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Abstract: Plants are vital for man and many species. They are sources of food, medicine, fiber for
clothes and materials for shelter. They are a fundamental part of a healthy environment. However,
plants are subject to virus diseases. In plants most of the virus propagation is done by a vector. The
traditional way of controlling the insects is to use insecticides that have a negative effect on the
environment. A more environmentally friendly way to control the insects is to use predators that
will prey on the vector, such as birds or bats. In this paper we modify a plant-virus propagation
model with delays. The model is written using delay differential equations. However, it can also be
expressed in terms of biochemical reactions, which is more realistic for small populations. Since there
are always variations in the populations, errors in the measured values and uncertainties, we use
two methods to introduce randomness: stochastic differential equations and the Gillespie algorithm.
We present numerical simulations. The Gillespie method produces good results for plant-virus
population models.

Keywords: virus propagation; stochastic modeling; Gillespie algorithm

1. Introduction

Viruses cause a great number of diseases in plants. In [1] the authors gave a review
of the top ten viruses. In plants the most common way that viruses are propagated is
by means of a vector, usually insects. A carrier insect will bite an infected plant, thereby
infecting it [2]. Mathematical models of virus-caused diseases in plants can be used
to better understand the processes involved [3–7]. Viruses take time to propagate and
replicate. These effects can be taken into account by considering latent populations [8,9].
In this paper we present three different mathematical models of virus propagation in
plants with a predator used as a biological control of the insects that transmit the virus [10].
The description of the model is given in terms of differential equations and also biochemical
style reactions. Models based on differential equations are built on the assumption that the
number of individuals is very large, which is not always the case. The model that we use
incorporating delays in the spread of the virus in both plants and vectors is based on [11].
An extension to optimal control through the use of predators and insecticide is in [12].
The authors in [13] introduced a delay to the model in [8] to account for the incubation
period of the plants. In [14] there is a different model with delays. Populations have
variabilities and there are errors in measuring and estimating the parameters involved.
The variations and uncertainties in the populations and environmental conditions can be
modeled by introducing randomness or stochasticity into the models. One common way is
to use stochastic differential equations [15,16]. A second way is to consider that some of the
coefficients in the model are random variables, as in the method of polynomial chaos [17,18].
Another method is to consider discrete populations and work with Markov chains [19–21],
including working with the master equation [22]. Models based on continuous time
Markov chains usually use the stochastic simulation algorithm of Gillespie [23,24]. Very
complex models of plant viral assembly have been presented in [25,26]. Mathematical
models of populations involve a series of simplifying hypotheses [27]. One of them is that
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the individuals in each population group have the same properties. Another usual one is
that the populations are homogeneously distributed. A third one is that the number of
individuals is large. Based on these simplifications, the populations can be assumed to be
continuous and the model can be described in terms of differential equations or maybe
delay differential equations. An alternative method of developing mathematical population
models is to consider the interactions between individuals to be a reaction. For example,
an individual of the class susceptible S dying can be described by the following reaction:

S k−→ . Here the blank space denotes an empty population. Using differential equations, it
would be dS

dt = −kS. Additionally, the interaction between a susceptible S and an infective

I leading to a new infective is S + I
β/N−−→ I + I, while the corresponding differential

equation is dS
dt = −βSI/N. k is the death rate, β/N is the infection rate divided by the

total population N in the differential equations and both are the reaction rates in the
corresponding reactions. This is the formulation preferred by biology and chemistry
researchers. By dividing the time period of interest into subintervals and considering
that all the different reactions happen at the same instant in each subinterval, the reaction
system can be converted into a system of discrete equations giving the change of each
population in the time subinterval. By letting the length of the time subintervals go to zero,
a system of differential equations is obtained. However, if the number of individuals is
not very large, as is the case in our plant-virus propagation problem or in cell processes
in systems biology, the limiting process introduces errors, and the assumption that all
reactions occur simultaneously is not a good one. An alternative is to consider the reactions
as continuous time Markov chains [28]. This assumption leads to the stochastic simulation
algorithm, or Gillespie algorithm [23,24], and its variations.

We apply this method to a simple susceptibles (S), infectives (I) and recovereds (R)
(SIR) epidemic model and to a predator–prey model. The objective of presenting these two
simple models is to introduce the basic ideas of writing ordinary differential equations as
biochemical reactions. Then we apply them to our main interest, which is a model of virus
propagation consisting of six populations, susceptible plants, infective plants, recovered
plants, susceptible insects, infective insects and predators. For this virus propagation model,
we consider three cases: all the interactions are mass actions—some of them are saturated
and some are saturated with delays. The saturated interactions are modeled using Holling
type 2 functionals [29]. We also write the models as a system of reactions. Simulations
were performed using the stochastic simulation algorithm. For comparison purposes, the
corresponding system of differential equations is solve numerically, and finally white noise
is added to the differential equation systems to obtain stochastic differential equations and
simulate them numerically. The rest of the paper is organized as follows. In Section 2,
the development of the models is presented, as is the addition of stochasticity to the models
to take into account the variability in the populations and other uncertainties always
present in the processes modeled. Next, the virus propagation models and the numerical
methods are described. Section 3 shows sample numerical simulations. In Section 4, the
results are discussed. Finally there is a conclusions section.

2. Materials and Methods
2.1. Mathematical Modeling

Mathematical models for populations are usually given in terms of differential equa-
tions or difference equations. The differential equations may be ordinary, delay, partial
or even fractional. However, the models may also be given by describing the interactions
between the different population groups and the rate at which they happen. That is, they
may be described in terms of reactions with the same structure as biochemical reactions.
Therefore, we can write differential equations arising from mathematical biology as reac-

tions. For example dS
dt = −kS can be written as S kS−→ , where the ban space means that the

population disappears. As a second example, dS
dt = −βSI is equivalent to S + I

βSI−−→ I + I.
Sometimes the quantity written on top of the arrow is the number of times the reaction
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occurs in a population (propensity), and sometimes only the reaction rate constant is
included. We use the propensities.

As an illustration on the basic ideas of converting differential equations into biochemi-
cal reactions, consider the well known SIR model giving the interaction of susceptibles (S),
infectives (I) and recovereds (R) [27]:

dS
dt

= − βSI
N

dI
dt

=
βSI
N
− γI

dR
dt

= γI.

(1)

In writing the model as a system of reactions, we obtain a reaction for each distinct
term on the right hand-side of the differential equations. In this example we have two
such terms, βSI

N and γI. The first term has the reaction of S and I. The second gives the
change of I to another population. If the differential equation that has the derivative of
a population includes the given term on the right-hand side with a positive sign, then
the product of the reaction is that population. Hence, by writing the model as reactions
between the populations we have

I + S
SIβ/N−−−−→ 2I

I
γI−→ R.

(2)

The first reaction is the conversion of one S into one I, and the second one is the
conversion of one I into one R.

The system of reactions is not unique. This non-uniqueness has been established
by [30]. In this case a more complex system is

I + S
SIβ/N−−−−→ I

I + S
SIβ/N−−−−→ S + 2I

I
γI−→ R.

(3)

In this second set of reactions, S loses one member first and in the next reaction I gains
one. The reaction happens in two steps. We use the simpler formulation with S converting
directly into I. However, below we will show that both formulations give the same system
of differential equations.

To convert the model given in terms of reactions to a differential equation model,
consider a time interval [t, t + δt] and assume that all the reactions occur at the same instant
in this interval. For the reaction system (3) we have

I(t + δt) = I(t) + δt(S(t)I(t))β/N

S(t + δt) + 2I(t + δt) = S(t) + 2I(t) + δt(S(t)I(t))β/N

R(t + δt) = R(t) + I(t)γ.
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Assuming that the three populations are large enough, so that all the reactions happen
even for very small δt, we can take the limit as t→ 0 to get

dI
dt

= (IS)β/N

d(S + 2I)
dt

= (IS)β/N

dR
dt

= γI.

By subtracting the first equation from the second, we obtain the original system of
differential Equation (1). Similarly, using the reactions in (2), we obtain (1) directly. In [31],
the authors used biochemical reactions to model SIR processes. Reference [32] also included
implementations of the Gillespie algorithm for the SIR model.

As a second example, consider a simple predator–prey model as given by Lotka and
Volterra [27]:

dx
dt

= (b− py)x

dy
dt

= (rx− d)y,
(4)

where x is the prey and y is the predator. The corresponding system of reactions is

x bx−→ 2x

x + y
pxy−−→ y

x + y
rxy−→ x + 2y

y
dy−→

(5)

The first reaction is the birth of new prey, the second reaction is the elimination of
prey by predators, the third one is the conversion of dead prey into new predators and the
last one is the death of predators. The conversion of prey into predators needs to be in two
reactions, since one killed prey does not convert into one new predator.

Even though it is straightforward to convert a population model based on differential
equations to one described by reactions, there exist software packages that will automate the
process. Biocham [33] http://lifeware.inria.fr/biocham4/ (accessed on 12 December 2020)
will convert systems of ordinary differential equations with general interactions between
populations written in xppauto format [34] to biochemical reactions. Moccasin [35] uses
biocham and adds an interface for the MATLAB format of differential equations. Both
programs write the equations in SBML [36], a widely used machine-readable description of
biochemical reactions.

2.2. Stochastic Modeling

In order to produce more realistic results, mathematical models need to take into
account the existence of errors in the observed or measured population data; variability in
the populations; and uncertainties such as missing data and lack of knowledge.

These uncertainties can be modeled using random differential equations wherein
it is considered that the parameters are random variables [37]. Another method is to
use discrete or continuous time Markov chain models [38,39]. A different method con-
sists of introducing the uncertainties as white noise and obtaining stochastic differential
equations [16,40]. In this paper we only consider the second and third methods.

http://lifeware.inria.fr/biocham4/
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2.2.1. Continuous Time Markov Chain Models

As mentioned above, population models can be described in terms of biochemical-
type reactions. A Markov chain is a stochastic process in which the probability of an event
happening depends on a sequence of possible events, in which the probability of each
event depends only on the previous event [28,39]. In a discrete time Markov chain, the
changes of state happen at fixed points in time. In a continuous time Markov chain, the
changes of state can happen at any time. Each reaction is a random event that has a given
probability of happening. This probability is a function of the reaction rate and of the
numbers of individuals of the populations involved. Since the reactions can occur at any
time, the reactions are continuous time Markov chains. The master chemical equation for a
reaction is the time evolution equation for the probability distribution over the state space
of a Markov process. This is derived by substituting the transitional probability of the
Markov process into the Chapman–Kolmogorov equation [41,42]. For a system of reactions,
the master chemical equation is a system of ordinary differential equations that is hard to
solve either analytically or numerically [43,44]. An alternative is the stochastic simulation
algorithm (SSA) proposed by Gillespie [23] which produces numerical realizations. The
next reaction and the time until it occurs are determined by Monte Carlo simulations
involving the propensities of the reactions, and the process is repeated. The processes
are Poisson processes with exponentially distributed transition times. Improvements on
Gillespie’s direct method are given in [24,45]. The SSA works with populations which
should not be very small. Numerical implementations are, for example, in [46–48]

2.2.2. Stochastic Differential Equations

Randomness can be added to an ordinary differential equation dx = f (x, t)dt, x(t0) = x0
by including a white noise process [16,40]. A stochastic differential equation is given by

dX(t, ω) = f (X(t, ω), t) + g(X(t, ω), t)dW(t, ω),

where ω is an element of the sample space and X = X(t, ω) is a stochastic process.
The initial condition X(0, ω) = X0 is taken to be known with probability one. A Brownian
motion or Wiener process is formed by a sequence of random variables parameterized by
time that are independent and identically distributed (iid). A stochastic process W(t), t ∈
[0, ∞] is a Wiener process (or a standard Brownian motion) if it satisfies: (i) It is defined for
t ≥ 0 with W0 = 0; (ii) if 0 ≤ s < t < ∞, then W(t)−W(s) is normally distributed with
mean 0 and variance t− s, that is, W(t)−W(s) ∼ N(0, t− s); (iii) if 0 ≤ r < s < t < ∞,
the increments W(t)−W(s) and W(s)−W(r) are independent.

The noise term is called additive if it is independent of the population. This noise is
also called environmental noise. If the noise term is proportional to the population, it is
called multiplicative. These two are the most common types of white noise used, but they
can have more complicated forms [49–52]. For uniform populations the environmental
noise may be dominant. However, populations usually have variations. Demographic
stochasticity is usually defined as the variation in the time evolution of a small population
due to the randomness of individual birth, death, infection and other rates. However, the
term can also be used for populations of any size. It can be related to stochasticity with
multiplicative white noise by considering that the rates have a deterministic part plus a
stochastic one. Additionally, environmental fluctuations may be related to overpopulation
in ways such as shortage of food, increased aggression toward each other, etc. Therefore,
a reasonable way to modify the deterministic equation is to consider introducing random-
ness that is proportional to the size of the population. However, this is just an assumption
that needs to be verified, even though it has been commonly used, for example, in [53,54].
The best choice of white noise regarding its magnitude depends on the particular problem
and is still an open research question.
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2.3. A Plant-Virus Model with Biological Control

In this paper, we consider the application of the SSA and stochastic differential ap-
proaches to the model in [10]. We consider six different population groups: susceptible
plants S(t), infected plants I(t), recovered plants R(t), susceptible vectors X(t), infected
vectors Y(t) and predators P(t). Each variable represents the number of individuals in
the respective population group at time t. Susceptible plants are healthy but could get the
disease if infected with the virus. The infected plants have the virus but can only infect a
susceptible plant through a vector. Additionally, the death rate of infected plants is higher
than that of susceptible plants, since infected plants can also die from the viral infection. We
also assume that farm workers replace any dead plant immediately with a new susceptible
plant. Therefore, we can assume that the total plant population remains constant. We
will denote this constant by K. Using this assumption, we can simplify the model in the
deterministic case, since K = S(t) + I(t) + R(t) can be used to eliminate the recovered
population from the system of equations, and thus we can work with only five populations.
This cannot be done in the stochastic case. The virus is not present in susceptible insects
but they can be infected with it if they bite an infected plant. By biting a susceptible
plant, infected insects can transmit viruses to it. Another assumption is that there is no
vertical transmission of the virus in either plants or vectors. Moreover, we assume that
the the vector does not get sick from the virus and thus it does not defend against the
virus and will remain infected for the rest of its life. Therefore, there are no recovered
vectors. The predators feed on the vectors and use the resulting energy to increase the
number of predators. We also assume predators do not get infected by the virus even if
they eat an infected vector. There is also intra-species competition between predators for
the insects. A consequence of the infected vectors not being sick is that the predators feed
on the infected insects and susceptible insects at the same rate. The interactions between
vector and plant and predator and vector are assumed to have a limitation modeled by a
predator–prey Holling type 2 functional [29]. For a large number of vectors, the number
of infected plants due to the infected vectors tends to saturate as the number of infected
vectors increases, which is the behavior of the Holling type 2 functional. In other words,
for small number of vectors, doubling the population doubles the number of plants that
are infected by the vectors, but for large number of vectors, doubling this number does not
double the number of infected plants since there are not enough plants to be infected. Even
though there are many other functionals that can be used to model this saturation effect,
the Holling type 2 is a simple one.

After an infected vector bites a susceptible plant, it takes time for the plant to be
infected, since the virus has to enter the plant cells, replicate, burst the cell and spread
in the plant. It also takes time for the virus to spread inside a susceptible insect after it
bites an infected plant. Hence, we introduce two discrete delays: τ1, which is the time it
takes a plant to become infected after an infected bite, and τ2, the time it takes a vector to
become infected after biting an infected plant. τ1 is much larger than τ2 since the infection
process is more complex for plants. The assumptions used in the model are: the number of
plants is constant, so the recovered plant population can be eliminated from the system of
equations; plants die and are infected by infected vectors and converted into infected plants
after a delay; infected plants can recover and also die; susceptible vectors are recruited at
a constant rate, can die, are infected after biting an infected plant after a delay and can
be eaten by a predator; infected insects can die and be eaten by a predator; predators are
recruited at a constant rate, grow due to they eating vectors and can die; the interactions
between populations saturate according to a Holling type 2 functional.
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The model with the two discrete delays is

dS
dt

= µ(K− S) + dI − βY(t− τ1)

1 + αY(t− τ1)
S(t− τ1)

dI
dt

=
βY(t− τ1)

1 + αY(t− τ1)
S− (d + µ + γ)I

dX
dt

= Λ− β1 I(t− τ2)

1 + α1 I(t− τ2)
X(t− τ2)−

c1X
1 + α3X

P−mX

dY
dt

=
β1 I(t− τ2)

1 + α1 I(t− τ2)
X(t− τ2)−

c2Y
1 + α3Y

P−mY

dP
dt

= Λp +
α4c1X

1 + α3X
P +

α4c2Y
1 + α3Y

P− δP

(6)

The meanings of the parameters and the values used in the simulations to obtain the
results presented in Section 3 are in Table 1, which is based on the data in [11]. P-unit is the
number of individuals in the population group.

Table 1. Values for the parameters of the virus model.

Parameter Name Description Value

K Total plant host population 63 P-unit
β Infection rate of plants due to vectors 0.01/day/P-unit
β1 Infection rate of vectors due to plants 0.01/day/P-unit
α Saturation constant of plants due to vectors 0.2/P-unit
α1 Saturation constant of vectors due to plants 0.1/P-unit
µ Natural death rate of plants 0.01/day
m Natural death rate of vectors 0.2974/day
γ Recovery rate of plants 0.01/day
Λ Replenishing rate of vectors 10 P-unit/day
d Death rate of infected plants due to the disease 0.2/day
c1 Contact rate between predators and healthy insects 0.05/day/P-unit
c2 Contact rate between predators and infected insects 0.05/day/P-unit
δ Natural death rate of predators 0.05/day
α3 Saturation of predators due to insects 0.1/P-unit
Λp Recruiting rate of predators 0.4 P-unit/day
α4 Conversion rate of predators due to insects 0.1
τ1 Delay for plants 24 days
τ2 Delay for vectors 1 day
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The equivalent reactions-based system is

µK−→ S

S
µS−→

Y + S
k1−→ Y + I, where k1 =

βYS
1 + αY

I
µI−→

I dI−→ S
Λ−→ X

X + P
k4−→ P, where k4 =

α4c1X
1 + α3X

P

X mX−−→

I + X
k3−→ I + Y, where k3 =

β1 IX
1 + α1 I

Y + P
k5−→ P, where k5 =

α4c2Y
1 + α3Y

P

Y mY−→
Λp−→ P

X + P
k4−→ 2P + X

Y + P
k5−→ 2P + Y

P δ−→

I
γI−→ R

R
µR−→ .

(7)

Note that the delays do not appear explicitly in the reactions.
The stochastic differential equations for the virus model are given system (8).

dS = (µ(K− S) + dI − βY(t− τ1)

1 + αY(t− τ1)
S(t− τ1))dt + σ1SdW1

dI = (
βY(t− τ1)

1 + αY(t− τ1)
S− (d + µ + γ)I)dt + σ2dW2

dR = (γI − µR)dt + σ3RdW3

dX = (Λ− β1 I(t− τ2)

1 + α1 I(t− τ2)
X(t− τ2)−

c1X
1 + α3X

P−mX)dt + σ4XdW4

dY = (
β1 I(t− τ2)

1 + α1 I(t− τ2)
X(t− τ2)−

c2Y
1 + α3Y

P−mY)dt + σ5YdW5

dP = (Λp +
α4c1X

1 + α3X
P +

α4c2Y
1 + α3Y

P− δP)dt + σ6PdW6

(8)

2.4. Numerical Methods

Numerical methods for ordinary differential equations can be modified for delay
differential equations by integrating piece-wise over time intervals chosen such that they
are multiples of the delays [55,56]. A very good numerical solver based on Runge–Kutta
methods is given in [56]. In our numerical simulations we used the following values for our
parameters: K = 63, β = 0.01, β1 = 0.01, α = 0.2, α1 = 0.1, µ = 0.01, m = 0.2974, γ = 0.01, Λ = 10,
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d = 0.2, c1 = 0.05, c2 = 0.05, δ = 0.05, Λp = 0.4, α3 = 0.1 and α4 = 0.1. Additionally, we chose
the following initial conditions: S(0) = 59.8478, I(0) = 1.57612, X(0) = 14.6247478,
Y(0) = 19.5 and P(0) = 2. We considered the values of the delays to be τ1 = 24 and τ2 = 1.
The history for the delay equations is usually taken to be constant and equal to the initial
values. However, if we consider the model in terms of reactions, the delayed reactions do
not happen during the history, so we took the history to be equal to zero. The values of
most the parameters were taken from [7] and those referring to the delays and the predator
were from [10]. These are not implied to apply to specific plants, vectors and viruses. We
were not able to find real values for many of the parameters. Even for the well studied
maize streak virus, the model in [57], which uses the parameters presented in [58–60], some
of the values are assumed.

For stochastic differential equations using Ito calculus, two common methods are the
Euler–Murayama and Milstein methods [15]. Both can be easily modified to include delays
in a similar way as for ordinary differential equations [61]. The SSA can be modified to
include delays in the reactions by adding the corresponding delay to the time when the
reaction happens [62,63].

For the deterministic ordinary differential equations we used an Euler method im-
plemented in GNU octave [64]. For the stochastic differential equations the Milstein
method was also implemented in octave. Both methods are first order. For the reaction-
based method, we used the software stochPy [65], an open source program implemented
in Python.

3. Results

The first simulation is of the SIR model given by differential Equation (1) and reac-
tions (3). The values of the parameters were: N = 63, β = 0.2 and γ = 0.1. The initial values
were S(0) = 60, I(0) = 2 and R(0) = 1. Figure 1 shows the deterministic simulation on the
left and the SSA simulation on the right. For the SSA simulation, only the average values of
the populations are plotted. For the values of the parameters used, the populations tended
to the disease-free equilibrium for a large amount of time.

The next simulation was of the predator–prey model described by Equation (4) and
reactions (5). The parameter values used were p = 1, r = 1, b = 1 and d = 1. The initial
conditions were X(0) = 2 and Y(0) = 2. Figure 2 shows on the left the deterministic
simulation and on the right the simulation using SSA. For the SSA simulation only the
average values are plotted. Note that the deterministic solution is periodic but SSA is not
quite periodic.

Figure 1. Simulation of susceptibles (S), infectives (I) and recovereds (R) (SIR) model. (Left) deterministic. (Right) Stochastic
simulation algorithm (SSA); only the average values are shown.
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Figure 2. Simulation of the predator–prey model. (Left) deterministic. (Right) SSA; only the average values are shown.

The next simulations were for the plant-virus model given by Equation (6) and
reactions (7). The stochastic differential equations used were (8). The values of the parame-
ters used in the simulations are in Table 1.

We did three simulations of the plant-virus model. The first one was with mass action
kinetics and no delays. That is, α1, α2, α3, α4, τ1 and τ2 all being equal to zero. All the other
parameters were as given in Table 1, with the exception of σ1 to σ6. An open question is how
to determine the values of the σs. We did one simulation of the deterministic model, one of
the reaction model using the SSA and three of the stochastic differential equation model (8)
using three different values of the σ, 0.01. 0.025 and 0.05. Figure 3 shows the results of the
deterministic simulation on the left and of the SSA simulation on the right. The stochastic
simulation shows the plots for the mean and the mean +/− standard deviation for 1000
realizations. Figure 4 shows the stochastic differential equation simulations results for the
mean and the mean +/− one standard deviation for 1000 simulations with all σs equal
to 0.01 on the left and with the σs equal to 0.025 on the right. Figure 5 shows on the left
the mean and the mean +/− one standard deviation plots for the σs equal to 0.05. From
these figures we see that the σs equal to 0.025 gives a stochastic effect that is important but
does not overcome the deterministic part. The plots for the mean values of the stochastic
simulations were taken for 1000 realizations since the results for 500 and 1000 realizations
agree to at least three significant figures.

Figure 3. Plots for the virus plant model with mass action interactions and no delays. (Left) deterministic. (Right) SSA with
only the average values included.
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Figure 4. Plots for the plant-virus model with mass action interactions and no delays using the stochastic differential
equations model. The solid lines are the mean values, and the dashed lines are the mean value plus or minus one standard
deviation. (Left) σs equal to 0.01. (Right) σs equal to 0.025.

The next simulation for the plant-virus model is with Holling type 2 saturation
kinetics and no delays. So α1, ..., α4 are nonzero with their values and the values of the other
parameters given in Table 1 and τ1 = τ2 = 0. Figure 6 has the plots of the deterministic
simulation. Figure 7 has the plots of simulations using the SSA (left) and stochastic
differential equation s (right). For the SSA, the vertical lines represent the intervals [mean
− 1 standard deviation, mean + 1 standard deviation]. For the stochastic differential
equations plot the mean is given by the solid lines and the dashed lines give the mean +/−
one standard deviation for 1000 realizations for the stochastic simulations. On the left for
the SSA simulation and on the right for the stochastic differential equation run with σs
equal to 0.025.

Figure 5. Plots for the plant-virus model for mass action interactions and no delays using the
stochastic differential model. The solid lines are the mean values, and the dashed lines are the mean
values +/− one standard deviation. The σs are equal to 0.05.
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Figure 6. Plots for the virus plant model with saturations and no delays for the deterministic model.

The final simulation was for the plant-virus model with both saturation and delays.
All the parametrer values are given in Table 1 and the delays were τ1 = 24 and τ2 = 1.
Figure 8 has the plot of the deterministic simulation. Figure 9 has the plots of the mean and
of the mean +/− one standard deviation for 1000 realizations for the stochastic simulations.
On the left are the results for the SSA simulation, and the vertical lines represent the
intervals (mean − 1 standard deviation, mean + 1 standard deviation). On the right are
the plots for the stochastic differential equation run with σ equal to 0.025. The solid lines
represent the mean values and the dashed lines the mean +/− one standard deviation.

Figure 7. Plots for virus plant models with saturation and no delays. (Left) SSA; the vertical lines denote the inter-
vals (mean − 1 standard deviation, mean + 1 standard deviation). (Right) Stochastic differential equations simulation—
mean values (solid lines) and mean values +/− 1 standard deviation (dashed lines).



Mathematics 2021, 9, 456 13 of 16

Figure 8. Plots for the virus plant model with saturations and delays for the deterministic model.

Figure 9. Plots for mean values and the mean values +/− 1 standard deviation for the virus plant model with saturation and
delays. (Left) SSA with the vertical lines giving the intervals (mean − 1 standard deviation, mean + 1 standard deviation).
(Right) Stochastic differential equations with the solid lines giving the mean values and the dashed lines the means +/− 1
standard deviation.

4. Discussions

The numerical simulations in all cases gave similar results for the differential equation,
the stochastic differential and the reaction models. The differential equation simulations
give one trajectory and do not take into account the variations in the populations and
environment, or the errors in measurements of parameters. However, they are the easiest
simulations to implement and the fastest. The stochastic differential equations include
variations of the populations when multiplicative noise is added, as we did. By doing
multiple simulations, they give the mean values and the standard deviations of the so-
lutions, which are more realistic. However, there are other types of white noise and we
need to estimate the size of the noise. The reaction model simulations using the Gillespie
algorithm also give the means and standard deviations of the solutions when run for
multiple simulations. It has a more solid theoretical base for small populations, and this
is our case. Through both the stochastic differential equation method and the Gillespie
algorithm there are some outcomes with different behavior than what comes from the
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deterministic method. For some realizations the disease may not disappear for very long
time periods, and in future work it may be worth estimating the probability.

5. Conclusions

Mathematical population models based on differential equations give realistic results
even when the populations are not very large. However, models based on biochemical
reactions are more realistic. Models given in terms of reactions are usually easier to under-
stand for biologists, ecologists and other specialists without backgrounds in mathematics.
The stochastic simulation algorithm has solid theoretical backing for its use for small pop-
ulations, and there is a wide variety of existing software implementing it. As with all
stochastic simulations, there is the question of how many realizations to use. In our case
we did one hundred and then one thousand realizations, and the results have at least three
significant digits of agreement. The results for the stochastic differential equations depend
on the type and magnitude of the white noise term, and it is usually not obvious which
one should be used.

Even though from the first epidemic models it has been known that the models can be
written in terms of biochemical reactions [66], their use and the use of Gillespie’s algorithm
should be more frequent, since in epidemic models the populations are many times not
very large and the continuity hypothesis is not justified. Second, this method is easy to
implement and does not require one—as the stochastic differential method does—to decide
on the type and magnitude of the white noise. There are many papers dealing with the use
of Gillespie’s algorithm for epidemic models and others on using biochemical reactions and
other methods. For example, in [67] the authors used a biochemical reactions formulation
and cellular automata. In [68], the authors mentioned that epidemic models can be de-
scribed as chemical reactions but then used a stochastic model based on binomial drawing
for certain terms. In [31] the equivalent reactions for a SIR model are given. In some
other papers the Gillespie algorithm was applied to variations of the SIR method [69–71].
Reference [72] presents continuous time Markov chain and stochastic differential equation
models, including an SIR model and a four-population model for malaria. For this last
model, the author approximated the branching process by working with the forward
and backward Kolmogorov equations. In [70] the model used was an SEIR (Susceptible,
Exposed, Infectious, Recovered) with added numbers of patients hospitalized and killed
regarding Ebola. To the best of my knowledge, the publications about the applications
of the Gillespie algorithm to epidemic models do not include models with saturation
interaction terms, particularly with Holling type 2 functionals, or epidemic models with
discrete delays; they also do not involve plant diseases caused bv viruses and spread by
vectors. The comparison of the results for the model using stochastic equation simulations
with different sizes for the white noise is also new. Future work will include applying the
application to more complex models and to models with time varying rates.
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