3,
we show an illustrative example of two membership degree functions ηXA and ηXB .
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Figure 3. Example of bi-polarization.

In this context, in [6] the JDJpol polarization measure was defined as the expected risk
of polarization of a given population. In this vein, JDJpol measures the risk of polarization
for each pair of individuals {i, j} of a finite set V. The obtained value is given by the
summation of all those comparisons between all pairs and its aggregation. This value
depends on the following.

• The closeness of the element i to the pole XA and the closeness of the node j to the
pole XB, represented by ηXA(i) and ηXB(j), respectively.

• The closeness of the element j to the pole XA and the closeness of the node i to the
pole XB, represented by ηXA(j) and ηXB(i), respectively.

• The grouping operator ϕ chosen.

• The overlapping operator φ chosen.

Let us provide a mathematical definition of the JDJpol measure.

Definition 3 (JDJpol Polarization measure [6]). Let V denote a finite set, and let ηXA and
ηXB denote the membership functions of the elements of V to the extreme poles XA and XB. Let
ϕ : [0, 1]2 → [0, 1] denote a grouping operator and φ : [0, 1]2 → [0, 1] denote an overlapping
operator. Then, JDJpol measure is defined as

JDJpol(V, ηXA , ηXB , ϕ, φ) = ∑
i,j∈V
i≤j

ϕ
(
φ(ηXA(i), ηXB(j)), φ(ηXB(i), ηXA(j))

)
(1)

Remark 1. The membership degrees defined by the membership function are always non-negative,
particularly those degrees concerning ηXA and ηXB . Then, because of the properties of the grouping
and overlapping operators, the measure JDJpol is monotone and non-negative.

The performance of JDJpol shows the highest values of Polarization in those cases in
which the 50% of the elements are located in one extreme value of the attitudinal axis and
the other 50% of the elements are located in the opposite extreme value. This situation is
explained in detail in [6].

3. Networks with Additional Information: The Polarization Extended Fuzzy Graph

On the basis of the Polarization measure introduced in defined in [6], in this section we
define a new fuzzy measure. We work in the idea of adding some additional information to
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a given graph. To carry on with it, we assume the existence of a crisp graph G = (V, E) and
some knowledge about the attitude of the elements of V concerning any particular issue.
First, we define a fuzzy measure emanated from the Polarization measure relative to this
attitudinal knowledge. This fuzzy measure reveals the fuzzy relations existing between all
the pairs of elements of V emanated from the measure JDJpol [6].

Definition 4 (Polarization fuzzy measure µP− ). Given a unidimensional variable, let V denote a
set of n individuals, about which we know the membership degree to the extreme poles of that variable,
XA and XB, represented by the membership functions ηXA and ηXB , respectively. Let the functions
φ : [0, 1]2 → [0, 1] and ϕ : [0, 1]2 → [0, 1] denote a grouping operator [33] and an overlapping
operator [32], respectively. Let S denote a subset of V, and let JDJpol

(
{i, j}, ηXA , ηXB , ϕ, φ

)
=

ϕ(φ(ηXA(i), ηXB(j)), φ(ηXA(j), ηXB(i)), according to the Equation (1). We define the polarization
fuzzy measure µP− as

µP−(S) =
JDJpol

(
S, ηXA , ηXB , ϕ, φ

)
JDJpol

(
V, ηXA , ηXB , ϕ, φ

) (2)

Proposition 1. The function µP− characterized in the Definition 4 is a fuzzy measure.

Proof. To demonstrate this affirmation, we will show that the properties enunciated in the
Definition 1 concerning fuzzy measures hold for µP− .

• µP−(∅) = 0. Trivial.

• µP−(V) = 1. µP− is 1-normalized by definition.

• Let A, B ⊆ V such that A ⊆ B. Then, µP−(A) ≤ µP−(B). By definition, JDJpol is a
monotonic measure, so this property trivially holds.

Remark 2. Note that previous definition of the polarization fuzzy measure µP− could be re-
formulated as a summation concerning the different pairs of elements, i.e.,

µP−(S) = ∑
i,j∈S

P−i,j (3)

where

P−i,j =
ϕ
(
φ(ηXA(i), ηXB(j)), φ(ηXB(i), ηXA(j))

)
JDJpol

(
V, ηXA , ηXB , ϕ, φ

) (4)

Because of the properties of µP− , P− is symmetric, non-negative, normalized, and its main
diagonal is null.

Because of the interpretation of the measure JDJpol , P−ij represents the risk of conflict
concerning the elements i and j, so that µP− represents the capacity of the elements to
argue, to trigger conflict and arguments. Therefore, it is a recommended model to properly
represent the discrepancy or distance between the individuals.

Example 3. In this example, we show the calculation of µP− for a given set V with 4 elements.
We consider the membership functions ηXA and ηXB defined in Table 1. We consider the functions
ϕ = max and φ = product. Results are showed in Table 2.

Note that JDJpol(V) = 4 is the amount of arguments among the 4 elements, i.e., the capacity
to trigger conflict. These conflicts come from the groups {1, 2} {1, 4}, {2, 3}, and {3, 4}.
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Table 1. Membership degree of each element of V to the poles XA and XB.

Element ηXA ηXB

1 1 0
2 0 1
3 1 0
4 0 1

Table 2. Values of the fuzzy measures µP− .

S {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
µP−(S) 0.25 0 0.25 0.25 0 0.25 0.5 0.5 0.5 0.5 1

Remark 3. We can define a measure obtained from the negation of the risk of polarization between
two elements. That measure will have an opposite meaning than the capacity obtained from the
JDJpol . Let N : [0, 1]→ [0, 1] denote a negation aggregator, and let us define

J̃DJ
(
{i, j}, ηXA , ηXB , ϕ, φ

)
= N

(
ϕ(φ(ηXA(i), ηXB(j)), φ(ηXA(j), ηXB(i))

)
(5)

Then, we define the matrix P+ as

P+
ij =

J̃DJ
(
{i, j}, ηXA , ηXB , ϕ, φ

)
∑r,s∈V J̃DJ

(
{r, s}, ηXA , ηXB , ϕ, φ

) , i, j ∈ V (6)

Definition 5 (Non-polarization fuzzy measure µP+ ). Given a finite set V, a grouping function
ϕ, a conjunction function φ, a negation operator N, and two membership functions ηXA , ηXB :
V → [0, 1], let P+ be the matrix characterized in Equation (6). Then, from matrix P+, we can
define a measure which represents the capacity of the elements of a set to peacefully dialogue without
risk of Polarization:

µP+(S) = ∑
i,j∈S

P+
i,j (7)

Remark 4. Trivially, µP+ is a fuzzy measure.

Example 4. We recall Example 3 in order to show the calculation of µP+ for a given set V with 4
elements. We consider the membership functions ηXA and ηXB defined in Table 3. We consider the
functions ϕ = max, φ = product, and N(x) = 1− x. Results are showed in Table 4.

Table 3. Membership degree of each element of V to the poles XA and XB.

Element ηXA ηXB

1 1 0
2 0 1
3 1 0
4 0 1

Note that J̃DJ(V) = 2 is the amount of peaceful dialogues between the 4 elements. These
dialogues come from the groups {1, 3} and {2, 4}.
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Table 4. Values of the fuzzy measures µP− and µP+ .

S {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
µP−(S) 0.25 0 0.25 0.25 0 0.25 0.5 0.5 0.5 0.5 1
µP+(S) 0 0.5 0 0 0.5 0 0.5 0.5 0.5 0.5 1

Once we have defined two opposite models to represent the capacity of a set of
elements to argue/dialogue, we define a new representation model: the polarization
extended fuzzy graph. It combines the ability of a crisp graph to represent a set of elements
connected to each other, with the representation of the synergies between these elements,
regardless theirs connections. Therefore, from a crisp graph, two membership functions,
and two aggregation operators, we can define a polarization extended fuzzy graph, a tool
which sets light on the modeling of reality.

Definition 6 (Polarization extended fuzzy graph). Let G = (V, E) denote a crisp graph, whose
nodes set is V and whose edges set is E. Let ηXA and ηXB denote the membership functions of
the elements of V concerning the extreme poles XA and XB. Let functions ϕ : [0, 1]2 → [0, 1]
and φ : [0, 1]2 → [0, 1] denote a grouping and a conjunction operator, respectively. Let µP− :
2V → [0, 1] according denote the fuzzy measure characterized in the Equation (2). Then, the triplet
G̃ = (V, E, µP−) is a polarization extended fuzzy graph.

Note that the representation ability of the polarization extended fuzzy graph goes far
from the modeling provided by other tools as for example, a fuzzy graph. Let us show a
toy example.

Example 5. We consider the graph G = (V, E) shown in the Figure. Let the membership functions(
ηXA(1), . . . , ηXA(8)

)
= (1, 0, 0, 1, 1, 1, 0, 0) and

(
ηXB(1), . . . , ηXB(8)

)
= (0, 1, 1, 0, 0, 0, 1, 1)

define the membership degree of each element of V to the poles XA and XB, respectively. We consider
ϕ = max and φ = product. In Figure 4, we show a representation of the polarization extended
fuzzy graph G̃ = (V, E, µP−).

P− = 1
32



0 1 1 0 0 0 1 1
1 0 0 1 1 1 0 0
1 0 0 1 1 1 0 0
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1
1 0 0 1 1 1 0 0
1 0 0 1 1 1 0 0


Figure 4. Polarization extended fuzzy graph G̃ = (V, E, µP− ).

It may seem that the polarization extended fuzzy graph has a weak point related to
the high complexity concerning the definition of the corresponding fuzzy measure µP− .
Nevertheless, we will show some desirable properties of it, which facilitate the handling of
G̃. The most important is about the additivity, as it is shown below.

Proposition 2. µP− is a 2-additive fuzzy measure.

Proof. We base this demonstration on an asseveration found in [34], where Grabisch
demonstrated that a fuzzy measure µ is 2-additive if and only if, for all S ⊆ V, it can
be defined as a linear combination µ(S) = ∑n

i=1 aixi + ∑{i,j}⊂S aijxixj, where xi = 1 if i ∈
S, and xi = 0 otherwise.
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For every i ∈ V, we define ai = 0, and for every i, j ∈ V such that i 6= j, we define
aij = P−ij . Then, according to the Equation (2), µP−(S) = ∑i,j∈S P−ij = ∑i,j∈V P−ij xixj =

∑n
i=1 ai + ∑i,j∈V aijxixj.

Proposition 3. µP− is closed for convex linear combinations:

µ(∑m
k=1 αk P̂−k) =

m

∑
k=1

αkµP̂−k

where ∑m
k=1 P̂−k = P−k and ∑m

k=1 αk = 1.

Proof. According to Equation (2), and assuming that xi = 1 if i ∈ S, and xi = 0 otherwise,
we have

µ(∑m
k=1 αk P̂−k) = ∑

i,j∈S

(
m

∑
k=1

αk P̂−k
ij

)
xixj =

m

∑
k=1

∑
i,j∈S

αk P̂−k
ij xixj =

m

∑
k=1

αk ∑
i,j∈S

P̂−k
ij xixj =

m

∑
k=1

αkµP̂−k

Remark 5. As a particular case of the Proposition 3, it holds that µP is fixed for the mean as
follows:

µP−1 + µP−2

2
= µ P−1+P−2

2

Note that all the points and properties enunciated with respect to µP− also apply to
µP+ . Then, µP+ is a 2-additive fuzzy measure. Particularly, we emphasize in the definition
of the non-polarization extended fuzzy graph G̃ = (V, E, µP+), concerning a crisp graph
and a non-polarization fuzzy measure.

Definition 7 (Non-polarization extended fuzzy graph). Let G = (V, E) denote a crisp graph,
whose nodes set is V and whose edges set is E. Given a unidimensional variable X with two extreme
poles XA and XB, let µP+ the non-polarization fuzzy measure characterized in the Definition 5.
Then, the triplet G̃ = (V, E, µP+) is a non-polarization extended fuzzy graph.

Example 6. We recall Example 5, but in this case we focus on the measure µP+ . Therefore, we have
the graph G = (V, E) and membership functions

(
ηXA(1), . . . , ηXA(8)

)
= (1, 0, 0, 1, 1, 1, 0, 0)

and
(
ηXB(1), . . . , ηXB(8)

)
= (0, 1, 1, 0, 0, 0, 1, 1). We consider ϕ = max and φ = product, and

N(x) = 1− x. Then, the non-polarization extended fuzzy graph G̃ = (V, E, µP+) is shown in
Figure 5, in which we show structure of the crisp graph and the matrix P+ concerning µP+ .

P+ = 1
24



0 0 0 1 1 1 0 0
0 0 1 0 0 0 1 1
0 1 0 0 0 0 1 1
1 0 0 0 1 1 0 0
1 0 0 1 0 1 0 0
1 0 0 1 1 0 0 0
0 1 1 0 0 0 0 1
0 1 1 0 0 0 1 0


Figure 5. Non-polarization extended fuzzy graph G̃ = (V, E, µP+ ).

Note that the measure JDJpol quantifies the distance or discrepancy between all pairs
of elements i, j of a given set of individuals V, i.e., the risk of polarization. Therefore,
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its negation J̃DJpol can be understood as the minimum risk of polarization for a given
population or community. On this assumption, if we consider the non-polarization fuzzy
measure µP+, grouping nodes according to this criterion allows us to build communities
with minimum risk of conflict. These communities detected in the non-polarization ex-
tended fuzzy graph G̃ = (V, E, µP+) present a structure that better fixes reality than those
communities built only by the relations between nodes.

As the aim of this paper is related to community detection problems, hereafter we will
focus on the non-polarization fuzzy measure µP+ and the corresponding matrix P+. Both
tools allow us to manage the synergies between the nodes. To simplify the notation, we
consider µP = µP+ and P = P+.

4. A Parametric Approach to Community Detection Problem Based on Polarization
Measures and Weighted Mean

Many complex networks show a modular structure so that the individuals are orga-
nized into modules with dense internal connections. Numerous examples can be found:
in the field of social networks, groups of related users according to their interests or back-
ground; in any citation network, groups of connected papers concerning one particular
issue; in a recommendation network, set of similar services or offers; and in metabolic
networks, connected biochemical pathways [9,35,36]. Due to the increasingly demand
for all these real-life applications among many others, having a consistent community
structure helps to understand the main characteristics, functions, and topology of these
systems. So that, a good understanding of the community structure hidden in a complex
network may be helpful for better analysis and exploitation of the data in an effective
way [37,38].

Complex networks are usually represented by graphs. One of their most popular
applications is devoted to the resolution of community detection problems, whose main
goal is to find a good partition of a given network. A partition of a graph G = (V, E) is a
decomposition of the set of nodes V into subgroups known as communities or clusters
whose composition depends on the similarity between the objects considered, i.e., a division
of the set of nodes into groups that are densely intra-connected, whereas sparsely connected
with the rest of the graph [13,39,40].

Classical algorithms proposed in this field are based on topological information and on
the structure of the network considered. Nevertheless, it is undeniable that in the process
of modeling the reality by means of a network for subsequent groups search, there is lot
of knowledge and information that are not considered in the grouping process. Several
authors agree on the importance of adding some additional information to the structure
represented by a graph to enrich the communities detected [15,41–43]. In this work, the
problem addressed by Gutiérrez et al. [18–20,44–47] about the detection of communities in
extended fuzzy graphs is particularly interesting. They proposed a methodology to analyze
independently the structural information of the graph and the knowledge represented by
the fuzzy measure when grouping the nodes.

We approach the community detection problem based on fuzzy measures including
this information about the relations among the individuals emanating from that knowledge
about the respective positions in any attitudinal axis. These relations will be considered
in terms of Polarization measures built from the JDJpol measure. Then, the base of the
problem here addressed is a non-polarization extended fuzzy graph G̃ = (G = (V, E), µP).
Note the increment of cohesiveness procured in the groups by considering additional
information independent of the topology. Note that we consider the non-polarization fuzzy
measure µP = µP+ instead of the polarization fuzzy measure µP− in order to fix an scenario
in which all the components of G̃, A and µP, have the same somewhat “positive” nature.

To face this problem, we work inspired by the idea developed in the Additional
Louvain algorithm (see in [19]), based on the Louvain algorithm [10]. The key point is to
distinguish two different roles within the input parameters: one of them, to establish the
neighbor relations, and the other, to calculate the variation of the modularity. The first
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role will be played by the adjacency matrix of the graph, A, so that only those nodes that
are connected in G can be in the same group. On the other hand, we suggest to consider
a combination of the two components of the non-polarization extended fuzzy graph G̃
as basis to calculate the variation of modularity, in order to incorporate the additional
information. Then, having a crisp graph G, the two membership functions ηXA and ηXB ,
the operators ϕ (grouping), and φ (overlapping) and considering the negation function N,
or what is the same, a non-polarization extended fuzzy graph G̃ = (V, E, µP), we propose
a new methodology that is summarized as follows.

1. Obtain the non-polarization fuzzy measure µP related to the set V from the parameters
ηXA , ηXB , ϕ, φ and N, according to Equation (7).

2. Summarize µP into a matrix, F.

3. Define the matrix M = θ(A, F), where θ : Π(n)2 → Π(n) is a matrix aggregator used
to combine two matrices into a single one.

4. Apply the Louvain algorithm by distinguishing the role of the matrices A and M: A is
used to find the neighbor relations, M is used to calculate the variation of modularity.

Remark 6. In this proposal, we suggest the use of a matrix aggregator θ. Nevertheless, any other
operator could be applied instead.

The definition of the matrix F, as an aggregation of the non-polarization fuzzy measure
µP, should be closely related to the problem addressed. We suggest a particular characteri-
zation of it, based on the calculation of the weighted graph associated with µP. This matrix
is a highly recommended tool for fuzzy measures manipulation and visualization, which
summarizes the knowledge about the capacity of the elements into n2 data set. The defi-
nition of this graph is based on the Shapley value [48], particularly in its characterization
related to fuzzy measures [49].

Definition 8 (Weighted graph associated with a fuzzy measure Gµ [18,19]). Let µ : 2V →
[0, 1] denote a fuzzy measure defined over the finite set V, and let ξ : [−1, 1]2 → [0, 1] denote a
bivariate aggregation operator. We consider Shi(µ), the Shapley value of the individual i ∈ V in
coalition with all the elements of V regarding their relation in µ; analogously, Shj

i(µ) denotes the
Shapley value of the individual i in coalition with all the elements of V\{j}, regarding µ. Then,
the weighted graph associated with the fuzzy measure µ, denoted by Gµ, is that whose adjacency is
represented by the matrix F, where

Fij = ξ
(

Shi(µ)− Shj
i(µ), Shj(µ)− Shi

j(µ)
)

(8)

In our specific proposal of the method to find communities in a non-polarization
extended fuzzy graph, we suggest summarizing the non-polarization fuzzy measure µP
into the matrix F, with adjacency of its associated weighted graph. To formally establish this
method, let us define it as an algorithm, named Polarization Louvain, whose pseudocode
can be found in Algorithm 1.
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Algorithm 1 Polarization Louvain
1: Input:

(
A, ηXA , ηXB , ϕ, φ

)
;

2: Output: P;
3: Preliminary
4: µP ←

(
ηXA , ηXB , ϕ, φ, N

)
;

5: Fij = ξ
(

Shi(µP)− Shj
i(µP), Shj(µP)− Shi

j(µP)
)

, for all i, j ∈ V;

6: M← θ(A, F);
7: Ci ← {i}, ∀i ∈ V (each node is an isolated community);
8: P← (1, 2 . . . , n) (initial partition);
9: end Preliminary

10: Phase 1
11:
(
o1, . . . , oi, . . . , on)← perm(V);

12: stop← 0;
13: while (stop == 0) do
14: stop← 1
15: for (i = 1) to (n) do
16: H

(
oi)← (e1, . . . , eh) (find all the neighbours of oi in A);

17: for (j = 1) to (h) do
18: Compute ∆Qoi (ej) in M;
19: end for

20: j∗ ←
{

e` | ∆Qoi (j∗) = max
`∈{1...,h}

{
∆Qoi (e`)

}}
;

21: if (∆Qoi (j∗) > 0) then

22: CP(oi) ← CP(oi)\{o
i};

23: CP(j∗) ← CP(j∗) ∪ {oi};
24: P

(
oi)← P(j∗);

25: stop← 0;
26: end if
27: end for
28: end while
29: end Phase 1
30: Phase 2
31: Aggregate A∗ from A (nodes of A∗ are the communities found in Phase 1);
32: Aggregate M∗ from M (nodes of M∗ are the communities found in Phase 1);
33: if (A∗ 6= A) then
34: A← A∗;
35: M← M∗;
36: Compute Phase 1 and Phase 2;
37: end if
38: end Phase 2
39: return(P);

The key point to approach a clustering process in a non-polarization extended fuzzy
graph G̃ = (V, E, µP) is the calculation of the weighted graph associated with µP. The
calculation of the Shapley value on which it is based is a process that usually reaches
exponential complexity. Nevertheless, we will show that this problem does not apply when
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considering µP, for which we have demonstrated in Proposition 2 that it is a 2-additive
fuzzy measure.

Proposition 4. Let µP denote the non-polarization fuzzy measure related to set V obtained from the
membership functions ηXA and ηXB , the aggregation operators ϕ and φ, and the negation operator
N, according to Definition 5, so that P is the matrix obtained from these parameters according to
Equation (6). The following holds for µP.

1.
Shi(µP) = ∑

k∈V
Pik

2.

Shj
i(µP) = ∑

k∈V\{j}
Pik =

(
∑

k∈V
Pik

)
− Pij

Proof. We prove the point 1, so that the demonstration of 2 is analogous.
It is based on an alternative characterization of the Shapley value [50,51] in which,

∀i ∈ V, the corresponding Shapley index can be calculated as the average of the marginal
contributions in all the permutations of the original set V, i.e.,

Shi =
1
n! ∑

o∈π(n)
[µ(pred(i) + {i})− µ(pred(i))]

where pred(i) denotes the set of predecessors of i in the order o and π(n) denotes the set of
all the possible permutations of a set with n elements.

According to Equation (7),

µ(pred(i) + {i}) =
n

∑
k=1

n

∑
j=1

Pjkxjxk +
n

∑
k=1

(Pik + Pki)xk

µ(pred(i)) =
n

∑
k=1

n

∑
j=1

Pjkxjxk

being xj = 1 if j ∈ pred(i), and xj = 0 otherwise .

So that,

Shi =
1
n! ∑

o∈π(n)

(
n

∑
k=1

n

∑
j=1

Pjkxjxk +
n

∑
k=1

(Pik + Pki)xk

)
−
(

n

∑
k=1

n

∑
j=1

Pjkxjxk

)
=

1
n! ∑

o∈π(n)

n

∑
k=1

(Pik + Pki)xk

For a half of the orders o ∈ π(n), it is true that k ∈ pred(i), so, for a half of the values
of the previous summation, xk = 1. Therefore,

1
n! ∑

o∈π(n)

n

∑
k=1

(Pik + Pki)xk =
1
2

n

∑
k=1

(Pik + Pki)

By definition, P is symmetric, and its main diagonal is null. Therefore, Pik = Pki and
Pii = 0. Then,

1
2

n

∑
k=1

(Pik + Pki) =
1
2

n

∑
k=1

2Pik =
n

∑
k=1

Pik = ∑
k∈V

Pik

As a consequence of the Proposition 4, the following result holds for µP.
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Proposition 5. Let µP denote the non-polarization fuzzy measure related to set V obtained from the
membership functions ηXA and ηXB , the aggregation operators ϕ and φ, and the negation operator
N, according to Definition 5, so that P is the matrix obtained from these parameters according to
Equation (6). Let i, j ∈ V denote two individuals. Then, the following applies.

1. Shi(µP)− Shj
i(µP) = Pij

2. Shj(µP)− Shi
j(µP) = Pji

Proof. We prove the point 1, so that the demonstration of 2 is analogous.
As it is demonstrated in the Proposition 4,

1. Shi(µP)− Shj
i(µP) = ∑

k∈V
Pik −

(
∑

k∈V
Pik − Pij

)
= ∑

k∈V
Pik − ∑

k∈V
Pik + Pij = Pij

At this point, it is trivial to represent the closeness between different pairs of elements
according to their attitude concerning a particular issue. Then, as µP is the corresponding
non-polarization fuzzy measure based on the Polarization measure JDJpol , we assume
that the closeness between two individuals concerning its attitude about one issue can
be represented by the weighted graph associated with µP, i.e., with the corresponding
adjacency matrix of GµP , calculated as

Fij = ξ
(

Shi(µP)− Shj
i(µP), Shj(µP)− Shi

j(µP)
)
= ξ

(
Pij, Pji

)
Remark 7. Note that because of P’s symmetry, if the chosen aggregation operator φ is of the type
max, min, average among others, then Fij = Pij, ∀i, j ∈ V.

So far, we have summarized all the knowledge modeled by the non-polarization
extended fuzzy graph G̃ = (V, E, µP) into two independent matrices, A and F. This
process/tools could be applied in many fields, as, for example, problems about centrality,
link prediction or propagation.

It is crucial to be clear about the interpretation of the matrices A and F (or P in any
case). On the one hand, A represents the direct connections between the elements of V; it is
well accepted that nodes tightly-knit connected should be connected, so it can be seen that
the connections shown in A are “positive”. On the other hand, we have already mentioned
that, because of the characterization of µP (and thus of P/F), it is related to the synergies or
closeness between the elements. Then, we can conclude that both matrices A and F have
“positive” meanings, so that nodes for which both matrices (or even one of them if it is fair
enough) define high values, should be together.

Let us illustrate the performance of the Polarization Louvain method with a toy
example. In this case, we combine the matrices A and F by means of a linear combination
(θ(A, F) = γA + (1 − γ)F). In our opinion, it is an smart way to assign a weight or
importance to each component of the G̃. Note that, when γ = 1, the additional information
is not considered. In this case, both the search of neighbor relations and the modularity
variation are calculated over the matrix A, so that the Polarization Louvain algorithm is
exactly the same than the Louvain algorithm.

Example 7. Let us consider the graph G = (V, E) whose adjacency matrix is A, and let us assume
some knowledge about the position of the elements of V in any attitudinal axis modeled, in the sense
that we know the membership degree of all the individual in V to the poles XA and XB, represented
by the membership functions ηXA and ηXB , respectively. hese values are showed in Table 5. From
this knowledge, and considering the operators ϕ = max and φ = prod and N(x) = 1− x, we
define the fuzzy measure µP, and therefore the matrix P (Equation (7)).
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Table 5. Membership degree of each node of V to the poles XA and XB.

Vertex ηXA ηXB

1 0.022 0.878
2 0.756 0.144
3 0.751 0.099
4 0.5 0.5
5 0.001 0.989
6 0.102 0.888
7 0.889 0.112

Due to the properties of P, we have that F = P, so the characterization of µP is straightforward.
At this point, we have the non-polarization extended fuzzy graph G̃ = (V, E, µP), so that,

being γ ∈ [0, 1] a balancing factor, and considering the aggregation function θ(A, F) = γA +
(1− γ)F = γA + (1− γ)P, we apply the Polarization Louvain algorithm, being A and P the
matrices showed in Figure 6. In Figure 7, we show the partitions obtained for several values of γ.
Note how the way in which the nodes are organized changes depending on the importance assigned
to the information represented by P (i.e., F) about the closeness between the nodes.

A =



0 1 1 0 1 0 1
1 0 1 0 0 0 0
1 1 0 1 1 0 1
0 0 1 0 1 0 0
1 0 1 1 0 1 1
0 0 0 0 1 0 1
1 0 1 0 1 1 0


P = 1

22.574



0.000 0.336 0.341 0.561 0.978 0.910 0.219
0.336 0.000 0.892 0.622 0.252 0.329 0.872
0.341 0.892 0.000 0.625 0.257 0.333 0.912
0.561 0.622 0.625 0.000 0.506 0.556 0.556
0.978 0.252 0.257 0.506 0.000 0.899 0.121
0.910 0.329 0.333 0.556 0.899 0.000 0.211
0.219 0.872 0.912 0.556 0.121 0.211 0.000


Figure 6. Matrices A and P.

(a) γ = 1 (Louvain algorithm) (b) γ = 0.5 (c) γ = 0

Figure 7. Partitions of G̃ = (V, E, µ) obtained with the Polarization Louvain algorithm.

5. A Real Case: The Impact of the COVID-19 Pandemic in the Organization of the
People
5.1. Experiment Design: Sources and Methodology

We briefly explain the case of study in the following. The nodes and theirs relations
considered in this work have been obtained from the social network Twitter, particularly
from some posts recorded along the state of alarm imposed by the central government in
Spain (from 16 March 2020 until 29 June 2020). All data downloaded relate to the COVID-19
pandemic and the political situation in that country, concerning the management of the
sanitary situation by the Spanish government. Each element of that data set represents an
influential and verified account.

It is well known by popular knowledge that Twitter is one of the trendiest online
social networks, where millions of users debate about any social or political topic, among
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many others. For this research, we have used the retweet (RT) network. A RT is a post
derived from the action of any user to replicate a given tweet or message of another user
to spread that content with his/her followers. In the literature, the RT network has been
commonly used as a directed network [52], so that if the original tweet is written by an
user i and then j RT it, then there is a connection with directionality, which represents the
action of each user. Nevertheless, in our case we understand it as an non-directed network
in this sense: it is not of our matter to know the directionality of a connection (who posts
the tweet and who RT it), but rather to focus on the content. In this vein, once a given user
j RT a tweet of i, what is important to us is the intention of j to transmit and spread that
content. In broader terms, we can assume that j agrees with the content and spreads the
word to make the tweet visible and influential over the people. Our aim is to know the
user’s political attitude towards the Spanish government measuring their attitude reflected
on the tweets. Therefore, no directionality is needed.

All data were downloaded from Twitter, using its API by R-Studio, with the package
“rtweet” [53] in 5 rounds along the state of alarm in Spain.

. 1st round: “2020-03-16” – “2020-03-23”.

. 2nd round: “2020-04-06” – “2020-04-21”.

. 3rd round: “2020-05-07” – “2020-05-22”.

. 4th round: “2020-06-03” – “2020-06-15”.

. 5th round: “2020-06-14” – “2020-06-29”.

The criteria we used to download the tweets were related to the considerations of
those keywords which are mainly composed by the main political parties in Spain as well
as their leaders:

psoe OR pp OR vox OR ciudadanos OR gobierno OR podemos OR españa OR sanchezcastejon OR
vox_es OR pabloiglesias OR pablocasado_ OR santi_abascal OR inesarrimadas OR CiudadanosCs
OR populares OR estadodealarma

After the downloading phase, we obtained 4.895,747 tweets, about which we know,
among other points, who posted it and who retweeted it. Then, manual encoding was
applied in a sample of those tweets to fix the points:

(1) To detect and filter all those tweets included on our database which do not correspond
to our goals (Feature: TOPIC).

(2) To encode each tweet as (a) detractor, (b) neutral, or (c) supporter of the Spanish
government (Feature: POSITION).

The manual encoding was applied to a random sample of 1500 tweets for each round
mentioned above. To carry on with it, we analyzed the subject matter of the tweet. As
we are considering extreme positions, from our personal knowledge about the political
position, it is not complicated to decided whether the message of a tweet is in favor of the
government, against it, or neutral. Note the importance of encoding by rounds due to the
dynamic nature of debates on online social networks, in which words or events can change
over time despite being debating about one specific topic. Once the data were encoded,
we applied text classification with machine learning algorithms in order to tackle the full
content of our database.

According to the work in [54], Linear Support Vector Machines are recognized to be one
of the best machine learning algorithms for text classification. So that, after the tokenization
phase and the removal of stopwords, we converted our text into a tf-idf matrix. This type of
matrices presents all the different words which appeared on the corpus on the columns,
and the strings (tweets in our case) on the rows. The simplest dfm matrix is an occurrence
matrix with 0 if a given word does not appear on the tweet and 1 if it does. However,
tf-idf matrices show values as a result of the product of a term frequency and inverse
document frequency for each word of a tweet. So that, as it is a classification problem with
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the classes detractor (pole XA) and supporter (pole XB), the classifier was trained and applied
for the feature “TOPIC” and then for the “POSITION”. The results obtained with that
process of text classification are showed in the Table 6. Note that the final scores recorded
for “POSITION” are the two probabilities for being a “detractor” or “supporter” tweet
towards the Spanish government. In this case, the “neutral” category is omitted in order to
get a variable with two poles, assuming that probabilities close to 0.5 correspond to the
“neutral” category. To carry on with this phase, we used the R-package e1071, where all
these methods of text classification are implemented [55].

In Table 6, we show an analysis in which the following indices have been considered:
PRECISION, RECALL, KAPPA, F-SCORE , and AUC [56,57].

Table 6. Linear support vector machine (SVM) performance for features “TOPIC” and “POSITION”.

Round Feature Precision Recall Kappa F-Score AUC

1 TOPIC 0.8017 0.9322 0.3670 0.8620 0.6583
2 TOPIC 0.8167 0.5476 0.5077 0.6556 0.7344
3 TOPIC 0.8267 0.7027 0.6187 0.7596 0.8010
4 TOPIC 0.7867 0.7090 0.564 0.7457 0.7791
5 TOPIC 0.7659 0.8758 0.5216 0.8171 0.7567
1 POSITION 0.8492 0.9854 0.4816 0.9122 0.6950
2 POSITION 0.8960 0.9619 0.7761 0.9277 0.8780
3 POSITION 0.8392 0.8488 0.6675 0.8439 0.8366
4 POSITION 0.9133 0.9048 0.8225 0.9090 0.9121
5 POSITION 0.8318 0.8600 0.6638 0.8456 0.8335

Finally, the database derived from the SVM classifier is integrated by 1,208,631 tweets
which have been posted or RT by 469,616 different users. To aim for those influencers and
verified accounts, we filtered by the following:

(a) Tweets with high repercussion on Twitter, considering accounts whose tweets with
RT count are placed above the 50 percentile (n ≥ 317). The information about the
count of RT is provided by the API.

(b) Verified accounts. This information is provided by the Twitter API by means of a
logical variable which indicates if a given tweet has been posted/RT by a verified
account or not.

(c) Accounts with high number of followers, considering accounts whose number of
followers is placed above the 50 percentile (n ≥21,779). The information about the
number of followers is provided by the API.

In this manner, 406 users left, mainly politicians, party accounts, and journalists. Then,
to get a closed network of users, we matched those accounts that both write or RT any
tweet among those 406 accounts. So that in our final data base, 295 users are considered,
from whose posts, 657 interactions are derived. Note that these interactions may concern
users who are not among the 295 considered, but who have RT some of theirs posts; so
that we have a total amount of 454 different users and 657 interactions. Each user will be
represented by a node, and each interaction by a non-directed and non-weighted edge.
From this information, we build a network G = (V, E), so that the each of these 454
accounts is represented by a node of the set V, and the links represents the edges of E. Let
us remark that we take into account if it comes the case in which two users interact several
times (by means of RT of different tweets), i.e., we work with a weighted graph, so that
weight wij of the corresponding edge represents how many time have interacted the users
i and j.

Note that the objects to be classified were not users but tweets, so, for each user, we
computed the average score for his/her tweets of being “detractors” and “supporters” (not
only considering the original posts, but also the RT). At this end, we finally got, for the 295
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users, two specific values of probability for being a “detractor” and for being a “supporter”
toward the Spanish government, provided by the SMV method. These distances to the
support vector machines for each class of the SMV will be used as membership degree
values for each user to compute the JDJpol Polarization measure, which sets the basis of the
non-polarization measure µP (Definition 5), which is part of the non-polarization extended
fuzzy graph G̃ = (V, E, µP) over which we apply the community detection problem.

For a better understanding of the results, it is important to provide a proper visualiza-
tion of the network, which comprises a complex process [58]. Having a proper organization
and a good representation of the network itself is fundamental for a better understanding
and exploitation of the inherent data. To accomplish that, we have used the R package
“visNetwork” [59].

5.2. Results

In this section, we show the computational results obtained when applying the Polar-
ization Louvain algorithm to the data set obtained from Twitter as explained in Section 5.1.
To carry on with it, we build a graph from that obtained data set and a fuzzy measure
which represents the capacity of the elements to trigger conflict. Originally, this graph had
454 nodes and 657 weighted edges (the list of the interactions between users from which we
define the set of edges can be found in GitHub (https://github.com/inmaggp/Community-
Detection-Problem-Based-on-Polarization-Measures.-An-application-to-Twitter-the-COVID-
19- accessed on 31 January 2021). Nevertheless, for the clustering process, we focus on
its weak component, which contains 261 nodes and 484 weighted edges. The obtained
network, G = (V, E), with adjacency matrix, A, is showed in Figure 8 (taking into con-
sideration the weight of each edge, the degree of the nodes is represented by their size
in the image, so that the bigger nodes will represent the users with the most amount of
interactions). Then, considering the membership degrees of each node to the poles XA
(being a “detractor” of the Spanish government) and Xb (being a “supporter” of the Spanish
government), represented by ηXA and ηXB , respectively, we can calculate the Polarization
measure JDJpol (see Definition 3) from which we define the matrix P, according to the
Equation (6). The membership degrees considered can be found in GitHub1. It provides us
the non-polarization fuzzy measure µP which is one of the components of G̃ = (V, E, µP).
Note that the information provided by the non-polarization extended fuzzy graph goes
further than that given by a crisp graph. It also includes the knowledge about the position
of the nodes of G with respect to an attitudinal axis, an information which cannot be
modeled by classical tools.

The measure µP depends on the selection of a negation operator, N, and two different
types of aggregation operators: a grouping function ϕ and an overlapping operator φ. As
negation operator, we use N(x) = (1− x). Concerning the aggregation operators, we use
some of the most important operator in this field, having two different scenarios for the
aggregation of the membership degrees: (a) φ = min and ϕ = max, and (b) φ = product
and ϕ = max.

Because of the characterization of P, and with µP being a fuzzy measure characterized
as in Equation (7), P can be seen also as the adjacency matrix of GµP , F, so we can indistinctly
consider both tools.

We apply the Polarization Louvain algorithm to find communities in the non-polarization
extended fuzzy graph G̃ = (V, E, µP). Note that the obtained communities will be cohe-
sive with the whole knowledge modeled by it, the structure of the graph as well as the
additional information modeled by µP. The notion of what is a community will be closely
connected with the aggregation operator θ chosen, as well as with the grouping operator ϕ
and the overlapping operator φ. Being able to consider the additional information when
finding groups allow us to obtain realistic communities much more cohesive with the
situation addressed, than those given by other methods which can not analyzed more
information besides the structure of the graph.

https://github.com/inmaggp/Community-Detection-Problem-Based-on-Polarization-Measures.-An-application-to-Twitter-the-COVID-19-
https://github.com/inmaggp/Community-Detection-Problem-Based-on-Polarization-Measures.-An-application-to-Twitter-the-COVID-19-
https://github.com/inmaggp/Community-Detection-Problem-Based-on-Polarization-Measures.-An-application-to-Twitter-the-COVID-19-
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Figure 8. Graph G = (V, E).

To combine the two components of G̃, we work with linear combinations of the
matrices A and P assigning them an importance by means of the balancing parameter
γ ∈ [0, 1], i.e., we consider the matrix M = θ(A, P) = γA + (1− γ)P.

The influence of each component of G̃ varies depending on the value of γ. For values
of γ close to 1, the structural component gains importance, so the groups contain nodes
tightly connected in A. On the opposite, when γ is close to 0, the additional information
modeled by µP turns decisive in the definition of the communities, so, if it is possible
regarding the structure of A, the groups contain nodes with low Polarization level, i.e.,
nodes whose membership degree to each pole is similar. In this case, those users about
whom we can assume similar political viewpoint, will be in the same group.

We apply the Polarization Louvain algorithm for the two scenarios of grouping/
overlapping functions previously mentioned, and considering the matrix M = γA + (1−
γ)P, for several values of the importance parameter, γ = 0.5, 0.4, 0.3, 0.2, 0.1, 0. We also
compute the Louvain algorithm with matrix A, on whose result, showed in Figure 9, is
based our comparison analysis. Note that the performance of the Louvain algorithm
matches with the Polarization Louvain algorithm when M = A, (γ = 1).

Figure 9. Partition obtained with the Louvain algorithm in the graph G = (V, E).
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Here, we show how the organization of the groups keep changing depending on
the importance of each component of G̃ in the clustering process. Particularly, for the
extreme cases, Louvain (in which there is no additional information) and γ = 0 (in
which the additional information gains all the importance), considering the two scenarios
previously mentioned about the aggregation operators used. The results are shown in the
Figures 10 and 11. In GitHub, we include a file in which we show the obtained partitions
for every value of γ considered, as well as the corresponding images.

Figure 10. Partitions obtained with the Polarization Louvain algorithm in the non-polarization
extended fuzzy graph G̃ = (V, E, µP). γ = 0; ϕ = max; φ = min.

Figure 11. Partitions obtained with the Polarization Louvain algorithm in the non-polarization
extended fuzzy graph G̃ = (V, E, µP). γ = 0; ϕ = max; φ = prod.

Note how, when only the political viewpoint of the users is considered, the graph
is divided into two main communities, so that we can easily differentiate between the
detractors and the supporters of the Spanish government.

To measure the goodness of the obtained partitions, we refer to the JDJpol measure.
We agree on that a cohesive group should be composed by connected users with similar
viewpoints. In this sense, we can say that a group is as cohesive as low is its corresponding
JDJpol value.
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Note that the partitions obtained when consider several values of γ vary in the
number of communities. Then, to compare them, we consider the weighted average of the
JDJpol(Ci) value of all its communities. Thus, we calculate the Polarization value of the
partition P = {C1, . . . , Cs} as

pol(P) =

[
∑s

i=1 JDJpol(Ci) ∗ |Ci|
∑s

i=1 |Ci|

]
|Ci |>1

(9)

It is important to put attention on the fact that only the non-isolated communities will
be considered to calculate pol(P), i.e., groups with more than one element |Ci| > 1; it does
not make any sense consider how polarized is one element with respect itself.

In Tables 7 and 8, we show the JDJpol value of each community in the obtained
partitions (only non-isolated communities), as well as the corresponding pol(P). For
each partition, we show the vector (JDJpol(C1), . . . , JDJpol(Cs)), so that the ith component
corresponds with JDJpol(Ci).

Table 7. Comparison of the obtained partitions. ϕ = max and φ = min.

ϕ = max
φ = min

# Communities
|Ci| > 1 (JDJ(C1), . . . , JDJ(Cs)) pol(P)

Louvain 14 (0.256, 0.514, 0.253, 0.301, 0.458, 0.377, 0.302, 0.4403, 0.459, 0.349, 0.190, 0.475, 0.108, 0.415) 0.359
γ = 0.5 11 (0.239, 0.259, 0.513, 0.297, 0.377, 0.440, 0.514, 0.257, 0.459, 0.415, 0.455) 0.341
γ = 0.4 8 (0.254, 0.332, 0.259, 0.513, 0.450, 0.514, 0.459, 0.455) 0.348
γ = 0.3 7 (0.304, 0.300, 0.253, 0.513, 0.512, 0.526, 0.246) 0.343
γ = 0.2 8 (0.334, 0.267, 0.444, 0.512, 0.462, 0.440, 0.528, 0.246) 0.330
γ = 0.1 7 (0.323, 0.273, 0.418, 0.482, 0.440, 0.462, 0.246) 0.319
γ = 0 8 (0.302, 0.263, 0.439, 0.463, 0.277, 0.440, 0.462, 0.246) 0.292

Table 8. Comparison of the obtained partitions. ϕ = max and φ = prod.

ϕ = max
φ = prod

# Communities
|Ci| > 1 (JDJ(C1), . . . , JDJ(Cs)) pol(P)

Louvain 14 (0.218, 0.454, 0.228, 0.261, 0.378, 0.296, 0.261p, 0.359, 0.389, 0.306, 0.168, 0.392, 0.102, 0.258) 0.306
γ = 0.5 11 (0.220, 0.453, 0.190, 0.260, 0.261, 0.296, 0.359, 0.326, 0.382, 0.389, 0.258) 0.299
γ = 0.4 9 (0.214, 0.281, 0.220, 0.453, 0.363, 0.389, 0.369, 0.258, 0.343) 0.292
γ = 0.3 7 (0.257, 0.251, 0.220, 0.453, 0.369, 0.417, 0.343) 0.292
γ = 0.2 7 (0.259, 0.228, 0.453, 0.369, 0.417, 0.249, 0.186) 0.289
γ = 0.1 7 (0.274, 0.228, 0.393, 0.417, 0.369, 0.249, 0.186) 0.277
γ = 0 8 (0.256, 0.224, 0.316, 0.376, 0.199, 0.243, 0.249, 0.186) 0.244

As it can be seen in previous tables, as well as in Figure 12, the pol(P) value related to
those partitions obtained with the Polarization Louvain algorithm is lower than the one
related to the partition provided by the Louvain algorithm. Then, we can assert that this
method provides more cohesive community structures according to the reality modeled.
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Figure 12. Polarization values of the partition P = {C1, . . . , Cs} by overlapping operators.

To illustrate this, in the following figures we show an example of how two pairs
of nodes which should belong to the same communities, respectively, are split into four
different communities with the Louvain algorithm. On one hand, we have nodes “38” and
“115”, both left-wing political parties that teamed back in march 2019. On the other hand,
we have nodes “76” , a right-wing political party, and “203”, a member of this political
group. After applying the Polarization Louvain algorithm, those pairs are clustered into the
same communities (see Figure 13a,b). Let us note that mentioned images are a zoom over
the whole network, so not all the edges incident in these nodes are shown. Although it may
seem that some nodes grouped in the same communities are not connected by edges (for
example, nodes “76” and “203” in the image Figure 13b) all of them are properly connected
in the network.

(a) Nodes “38”, “76”, “115”, and “203” grouped by
Louvain algorithm.

(b) Nodes “38”, “76”, “115”, and “203” grouped by
Polarization Louvain algorithm.

Figure 13. Zoom of the whole network.

6. Discussion

There are several points to be discussed at this end.
From a theoretical point of view, it is undeniable that complex models fix the reality

better than classical tools. Having several criteria to be considered makes the resolution
process of a problem more complex, but it is certainly worth it.

Classically, the methods proposed to find communities in a graph only analyze its
structural features. Far from this assumption, in this work we have taken into consideration
several aspects inherent to reality, which, with a proper process of modeling and analysis,
can be considered as different criteria in the community detection problem.
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Then, we distinguish between different types of information. On the one hand, we
deem the crisp knowledge which could be easily related to the classical graphs considered
in the literature. This type of knowledge is unalterable and objective, in the sense that
it exists and no changes could be made about it. It is the case of the direct connections
represented by the edges of a graph. Particularly, in the real case here addressed based
on the Online Social Network Twitter, we have worked with the retweet (RT) network. It
is composed of objective information directly obtained from the social site. On the other
hand, we analyze other types of information sources inherent to the people who discuss
in Twitter. A wide range of different aspects could be considered, from the factual issues
related to objective knowledge about the people as, for example, the distance that separates
them or the common followers, to the more subjective points related to ideology or feelings.

In the context of great political instability enhanced by the global COVID-19 crisis, we
agree on the importance of analyzing the political position of several people who are highly
influential on Twitter. The study of feelings, ideology, and political principles, is always
a hard matter in which many inaccurate details have to be taken into account. To deal
with the vagueness and vagueness related to the analysis of political attitudes, we work
with fuzzy measures, added in the modeling process to the crisp graph. In this vein, we
work with the non-polarization extended fuzzy graph G̃ = (V, E, µP), where G = (V, E) is
the weighted graph which represents the RT network, and µP is a fuzzy measure which
defines relations between the elements of V, depending on their position in a political
axis. To define this fuzzy measure, we consider the JDJpol measure, which quantifies the
Polarization of a given society.

Several criteria have to be fixed for the calculation of JDJpol , as, for example, the
aggregation operator φ and the grouping function ϕ. In this paper, we have selected
considered some of the most popular functions in this field, specifically, ϕ = max and
φ ∈ {min, product}. Note that these operators play an essential role in the value of the
JDJpol measure (and also the negation operator N if we are interested in considering
the opposite of JDJpol) and thus in the community detection problem here addressed.
Therefore, it would be interesting to analyze how the structure of the partitions keeps
changing according to the operators considered.

In the same manner, the operator θ involved in the Polarization Louvain algorithm im-
pacts on the community structure detected, in terms of how to aggregate both components
of a non-polarization extended fuzzy graph G̃ = (V, E, µP) (the structure and the closeness
between the nodes). We agree on considering linear combinations of the two matrices
involved, in order to assign an “importance” to each of them, by means of a balancing or
weighting factor γ ∈ [0, 1]. This procedure allows us to examine the changes that occurs in
the structure of communities, according to the how much influence on its definition each
of these components. Then, considering the aggregation γA + (1− γ)P, those values of
γ which are close to 1 are related to partitions in which the nodes of the same group are
densely connected in G, whereas for lower values of γ it is important to maintain together
nodes with high values of closeness (without omitting the structure of G).

Regarding Polarization values, the Louvain algorithm shows the highest values of
Polarization, as it can be seen in the Tables 7 and 8, as well as in the Figure 12. In this
work, we propose a new method for community detection, which in our opinion has strong
theoretical and applied connotations. The extra-information provided by the measure of
Polarization JDJpol matches up with community detection algorithms due to their close
conceptual relationship. The fact of adding Polarization scores implies taking into account
the similarity between individuals along an attitudinal axis. In this vein, having new
information closely related to the purposes for which the community detection algorithms
are applied, makes the communities more cohesive with a greater homogeneity degree, so
that this construction of the communities fixes better the reality. In our case, the aim is to
cluster the nodes according to their position towards the Spanish government.
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7. Conclusions

In this paper, we work in the definition of a polarization fuzzy measure obtained
from a Polarization measure. It is a model to represent the capacity of a set of elements to
argue. Then, we introduce a new tool which combines the capacity represented by that
polarization fuzzy measure, with the connections between elements modeled by a graph:
the polarization extended fuzzy graph.

In order to handle situations in which the interest is not in the capacity of the elements
to argue, but it is in their capacity to peacefully dialogue, we suggest the definition of the
non-polarization fuzzy measure. Similarly as it is proposed concerning the polarization
fuzzy measure, we introduce the non-polarization extended fuzzy graph, which allows
the representation of the capacity to dialogue of a set of elements combined with their
connections throughout a graph.

Then, we address the community detection problem in an extended context regarding
the existence of several criteria to be taken into account. On the one hand, we consider
the representation of the direct connections between the individuals represented by a
crisp network G = (V, E). On the other hand, we know the position of all the elements
(represented by the nodes) in any attitudinal axis, information not inherent to the structural
representation of their connections.

From this extra-information, understood as the membership degree of each element
to two extreme poles, the JDJpol polarization measure is defined, which will be the base
of characterization of a non-polarization fuzzy measure µP. Then, we define the non-
polarization extended fuzzy graph G̃ = (V, E, µP), on which we set the basis of the
community detection problem based on fuzzy measures. On this assumption, we address
a real case obtained from Twitter.

The graphic representation of a network reflects the structure of a given set of nodes
according to their interactions and behavior. From this point of view, the sociological
phenomenon which drive all these interactions is called homophily [60]. According to
the concept of homophily, a set of individuals or nodes are grouped and interact with
each other according to their similarities. So that the concept of Polarization is emanated
from homophily and, more specifically, homogeneity [52], appearing in those scenarios
in which a set of nodes or individuals are split into two opposite groups. In this vein,
the measurement of Polarization provides the adequate clues for community detection
problems. Furthermore, the fuzzy-set theoretical approach provides the appropriate re-
sources in order to tackle this issue from a realistic position. Adding the extra-information
provided by JDJpol has a double benefit: (1) it not only allows increasing the homogeneity
degree intra-community, but (2) it also provides essential information in those cases where
there are some nodes with a non-clear membership with the classical community detection
algorithms. Furthermore, note the importance of the aims and hypothesis of the study
which should be the same for both, community detection application, and Polarization
measurement. Thus, the synergy between community detection algorithm and other mea-
sures will be an optimal solution. As a consequence, not only the integration of a given
community is more realistic but also the global topographic structure.

Regarding the construction of the membership degree functions, they can be con-
structed by different approaches as well as they reflect the proximity of a given individual
to the poles. In [6], the authors proposed a triangular membership function where each of
the categories used in their example—they apply the measure to a categorical variable—
had a given probability of belonging to each pole assuming that the lowest value is one pole
and highest is the other. In this case, we use as membership functions the support vector
machine classifier outputs, which give us soft information that can be used to know how
close each item is to the classes XA and XB. From this soft value we build the membership
function of each individual to each pole, obtaining ηXA(i) and ηXB(i) by which we can
know the degree in which a given individual belong to both poles.

To conclude this final section, we would like to mention some points. One of the most
difficult problems in fuzzy sets theory is how to build a membership function. In this work,
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we need to build ηXA and ηXB , in order to then build the polarization fuzzy measure. In
[6], thee authors face the construction of the membership from a fuzzy sets perspective.
Nevertheless, it is not the main objective of this paper. In this work, we apply machine
learning algorithms which allow us to measure the closeness of each node to each pole.
From this information, we can build the membership function of each individual to each
pole. Note that this procedure could be replicated easily to other similar situations in which
we had the knowledge of some items to the two poles and we apply machine learning
techniques to build the membership functions.

Author Contributions: Conceptualization, I.G., J.A.G., and D.G.; methodology, I.G., J.A.G. and
D.G; software, I.G. and J.A.G.; validation, D.G., J.C., and R.E.; formal analysis, I.G. and J.A.G.;
investigation, I.G. and J.A.G.; resources, I.G., J.A.G., D.G., J.C., and R.E.; data curation, I.G. and J.A.G.;
writing—original draft preparation, I.G. and J.A.; writing—review and editing, I.G., J.A.G., D.G.,
J.C., and R.E.; visualization, I.G. and J.A.G.; supervision, D.G., J.C., and R.E.; project administration,
D.G., J.C., and R.E.; funding acquisition, D.G., J.C., and R.E. All authors have read and agree to the
published version of the manuscript.

Funding: This research has been partially supported by the Government of Spain, Grant Plan Na-
cional de I+D+i, MTM2015-70550-P, PGC2018096509-B-I00, TIN2015-66471-P and PID2019-106254RB-
I00, and the CT17/17-CT18/17.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: MDPI Research Data Policies at https://www.mdpi.com/ethics ac-
cessed on 31 January 2021.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SNA Social Networks Analysis

References
1. Bennett, L.; Kittas, A.; Muirhead, G.; Papageorgiou, L.; Tsoka, S. Detection of composite communities in multiplex biological

networks. Sci. Rep. 2015, 5, 10345.
2. Chaker, R.; Al Aghbari, Z.; Junejo, I. Social network model for crowd anomaly detection and localization. Pattern Recognit. 2017,

61, 266–281.
3. Harakawa, R.; Ogawa, T.; Haseyama, M. Accurate and efficiet extration of hierarchical structure of web communities for web

video retrieval. ITE Trans. Media Technol. Appl.s 2014, 2, 287–297.
4. Tamura, K.; Kobayashi, Y.; Ihara, Y. Evolution of individual versus social learning on social networks. J. R. Soc. Interface 2015,

12, 20141285.
5. Esteban, J.M.; Ray, D. On the measurement of polarization. Econom. J. Econom. Soc. 1994, 62, 819–851.
6. Guevara, J.A.; Gómez, D.; Robles, J.M.; Montero, J. Measuring Polarization: A Fuzzy Set Theoretical Approach. In Proceedings of

the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Lisbon,
Portugal, 15–19 June 2020; Springer: Berlin, Germany, 2020; pp. 510–522.

7. Clauset, A.; Newman, M.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111.
8. Newman, M. Communities, modules and large-scale structure in networks. Phys. Rev. 2012, 8, 25–31.
9. Girvan, M.; Newman, M. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826.
10. Blondel, V.; Guillaume, J.; Lambiotte, R.; Lefevre, E. Fast unfolding of communities in large networks. J. Stat.-Mech. Theory Exp.

2008, 10.
11. Waltman, L.; Van Eck, N. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B

2013, 86, 473.
12. Newman, M.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69.
13. Fortunato, S. Community detection in graphs. Phys. Rep.-Rev. Sect. Phys. Lett. 2010, 486, 75–174.
14. Gómez, D.; González-Arangüena, E.; Manuel, C.; Owen, G.; Saboyá, M. The cohesiveness of subgroups in social networks: A

view from game theory. Ann. Oper. Res. 2008, 158, 33–46.

https://www.mdpi.com/ethics


Mathematics 2021, 9, 443 27 of 28

15. Gómez, D.; González-Arangüena, E.; Manuel, C.; Owen, G.; del Pozo, M.; Tejada, J. Centrality and power in social networks: A
game theoretic approach. Math. Soc. Sci. 2003, 46, 27–54.

16. Devarajan, M.; Fatima, N.; Vairavasundaram, S.; Ravi, L. Swarm intelligence clustering ensemble based point of interest
recommendation for social cyber-physical systems. J. Intell. Fuzzy Syst. 2019, 36, 4349–4360.

17. Nair, P.; Sarasamma, S. Data mining through fuzzy social network analysis. In Proceedings of the NAFIPS 2007—2007 Annual
Meeting of the North American Fuzzy Information Processing Society, San Diego, CA, USA, 24–27 June 2007; pp. 251–255.

18. Gutiérrez, I.; Gómez, D.; Castro, J.; Espínola, R. A New Community Detection Algorithm Based on Fuzzy Measures. In Advances
in Intelligent Systems and Computing Series, Proceedings of the Intelligent and Fuzzy Techniques in Big Data Analytics and Decision
Making INFUS 2019, San Diego, CA, USA, 24–27 June 2020; Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A., Sari, I.,
Eds.; Springer: Cham, Switzerland, 2020; Volume 1029, pp. 133–140.

19. Gutiérrez, I.; Gómez, D.; Castro, J.; Espínola, R. Fuzzy Measures: A solution to deal with community detection problems for
networks with additional information. J. Intell. Fuzzy Syst. 2020, 39, 6217–6230. doi:10.3233/JIFS-18909.

20. Gutiérrez, I.; Gómez, D.; Castro, J.; Espínola, R. Multiple bipolar fuzzy measures: An application to community
detection problems for networks with additional information. Int. J. Comput. Intell. Syst. 2020, 13, 1636–1649.
doi:https://doi.org/10.2991/ijcis.d.201012.001.

21. Rosenfeld, A. Fuzzy Graphs. Fuzzy Sets Their Appl. 1975, 77–95.
22. Zadeh, L. Fuzzy sets. Information and Control 1965, 8, 338–353.
23. Yaqoob, N.; Gulistan, M.; Kadry, S.; Wahab, H. Complex Intuitionistic Fuzzy Graphs with Application in Cellular Network

Provider Companies. Mathematics 2019, 7, 35.
24. Zuo, C.; Pal, A.; Dey, A. New Concepts of Picture Fuzzy Graphs with Application. Mathematics 2019, 7, 470.
25. Mordeson, J.; Nair, P. Fuzzy Graphs and Fuzzy Hypergraphs. Stud. Fuzziness Soft Comput. 2000, 46, 19–81.
26. Beliakov, G. On random generation of supermodular capacities. IEEE Trans. Fuzzy Syst. 2020. doi:10.1109/TFUZZ.2020.3036699.
27. Sugeno, M. Fuzzy measures and fuzzy integrals: A survey. Fuzzy Autom. Decis. Process. 1977, 78, 89–102.
28. Newman, M. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582.
29. Reynal-Querol, M. Ethnic and Religious Conflicts, Political Systems and Growth. Ph.D. Thesis, London School of Economics and

Political Science. University of London, London, UK, 2001.
30. Apouey, B. Measuring health polarization with self-assessed health data. Health Econ. 2007, 16, 20.
31. Permanyer, I.; D’Ambrosio, C. Measuring social polarization with ordinal and categorical data. J. Public Econ. Theory 2015,

17, 311–327.
32. Gómez, D.; Rodriguez, J.T.; Montero, J.; Bustince, H.; Barrenechea, E. n-Dimensional overlap functions. Fuzzy Sets Syst. 2016,

287, 57–75.
33. Bustince, H.; Pagola, M.; Mesiar, R.; Hullermeier, E.; Herrera, F. Grouping, overlap, and generalized bientropic functions for

fuzzy modeling of pairwise comparisons. IEEE Trans. Fuzzy Syst. 2011, 20, 405–415.
34. Grabisch, M. k-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 1997, 92, 167–189.
35. Guimera, R.; Amaral, L. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900.
36. Flake, G.; Lawrence, S.; Giles, C.; Coetzee, F. Self-organization and identification of web communities. Computer 2002, 35, 66–70.
37. Zou, F.; Chen, D.; Li, S.; Lu, R.; Lin, M. Community detection in complex networks: Multi-objective discrete backtracking search

optimization algorithm with decomposition. Appl. Soft Comput. 2017, 53, 285–295.
38. Liu, J.; Wang, J.; Liu, B. Community Detection of Multi-Layer Attributed Networks via Penalized Alternating Factorization.

Mathematics 2020, 8, 239.
39. Gupta, S.; Mittal, S.; Gupta, T.; Singhal, I.; Gupta, A.; Kumar, N. Parallel quantum-inspired evolutionary algorithms for

community detection in social networks. Appl. Soft Comput. 2017, 61, 331–353.
40. Vitali, S.; Battiston, S. The Community Structure of the Global Corporate Network. SSNR Electron. J. 2013, 8,

doi:10.2139/ssrn.2198974.
41. Carnivali, G.; Vieira, A.; Ziviani, A.; Esquef, P. CoVeC: Coarse-Grained Vertex Clustering for Efficient Community Detection in

Sparse Complex Networks. Inf. Sci. 2020, 522, 180–192.
42. Riolo, M.; Newman, M. Consistency of community structure in complex networks. Phys. Rev. E 2020, 101, 052306.
43. de Blas, C.S.; Martin, J.S.; Gomez, D. Combined social networks and data envelopment analysis for ranking. Eur. J. Oper. Res.

2018, 266, 990–999.
44. Gutiérrez, I.; Gómez, D.; Castro, J.; Espínola, R. A new community detection problem based on bipolar fuzzy measures. Stud.

Comput. Intell. 2021. In Press.
45. Gutiérrez, I.; Gómez, D.; Castro, J.; Espínola, R. Fuzzy Sugeno λ-Measures and Theirs Applications to Community Detection

Problems. In Proceedings of the IEEE International Conference on Fuzzy Systems, Glasgow, UK, 19–24 July 2020; pp. 1–6.
doi:10.1109/ISKE.2017.8258764.

46. Barroso, M.; Gutiérrez, I.; Gómez, D.; Castro, J.; Espínola, R. Group Definition Based on Flow in Community Detection. In
Information Processing and Management of Uncertainty in Knowledge-Based Systems; Lesot, M.J., Vieira, S., Reformat, M.Z., Carvalho,
J.P., Wilbik, A., Bouchon-Meunier, B., Yager, R.R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 524–538.

47. Gutiérrez, I.; Barroso, M.; Gómez, D.; Castro, J.; Espínola, R. Pattern-based clustering problem based on fuzzy measures. Dev.
Artif. Intell. Technol. Comput. Robot. 2020, 12, 412–420. doi:10.1109/ISKE.2017.8258764.

https://doi.org/10.3233/JIFS-18909
https://doi.org/https://doi.org/10.2991/ijcis.d.201012.001
https://doi.org/10.1109/TFUZZ.2020.3036699
https://doi.org/10.1109/ISKE.2017.8258764
https://doi.org/10.1109/ISKE.2017.8258764


Mathematics 2021, 9, 443 28 of 28

48. Shapley, L. A value for n-person games. Contribute. Theory Games 1953, 2, 307–317.
49. Grabisch, M.; Nguyen, H.; Walker, E. Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference; Kluwer Academic:

Dordrecht, The Netherlands, 1995.
50. Castro, J.; Gómez, D.; Molina, E.; Tejada, J. Improving polynomial estimation of the Shapley value by stratified random sampling

with optimum allocation. Comput. Oper. Res. 2017, 82, 108–188.
51. Castro, J.; Gómez, D.; Tejada, J. Polynomial calculation of the Shapley value based on sampling. Comput. Oper. Res. 2009,

36, 1726–1730.
52. Robles, J.M.; Atienza, J.; Gómez, D.; Guevara, J.A. La polarización de “La Manada”. El debate público en España y los riesgos de

la comunicación política digital. Tempo Soc. 2019, 31, 193–216.
53. Kearney, M.W. rtweet: Collecting and analyzing Twitter data. J. Open Source Softw. 2019, 4, 1829. doi:10.21105/joss.01829.
54. Wang, Z.Q.; Sun, X.; Zhang, D.X.; Li, X. An optimal SVM-based text classification algorithm. In Proceedings of the 2006 IEEE

International Conference on Machine Learning and Cybernetics, Dalian, China, 13–16 August 2006; pp. 1378–1381.
55. Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. Available online: https://cran.r-project.org/web/packages/e1

071/index.html (accessed on 14 October 2020).
56. Huang, J.; Ling, C. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005. 17, 299–310.
57. Joachims, T. Text categorization with Support Vector Machines: Learning with many relevant features. In Machine Learning:

ECML-98; Nédellec, C., Rouveirol, C., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 137–142.
58. Park, J.; Yoon, S.; Lee, C.; Kim, J. A Simple Method for Network Visualization. Mathematics 2020, 8, 1020.
59. Almende B.V.; Thieurmel, B.; Robert, T. Available online: https://datastorm-open.github.io/visNetwork/ (accessed on 2 October

2020).
60. McPherson, M.; Smith-Lovin, L.; Cook, J. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 2001, 27, 415–444.

https://doi.org/10.21105/joss.01829
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://datastorm-open.github.io/visNetwork/

	Introduction
	Preliminaries
	Graphs, Fuzzy Graphs, and Extended Fuzzy Graphs
	Community Detection Problem
	Polarization

	Networks with Additional Information: The Polarization Extended Fuzzy Graph
	A Parametric Approach to Community Detection Problem Based on Polarization Measures and Weighted Mean
	A Real Case: The Impact of the COVID-19 Pandemic in the Organization of the People 
	Experiment Design: Sources and Methodology
	Results

	Discussion
	Conclusions
	References

