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Abstract: The heuristic algorithm represented by particle swarm optimization (PSO) is an effective
tool for addressing serious nonlinearity in one-dimensional magnetotelluric (MT) inversions. PSO has
the shortcomings of insufficient population diversity and a lack of coordination between individual
cognition and social cognition in the process of optimization. Based on PSO, we propose a new
memetic strategy, which firstly selectively enhances the diversity of the population in evolutionary
iterations through reverse learning and gene mutation mechanisms. Then, dynamic inertia weights
and cognitive attraction coefficients are designed through sine-cosine mapping to balance individual
cognition and social cognition in the optimization process and to integrate previous experience into
the evolutionary process. This improves convergence and the ability to escape from local extremes in
the optimization process. The memetic strategy passes the noise resistance test and an actual MT
data test. The results show that the memetic strategy increases the convergence speed in the PSO
optimization process, and the inversion accuracy is also greatly improved.

Keywords: particle swarm optimization; magnetotelluric; one-dimensional inversions; geoelectric
model; optimization problem

1. Introduction

The magnetotelluric (MT) technology is a geophysical electromagnetic detection
method that uses electromagnetic induction signals to detect underground electrical struc-
tures [1,2]. The horizontal magnetic field is vertically incident into the Earth, which
produces a time-harmonic changing induced electromagnetic field in the ground. When
the excitation field source is constant, the electromagnetic field induced in the Earth is
determined by the underground electrical structure and frequency [3]. Calculating the
induced electromagnetic signal based on the electrical structure and frequency constitutes
MT forward modeling, and this process satisfies the Maxwell equations. The process of
calculating the geoelectric structure according to the induced electromagnetic signal and
frequency is the MT inversion, which is implemented by the optimization method [4].

In the optimization process, the electrical structure is used as the optimization pa-
rameter to find the smallest objective function, and the difference between the predicted
electromagnetic signal and the observed signal is evaluated by the objective function [5].
When only surface electromagnetic signals can be obtained, the inversion problem is
severely underdetermined and has multiple solutions. Model roughness is commonly
added as a Lagrangian penalty term to the objective function to address ambiguity [6,7].
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However, due to the serious nonlinearity of the MT inversion problem, the commonly
used gradient optimization method is slow in the optimization process, and the optimal
solution is not accurate. Nonlinear optimization methods based on intelligent algorithms
often have better results in solving such nonlinear problems [8,9].

Heuristic algorithms are commonly used to solve such nonlinear problems [10,11].
Several common algorithms, including the simulated annealing method, the Bayesian
inversion method and genetic algorithm, have been able to initially solve the MT inversion
problem and determine the underground electrical structure through the electromagnetic
response signal of the MT method [12,13]. Among these heuristic swarm intelligence
algorithms, the particle swarm optimization (PSO) algorithm is widely used in the MT in-
version due to its simple implementation and less adjustment parameters [14,15]. With the
introduction of the inertia weight factor, the time-varying acceleration factor strategy
and the strategy based on reproduction and subgroup hybridization, the shortcomings of
PSO—that it easily falls into local extremes and has slow convergence in the later stages
of evolution—are gradually improved [16–18]. However, these algorithms still have not
overcome the shortcomings of the lack of population diversity and the uncoordination of
individual cognition and social cognition capabilities.

With the development of memetic strategies, which take the process of memetic
evolution as inspiration, using interactions between intelligent individuals to achieve
population evolution and memetic evolution has become an important tool for enhancing
population diversity and coordinating individual cognition and social cognition [19,20].
For the MT inversion problem, our strategy is to calculate the cognitive attraction coefficient
through sine-cosine mapping to balance individual cognition and social cognition in the
optimization process. Then, to further improve convergence in the optimization process
and the ability to escape local extremes, we use dynamic inertia weights (DIWs) to integrate
the previous experience of the population into the evolutionary process, and we use genetic
mutations to enrich the diversity of the population.

Our contributions to the MT inversion with PSO optimization are as follows:

• We use opposition-based learning strategy to search for a suitable initial population of
geoelectric model more accurately, the strategy can help to determine the appropriate
global optimal search direction in the early stage and accelerate convergence.

• We use DIWs based on sine mapping to integrate empirical cognition of the previ-
ous inversion iterations, and this strategy can strengthen the optimization ability of
MT inversions.

• We used sine-cosine acceleration coefficients to balance the influence of individual cog-
nition and group cognition on the evolutionary process, this strategy can improve the
global optimization capability, and convergence stability in the MT inversion process.

In the remainder of this paper, we first review the background of MT inversions based
on PSO in Section 2. Then, we present the proposed memetic strategy in detail in Section 3.
This section mainly focuses on the main framework of the memetic strategy, introduces
population initialization, uses DIWs to integrate empirical cognition, and uses the cognitive
attraction coefficient to accelerate population evolution and population mutation (PM).
In Section 4, the inversion effects of the proposed memetic strategy on different geoelectric
models are presented. Subsequently, in Section 5, we evaluate the stability of the memetic
strategy using a noise immunity test and an actual data test. Finally, conclusions are drawn
in Section 6.

2. PSO for 1D MT Inversions
2.1. Forward Modeling

The MT method involves measuring orthogonal components of the electric field E and
the magnetic field H at the Earth’s surface (Figure 1a). The electromagnetic field we observe
is excited by the natural magnetic field. The frequency is lower than 105 Hz so we could
ignore the displacement current in the quasi-static approximation of electromagnetic field.
When a magnetic field H is applied to the ground, it produces an electric field E through
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electromagnetic induction. The impedance Z is used to express the relation between the
electromagnetic fields as follows [2]:[

Ex
Ey

]
=

[
Zxx Zxy
Zyx Zyy

][
Hx
Hy

]
(1)

Figure 1. Basic introduction of the magnetotelluric (MT) method. (a) shows the layout of the MT
signal acquisition system. The electrodes connected by wires is used to obtain electric field data,
and the magnetic field probes are used for collecting magnetic field data. The host is used to record
the signal at various frequencies. (b) The application of the optimization process in MT inversions.

For the one-dimensional case, Zxx = 0, Zyy = 0 and Zxy = −Zyx. The impedance
tensor can be decomposed into two components, corresponding to the apparent resistivity
and the phase. For an N-stratum geoelectric model, the apparent resistivity ρω and the
phase ϕ can be derived from the impedance Z regardless of the orientations of the x and y
axes as follows:

ρω = |Z1|2
ωµ ϕ = tan−1 Im(Z1)

Re(Z1)

Zm = Zom
1−Lm+1e−2kmhm

1+Lm+1e−2kmhm Lm+1 = Zom+Zm+1
Zom+Zm+1

ZN = ZoN Zom=− iωµ
/

km km=
√
−iµσmω

(2)

where Zm is the impedance at the top of the mth stratum, Zom is the intrinsic impedance of
the mth stratum, the magnetic permeability µ is assigned its free space value and ω is the
angular frequency. For the mth stratum, ρm is the resistivity and hm is the thickness. Usually,
the apparent resistivity is the observed response that is used to obtain the geoelectric model
through inversion.

2.2. Inversions

The MT inversion problem is an optimization problem in which the objective is to
predict a model that is close to the real geoelectric structure from the observed response
(Figure 1b). The optimization process update the geoelectric model iteratively to find the
minimum objective function. The objective function of this optimization problem can
be divided into two terms, one corresponding to data fitting and one corresponding to
the model smoothness [18]. The data fitting term measures the difference between the
observed response and the predicted response (Figure 1b). The smoothness term measures
the change in the magnitude of the resistivity of each stratum [21]. The objective function
can be expressed as follows:

min Φ(m) = min
(

λ‖Cmm‖2 + ‖Cd(F[m]− d)‖2
)

(3)
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where Φ(m) is the objective function; F is the forward modeling operator; d represents
the observed data; Cm and Cd are the covariance matrices of the model vector and the
observed data vector, respectively; and λ is the Lagrange multiplier weighting the model
smoothness term relative to the total norm. The objective function is updated with the
predicted model m, and its value gradually decreases in each iteration.

To minimize the objective function, several iterative methods of linear inversions have
been proposed [22,23]. The occam’s inversion is a popular and stable inversion algorithm
based on an iterative method in which the model is directly updated in each iteration,
causing the value of the objective function to decrease steadily [24–26]. The model is
updated as follows:

mk+1 =
[

1
λ CT

mCm + (CdJk)
TCdJk

]−1
(CdJk)

TCddg

dg = d− F[mk] + Jkmk

(4)

The iteration process begins with an initial model guess m0, and the model is updated
to mk in the kth iteration. The optimal model is considered to be found when a maximum
number of iterations, a convergence threshold for the objective function or some other ter-
mination criterion is reached. In addition, it is important to note that the model parameters
are typically expressed in terms of the logarithm of the resistivity in order to reduce the
variations in the gradient.

The linear inversion methods can easily become trapped in local minima and require
considerable computational effort to calculate the gradient of the objective function [24].
Moreover, they are critically dependent on the initial model [27]. However, global opti-
mization methods based on heuristic algorithms overcome these shortcomings [8,28].

2.3. PSO Optimization

The PSO algorithm will make the population evolve more intelligently after each
iteration and can accumulate search knowledge, which is called an evolutionary algo-
rithm [29–31]. The PSO algorithm does not use the survival of the fittest but uses a
mechanism in which each individual in the population competes with the others to gen-
erate the global optimal solution. It generates the optimal solution through information
sharing and a mechanism of cooperation between the individuals in the population [32,33].

Suppose the PSO consists of multiple particles. In the D-dimensional search space,
the particle swarm contains n particles. The position of the nth particle in the D-dimensional
space is defined as xi:

xi = (xi1, xi2, · · · , xiD), i = 1, 2, · · · , n. (5)

Suppose the current velocity of particle xi and its individual optimal historical position
are vi and pi, respectively, as follows:

vi = (vi1, vi2, · · · , viD)
pi = (pi1, pi2, · · · , piD).

(6)

Then, for the entire particle swarm, the global optimal position is Pg:

pg =
(

pg1, pg2, · · · , pgD
)
. (7)

At the tth moment, the velocity update formula of the dth dimension of particle xi is:

vid(t+1) = ωvid(t) + c1r1(pid(t)− xid(t)) + c2r2(pgi(t)− xid(t)), (8)

where ω is the inertia weight and is in the range [0, 1]. c1 and c2 are the acceleration
coefficients. r1 and r2 are random coefficients, both of which are in [0, 1], which determine
the motion of semirandom particles affected by the single and global optimal solutions.
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The particle velocity update process has three main parts: the current initial velocity,
the self-motion trajectory and self-trajectory correction. The influence of the current speed
on the particle update speed can be adjusted by the inertia weight. The influence of the
particle’s own trajectory on the particle update speed can be adjusted by the acceleration
coefficients and the random coefficients. When the trajectory is inaccurate, it needs to be
corrected with the help of global optimization.

For particle xi, we can update the position xid of the dth dimension according to
the velocity:

xid(t + 1) = xid(t) + vid(t + 1). (9)

3. Memetic Strategies

If the particle swarm is regarded as a social population, the three parts of the particle
update speed reflect the balance of the population with respect to the global optimum
and the local optimum. The particle update speed can be regarded as the cognition of
the social population in the evolutionary direction. The evolutionary update speed at the
current moment t can provide a reference basis for the evolutionary update speed at the
next moment t + 1. During evolution, the evolution of a single particle needs to refer to its
own previous evolutionary state and the evolutionary state of the population. The main
advantage of the PSO algorithm is that it is simple, effective and easy to implement.
However, the PSO algorithm faces premature convergence and easily falls into a local
optimal solution [34].

Compared with other group-based methods, the ability of PSO to micromediate and
avoid local optima is weaker, which is mainly due to the lack of diversity in the search
process [35]. Therefore, we improve the evolutionary diversity of the population in the
search process; the basic flow of the cultural strategy is shown in Figure 2.

Figure 2. Flow chart of memetic strategy for MT inversions.

3.1. Framework

In the memetic strategy, the overall optimization search uses PSO. To optimize an
objective function, the first task is to generate the initial population. The initial population
in PSO is randomly generated, which may affect the convergence speed of the algorithm
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and the accuracy of the final solution. In the absence of prior knowledge, we use a method
based on opposition learning to replace the random initial population positions as a new
initial population strategy. This can increase the chance of reaching the global optimal
solution [36].

In the entire iterative search process, we hope that the search range in the early stage
is as large as possible to enhance the global optimization capability. We hope that the
search range in the search period does not change greatly in order to enhance the local
optimization capability. These factors mean that we need to change the inertia weight to
adjust the first part of the right-hand term of Equation (8). The dynamic inertia weight is
applied to the previous population cognition to provide a reference for the optimization
process in the current iteration.

In population evolution, the second part of the right term in Equation (8) represents
the synchronization between the current position of the particle and the optimal position
of the individual in the iteration. This is the process of the particle revising its own
evolutionary path, reflecting the effect of the particle’s own evolutionary experience on
its own next evolution. The third part of the right-hand term of Equation (8) shows the
process of synchronizing the current position of the particle with the best position of the
group. This is the corrective behavior of the particle after observing the evolution of the
surrounding particles. This kind of social behavior reflects the group’s information sharing
and cooperation.

After obtaining the best population in the current iteration, to further enhance the
diversity of the population, we set the mutation of the individual particles for the popula-
tion. The aim of this operation is to make the optimization process converge stably while
maintaining a certain ability to jump out of a local optimum.

3.2. Population Initialization

When there is no prior information, the initial population is usually randomly gener-
ated, which often leads to revisiting a hopeless area in the search space [37]. Opposition-
based learning (OBL) considers candidate solutions as well as their opposite solutions [38].
OBL introduces a random solution and its corresponding inverse solution, which can
yield more than two independent solutions. This randomly generates more promising
solutions. OBL has been successfully applied in various population-based evolutionary
algorithms [39,40]. To effectively increase the diversity of the initial population, we use
the OBL strategy to generate the initial population, which includes two types of popula-
tions: a random initial population and an anti-population. The random initial population
{xid, d = 1, 2, . . . , D} is generated randomly according to the form shown in Equation (5).
Supposing the inverse population is {x′id, d = 1, 2, . . . , D}, x′id can be expressed as:

x′id = xmax,d + xmin,d − xid, (10)

where xmax,d and xmin,d are the maximum and minimum values of the dth dimension of par-
ticle xi in the D-dimensional search space. After merging the random initial population and
the antipopulation, we select the particles with less fitness to form a new initial population.

3.3. Dynamic Inertia Weight

The inertia weight ω can limit the search range of particles, which allows the particles
to maintain inertia of motion and search in a new area. This means that this new evolution
includes old evolutionary habits and experiences. When the inertial weight is relatively
high, the new evolution can eliminate the influence of the previous evolutionary experience.
This is conducive to expanding the search field, but the convergence speed can easily slow
in optimization. When the inertia weight is relatively small, the particle maintains its
evolutionary direction based on previous experience. When the evolutionary direction is
correct, this will help speed up the convergence rate of the global optimization, but it is
easy for the optimization to fall into local extremes [35].



Mathematics 2021, 9, 519 7 of 22

The inertial weight ω affects the search speed and accuracy. For optimization problems
with severe nonlinearity, the use of fixed inertia weights will result in fast convergence,
and global optimization is often impossible. For the algorithm to obtain the best results
in the optimization process, varying inertia weights need to be used. Using a linearly
decreasing inertia weight is a traditional variable inertia weight strategy that can optimize
performance well [16]. When the initial inertia weight value is large, the optimal solution
range can be found quickly; then, the inertia weight value decreases, and the particles
begin to search more finely.

However, because the slope is constant, the speed change always remains at the same
level. If the initial iteration does not produce better points, then the accumulation of itera-
tions and the rapid decay of speed may lead to a final local optimal value. Therefore, we use
a nonlinear strategy, sine mapping, with ergodicity, nonrepetition and irregularity [34,41]
to adjust the inertia weight ω of PSO. This strategy can not only enhance the population di-
versity in the search process but also enhance the ability to converge to the global optimum.
The dynamic inertia weight based on sine mapping can be expressed as:

ω = kt =
q
4 sin(πkt − 1), kt ∈ (0, 1), t = 1, 2, 3, . . . , T, (11)

where the range of q is from 0 to 4.

3.4. Accelerating Evolution

The acceleration coefficients c1 and c2 (Equation (8)) are the cognitive attraction coeffi-
cients in the optimization process, and the optimization of the group is controlled by the
learning situation. In the early stage of the optimization process, the particles need strong
self-cognition and weak social cognition. The global search function is more important.
At this time, the particle can traverse as many local extremes as possible in the search space.

In the later stage of optimization, the particles must have strong social cognition and
weak self-awareness to avoid falling into local extremes in optimization. The values of the
cognitive attraction coefficients reflect the degree of influence of the information exchange
on particles, and the information exchange includes the experiential information of the
particle itself and the global optimal information. Setting the learning factor to a value
that is too large or too small is not conducive to the optimization of the particles, so it is
necessary to balance the evolution speed of the particles in the early and late stages of the
optimization process.

The enhancing effect of sine-cosine mapping on population diversity and convergence
in the optimization process can be used to improve this linear asynchronous strategy. We
use sine-cosine acceleration coefficients (SCACs) to adjust the balance between individual
cognition and social cognition [42]. The cognitive attraction coefficient can be expressed as:

c1 = α× sin((1− t
T )×

π
2 ) + δ

c2 = α× cos((1− t
T )×

π
2 ) + δ,

(12)

where the constants α and δ are 2 and 0.5, respectively.

3.5. Population Mutation

To enhance the ability to jump out of local extremes, we introduce the mutation
operator from the genetic algorithm into the PSO [43]. This can expand the search space of
the particles themselves, enhance the diversity of the population and further increase the
possibility of finding the optimal solution. The particles will reset with a certain probability
after each evolution. When the mutation condition is met, the mutation jumps out of the
current position; otherwise, the original position remains unchanged. The particle variation
can be expressed as:

xid(t) = r× (Ux − Lx)/n + (Ux − Lx)/2, (13)
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where r is uniformly distributed in the range [−1, 1], Ux and Lx are the upper and lower
limits of a given position and n is 4. The mutation condition is random mutation, and the
mutation probability is 10%.

3.6. Fitness

The fitness in the optimization process refers to the objective function setting in MT
inversions. The L2 norm is used to define the misfit between the observed MT response
data and the predicted response data. The fitness can be expressed as:

f it = crho f itrho+cphi f itphi

= crho

∥∥∥1− ρpred

/
ρobs

∥∥∥2
+cphi

∥∥∥1− ϕpred

/
ϕobs

∥∥∥2 (14)

where the overall fitness is composed of apparent resistivity fitness and phase fitness model
fitness. Their weight coefficients are crho and cphi. Since the apparent resistivity and phase
are variables with different units, in order to transform the apparent resistivity and phase
fitness into a unified dimension, we normalize the response data and prediction data.

4. Test Model

We designed two common geoelectric models, a three-layer model and a five-layer
model. These models were used to generate synthetic MT response data. Different PSO
methods predicted the geoelectric models based on these response data, and the MT
responses were obtained through MT forward modeling. Comparing the geoelectric model
and the responses predicted by different methods allowed us to test the effect of our
memetic strategy.

4.1. Three-Layer Model

The three-layer geoelectric model and its MT response are shown in Figure 3. The re-
sistivity values of the geoelectric model are 100 Ω·m, 20 Ω·m and 100 Ω·m. The thicknesses
of the geoelectric model are 100 m, 200 m and infinity. We used this model to generate
an MT response including the apparent resistivity and phase, which was the supposed
response. The geoelectric model predicted by the optimization method based on the sup-
posed MT response contains five values, namely, the resistivity values of the three layers
in the geoelectric model and the thickness values of the first two layers. The predicted
geoelectric model can be used to regenerate the apparent resistivity and phase response
through MT forward modeling.

In the optimization process, the population size is 100. For the supposed three-layer
geoelectric model, both traditional PSO and our strategy can obtain good results, but our
strategy predicts the results more accurately. From the comparison of the geoelectric models
(Figure 3a), the resistivity value of the second layer of the geoelectric model predicted by
traditional PSO is less than the supposed value, and the depth value at the bottom of this
layer is slightly larger. The resistivity values of the first layer and the third layer predicted
by traditional PSO are smaller than the supposed value, and the misfit of the two strata is
not as large as the misfit of the second stratum.

From the comparison of the MT responses (Figure 3b,c), the misfit between the MT re-
sponses predicted by traditional PSO and the supposed responses is larger. The large misfit
is mainly concentrated in the low- and high-frequency ranges. This misfit is more obvious
on the apparent resistivity curve. The responses predicted by our strategy, the apparent
resistivity curve and the phase curve, perfectly match the supposed response curve.



Mathematics 2021, 9, 519 9 of 22

Figure 3. The three-layer geoelectric model and its MT response predicted by traditional PSO and
by our strategy. (a–c) represent the geoelectric model, apparent resistivity responses and represent
phase responses, respectively. The blue lines represent the supposed three-layer geoelectric model
and its MT responses. The green lines represent the geoelectric model predicted by the traditional
PSO and its MT responses. The purple lines represent the geoelectric model predicted by our strategy
and its MT responses.

A detailed comparison of the low-frequency and high-frequency parts is shown in
Figure 4. For the apparent resistivity curve, the responses predicted by traditional PSO
show a large misfit starting at 104 Hz. In the 104 Hz–102.5 Hz interval, this deviation is very
obvious (Figure 4a). In the range of 100 Hz–10−1 Hz, the misfit of the response predicted by
traditional PSO decreases, and it gradually increases as the frequency decreases (Figure 4b).
For the same low-frequency and high-frequency ranges, the characteristics of the misfit of
apparent resistivity are different. In the low-frequency range, the misfit of traditional PSO
always exists and is not concentrated in the 104 Hz–102.5 Hz range, similar to the misfit
of the apparent resistivity curve (Figure 4c). The deviation of the response predicted by
traditional PSO has the same characteristics in the high-frequency range (Figure 4d).

For the traditional PSO method, our memetic strategy has four improved steps,
namely, group initialization with OBL, using DIWs to integrate empirical cognition, using
the cognitive attraction coefficient to accelerate population evolution and PM. We call
them PSO-OBL, PSO-OBL-DIW, PSO-OBL-DIW-SCAC and PSO-OBL-DIW-SCAC-PM.
Combining traditional PSO and these four improvements, the corresponding optimization
process is shown in Figure 5.
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Figure 4. Comparison of the MT response in special frequency bands for the three-layer model. (a,b)
represent apparent resistivity curves, and (c,d) represent phase curves. The blue lines represent the
supposed MT responses. The green lines represent the MT responses predicted by traditional PSO.
The purple lines represent the MT responses predicted by our strategy.

Figure 5. Comparison of the optimization process of different strategies in the three-layer geoelectric
model test. The number of evolutionary iterations is 50. The blue line represents the optimization
process of traditional PSO. The orange line represents the optimization process of PSO-opposition-
based learning (OBL). The green line represents the optimization process of PSO-OBL-dynamic
inertia weight (DIW). The red line represents the optimization process of PSO-OBL-DIW-sine-cosine
acceleration coefficient (SCAC). The violet line represents the optimization process of PSO-OBL-DIW-
SCAC-population mutation (PM).

Using OBL can determine the appropriate initial population more accurately, which
can enable the search process to find the appropriate global optimal search direction in
the early stage and accelerate convergence. At the early stage, the fitness decline rate
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of PSO-OBL is faster than that of traditional PSO. Adding DIWs based on sine mapping
can enable the evolution of the population to better combine with previous cognitive
experience. Therefore, after 17 iterations, the fitness decline rate of PSO-OBL-DIW is faster
than that of PSO-OBL.

On the basis of PSO-OBL-DIW, the advantages of SCACs in effectively integrating
individual experience and group experience are used to reflect the faster fitness decline rate
of PSO-OBL-DIW-SCAC. The final fitness also remained at a low level. After the population
evolution, the population was allowed to continue to produce genetic mutations, which
can further accelerate the convergence of the optimization process. The final fitness of
PSO-OBL-DIW-SCAC-PM was generally lower than that of PSO-OBL-DIW-SCAC.

The accuracy comparison of the three-layer geoelectric models predicted by different
methods is shown in Table 1. The misfit between the predicted value and the supporting
value can be expressed as the absolute value of the normalized error. The misfit trends
of different methods are consistent with the final fitness trend of optimization. Each
improvement increases the prediction accuracy of the resistivity value and the thickness
value in the geoelectric model.

Table 1. Accuracy comparison of three-layer geoelectric model predicted by different methods.

ρ(Ω·m) h(m)
Fitnessρ1 ρ2 ρ3 h1(m) h2(m)

Supposed model 100.00 20.00 100.00 100.00 200.00

PSO model 98.61 19.38 98.27 102.58 189.95
3.32× 10−3

misfit 1 1.39 3.08 1.73 2.58 5.02

PSO-OBL model 99.84 20.42 100.12 97.36 205.08
1.95× 10−3

misfit 0.16 2.09 0.12 2.64 2.54

PSO-OBL-DIW model 100.16 20.37 100.21 98.21 205.27
5.94× 10−4

misfit 0.16 1.87 0.21 1.78 2.64

PSO-OBL-DIW-SCAC model 100.05 20.12 100.06 99.41 201.61
4.03× 10−4

misfit 0.05 0.58 0.06 0.59 0.81

PSO-OBL-DIW-SCAC-PM
model 99.96 19.97 100.03 200.15 99.86

2.39× 10−4
misfit 0.04 0.17 0.03 0.08 0.14

1 The misfit = |vpred − vsupp|/vsupp, vpred is the predictive value, vsupp is the parameter of the supposed model.

4.2. Five-Layer Model

Our method is suitable not only for three-layer models but also for more complex
five-layer models. The five-layer geoelectric model and its MT responses are shown in
Figure 6. The resistivity values of the geoelectric model are 100 Ω·m, 20 Ω·m, 200 Ω·m,
50 Ω·m and 100 Ω·m. The thicknesses of the geoelectric model are 1000 m, 500 m, 1000 m,
2000 m and infinity. The geoelectric model predicted by the optimization method based on
the supposed MT responses contains nine values, namely, the resistivity values of the five
layers in the geoelectric model and the thickness values of the first four layers.

For the supposed five-layer geoelectric model, both traditional PSO and our strategy
can achieve good results, but our strategy predicts the results more accurately. From the
comparison of geoelectric models (Figure 6a), the resistivity value of the third layer of the
geoelectric model predicted by traditional PSO is greater than the supposed value, and the
top depth and the bottom depth are both larger. The bottom depth of the fourth layer of
the geoelectric model predicted by traditional PSO is obviously smaller than the supposed
value, and the misfit reaches approximately 200 m.
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Figure 6. The five-layer geoelectric model and its MT response predicted by traditional PSO and our
strategy. (a–c) represent the geoelectric model, apparent resistivity responses and represent phase
responses, respectively. The blue lines represent the supposed three-layer geoelectric model and its
MT responses. The green lines represent the geoelectric model predicted by traditional PSO and its
MT responses. The purple lines represent the geoelectric model predicted by our strategy and its
MT responses.

From the comparison of the MT responses (Figure 6b,c), the responses predicted by
traditional PSO have a greater misfit with the supposed responses, and this deviation is
mainly concentrated in the mid-frequency range. Similar to the results of the three-layer
model (Figure 4b,c), the responses predicted by our strategy, the apparent resistivity curve
and the phase curve, perfectly match the assumed response curve.

A detailed comparison of the middle frequency range is shown in Figure 7. The middle
frequency interval can be divided into two subintervals for evaluation: the 50 Hz–1 Hz
interval (Figure 7a,c) and the 100.8 Hz–10−0.3 Hz interval (Figure 7b,d). In the first interval,
the apparent resistivity and phase misfit of traditional PSO are not concentrated in a certain
frequency range but have wide coverage. In the second interval, the apparent resistivity
misfit of traditional PSO is mainly concentrated in the middle frequency range, and the
phase misfit is mainly concentrated in the higher frequency range.
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Figure 7. Comparison of the MT response in special frequency bands for the five-layer model. (a,b)
represent apparent resistivity curves, and (c,d) represent phase curves. The blue lines represent the
supposed MT responses. The green lines represent the MT responses predicted by traditional PSO.
The purple lines represent the MT responses predicted by our strategy.

For the supposed MT responses of the five-layer geoelectric model, we use traditional
PSO, PSO-OBL, PSO-OBL-DIW, PSO-OBL-DIW-SCAC and PSO-OBL-DIW-SCAC-PM to
optimize the misfit of the supposed responses and predicted responses. The corresponding
optimization process is shown in Figure 8.

Figure 8. Comparison of the optimization process of different strategies in the five-layer geoelectric
model test. The number of evolutionary iterations is 50. The blue line represents the supposed MT
response. The green line represents the optimization process of traditional PSO. The yellow line
represents the optimization process of PSO-OBL. The green line represents the optimization process
of PSO-OBL-DIW. The red line represents the optimization process of PSO-OBL-DIW-SCAC. The red
line represents the optimization process of PSO-OBL-DIW-SCAC-PM.
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OBL allows the optimization process to find the appropriate global optimal search
direction at an early stage and speed up the convergence. This shows the effectiveness of
using OBL to determine a suitable initial population. The advantages of PSO-OBL-DIW
began to manifest after the 10th evolutionary iteration, indicating that the combination of
PSO-OBL-DIW with previous evolutionary cognitive experience is conducive to obtaining
a more accurate evolutionary direction for the population. The effective integration of
individual experience and group experience through SCACs is still obvious in promoting
the optimization process. PSO-OBL-DIW-SCAC changed after the fifth evolutionary itera-
tion to accelerate the convergence speed of fitness and keep the convergence trend stable.
Although we set only a 10% gene mutation probability, PSO-OBL-DIW-SCAC-PM still has
a great advantage in fitness convergence over PSO-OBL-DIW-SCAC.

Table 2 shows an accuracy comparison of different methods used to predict the five-
layer geoelectric model. The misfit between the predicted value and the supposed value can
be expressed as the absolute value of the normalized error. The number of parameters of the
five-layer geoelectric model is greater than that of the three-layer geoelectric model, and the
accuracy of the resistivity and thickness values predicted in the five-layer geoelectric model
test is not as good as that in the three-layer geoelectric model test. However, the effect of
each improvement on the prediction accuracy is consistent with the effect in the three-layer
geoelectric model test. This shows that the effect of our memetic strategy can be applied to
a more complex five-layer geoelectric model.

Table 2. Accuracy comparison of five-layer geoelectric model predicted by different methods.

ρ(Ω·m) h(m)
Fitnessρ1 ρ2 ρ3 ρ4 ρ5 h1(m) h2(m) h3(m) h4(m)

Supposed model 100.00 20.00 200.00 50.00 100.00 1000.00 500.00 1000.00 2000.00

PSO model 100.11 20.34 207.38 49.67 98.51 1009.82 530 1019.5 1806.08
8.60× 10−3

misfit 1 0.11 1.68 3.69 0.67 1.49 0.98 6 1.95 9.7

PSO-OBL model 99.79 20.21 200.52 48.3 100.81 973.19 483.79 968.88 1984.67
5.10× 10−3

misfit 0.21 1.04 0.26 3.39 0.81 2.68 3.24 3.11 0.77

PSO-OBL-DIW model 99.53 19.96 195 50.4 98.03 1012.72 510.31 1008.9 1977.88
1.72× 10−4

misfit 0.47 0.22 2.5 0.79 1.97 1.27 2.06 0.89 1.11

PSO-OBL-DIW-SCAC model 100 20.31 198.23 50.32 100.04 996.66 508.88 990.29 2021.54
9.18× 10−5

misfit 0 1.53 0.88 0.64 0.04 0.33 1.78 0.97 1.08

PSO-OBL-DIW-SCAC-PM
model 100.36 20.06 200.48 50.34 100.8 990.26 496.39 996.2 1988.36

2.52× 10−6
misfit 0.36 0.3 0.24 0.69 0.8 0.97 0.72 0.38 0.58

1 The misfit = |vpred − vsupp|/vsupp, vpred is the predictive value, vsupp is the parameter of the supposed model.

5. Stability Evaluation

To evaluate the stability of our strategy for MT inversions, we conducted a noise
immunity test and a test with actual data. In the tests, we compared our improvement
strategy with traditional PSO.

5.1. Noise Immunity Test

In the noise immunity test, we designed three different levels of random noise and
added noise to the supposed MT responses of the three-layer geoelectric model and the
five-layer geoelectric model. The noise levels are 5%, 10% and 15%, respectively. The MT
responses of the three-layer geoelectric model with noise are shown in Figure 9.
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Figure 9. Supposed MT responses of a three-layer geoelectric model with different levels of noise.
(a,b) represent the MT responses when the noise level is 5%. (c,d) represent the MT responses when
the noise level is 10%. (e,f) represent the MT responses when the noise level is 15%. (a,c,e) represent
the apparent resistivity responses. (b,d,f) represent the apparent resistivity responses. The blue lines
represent the clean supposed responses. The red dots indicate the noisy responses. The red lines are
the error bars between the noisy data and clean data.

For the responses of the three-layer geoelectric model, 5% of the noise has basically
no effect on our final prediction results. The predicted geoelectric model and responses
perfectly match the assumed geoelectric model and responses. From the comparison of the
geoelectric models (Figure 10a), 10% noise and 15% noise cause the predicted resistivity
value of the first layer of the geoelectric model to deviate, and the greater the noise is,
the greater the deviation. However, the thickness of the first layer is basically consistent
with the supposed value. The predicted resistivity value of the second layer is also not
affected by noise, but 15% noise makes the predicted thickness smaller than the supposed
value. The predicted resistivity value in the third layer corresponding to 10% noise and
15% noise is smaller than the supposed value. Table 3 shows the accuracy comparison of
the detailed predictive electrical model.

From the comparison of the MT responses (Figure 10b,c), the predicted value misfit
caused by 10% noise and 15% noise is in the same frequency range. For the apparent
resistivity curves, the misfit is concentrated in the low- and high-frequency regions, and the
misfit in the low-frequency region is larger than that in other regions (Figure 10b). For the
phase curves, the misfit is concentrated in the low-frequency to mid-frequency region,
and the misfit in the high-frequency data is milder (Figure 10c).
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Figure 10. The predicted three-layer geoelectric models and their MT responses under noisy con-
ditions. (a–c) represent the geoelectric model, apparent resistivity responses and phase responses,
respectively. The blue lines represent the supposed three-layer electrical model and clean MT re-
sponses, and the purple lines represent the predicted geoelectric model and its MT responses when
the noise level is 5%. The green lines represent the predicted geoelectric model and its MT responses
when the noise level is 10%. The red lines represent the predicted geoelectric model and its MT
responses when the noise level is 15%.

Table 3. Comparison of the accuracy of the predicted three-layer geoelectric model under different noise levels.

ρ(Ω·m) h(m)
Fitnessρ1 ρ2 ρ3 h1(m) h2(m)

Supposed model 100.00 20.00 100.00 200.00 100.00

5% noise model 100.42 19.98 100.8 100.25 197.8
2.19× 10−2

misfit 1 0.42 0.09 0.8 0.24 1.1

10% noise model 105.6 19.8 95.34 97.31 200.7
4.25× 10−2

misfit 5.6 0.98 4.66 2.69 0.36

15% noise
model 109.44 19.4 96.43 96.72 189.6

6.63× 10−2
misfit 9.44 2.99 3.57 3.28 5.2

1 The misfit = |vpred − vsupp|/vsupp, vpred is the predictive value, vsupp is the parameter of the supposed model.

For the MT response of the synthetic five-layer geoelectric model, the response after
adding noise is shown in Figure 11. For the noise-containing responses of the five-layer
geoelectric model, the influence of noise is obviously greater than that in the three-layer
model. From the comparison of the geoelectric models (Figure 12a), the predicted resistivity
values are close to the supposed values in the first three layers. For the second stratum,
the predicted value for 5% noise has a slight deviation. 10% noise and 15% noise increase
the deviation. The maximum misfit of the predicted resistivity of 15% noise is close to 15%,
and the maximum misfit of the predicted layer thickness is close to 10%. Table 4 shows the
accuracy comparison of the detailed predictive geoelectric model.
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Figure 11. Supposed MT responses of a five-layer geoelectric model with different levels of noise.
(a,b) represent the MT responses when the noise level is 5%. (c,d) represent the MT responses when
the noise level is 10%. (e,f) represent the MT responses when the noise level is 15%. (a,c,e) represent
the apparent resistivity responses. (b,d,f) represent the apparent resistivity responses. The blue lines
represent the clean supposed responses. The red dots indicate the noisy responses. The red lines are
the error bars between the noisy data and clean data.

From the comparison of the MT responses (Figure 12b,c), the predicted response for
5% noise has a small deviation from the supposed value, and the two types of responses are
basically consistent. A 10% noise level will increase the deviation, and 15% noise will cause
the most serious deviation. In particular, with the deviation of the apparent resistivity
response, 15% noise causes the deviation to cover almost the whole frequency band. For the
phase responses, the deviation caused by 15% noise covers most of the frequency range,
from low to intermediate frequencies.
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Figure 12. The predicted five-layer geoelectric models and their MT responses under noisy conditions.
(a–c) represent the geoelectric model, apparent resistivity responses and phase responses, respectively.
The blue lines represent the supposed three-layer electrical model and clean MT responses, and the
purple lines represent the predicted geoelectric model and its MT responses when the noise level is
5%. The green lines represent the predicted geoelectric model and its MT responses when the noise
level is 10%. The red lines represent the predicted geoelectric model and its MT responses when the
noise level is 15%.

Table 4. Comparison of the accuracy of the predicted five-layer geoelectric model under different noise levels.

ρ(Ω·m) h(m)
Fitnessρ1 ρ2 ρ3 ρ4 ρ5 h1(m) h2(m) h3(m) h4(m)

Supposed mode 100.00 20.00 200.00 50.00 100.00 1000.00 500.00 1000.00 2000.00

5% noise model 99.47 19.98 203.61 48.63 102.5 1016.27 505.19 1017 2020.14 0.0241
misfit 1 0.53 0.12 1.81 2.73 2.5 1.63 1.038 1.7 1.01

10% noise model 99.54 20.09 199.34 54.21 94.39 1025.08 502.03 989.19 2091.82 0.0491misfit 0.46 0.44 0.33 8.41 5.61 2.51 0.41 1.08 4.59

15% noise
model 97.28 19.77 209.19 57.04 105.71 1050.71 549.93 1054.34 2058.1

0.077misfit 2.71 1.13 4.6 14.08 5.71 5.07 9.99 5.43 2.91
1 The misfit = |vpred − vsupp|/vsupp, vpred is the predictive value, vsupp is the parameter of the supposed model.

5.2. Real Application Data

The COPROD2 dataset is a public dataset for testing the MT inversion effect, which
contains measured MT response data [44]. However, the underground structure is not
accurately proven. We can evaluate the inversion effect by observing the difference in
fit between the predicted responses and the measured responses. The prediction effect
of the proposed memetic strategy is compared with that of the traditional PSO method.
The COPROD2 data contain 35 observation points. We selected the fifth, tenth, 15th and
20th observation points as our test data. The measured data can be divided into YX mode
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and XY mode according to the polarization mode. The prediction results under the two
modes are shown in Figures 13 and 14.

Figure 13. Comparison of the predicted and measured responses in YX mode. (a–d) represent the
apparent resistivity response curves, and (e–h) represent the phase response curves. (a,e) represent
the response curves of the fifth observation station, (b,f) represent the response curves of the tenth
observation station, (c,g) represent the response curves of the 15th observation station, and (d,h)
represent the response curves of the 20th observation station. The blue lines represent the measured
response curves. The yellow lines represent the response curves predicted by traditional PSO.
The yellow lines represent the response curves predicted by the proposed memetic strategy.

Among the results for the four observation stations, our memetic strategy prediction
results are significantly better than the traditional PSO prediction results. When the mea-
sured responses fluctuate gently, the predicted responses can fit the measured responses.
However, the prediction results of traditional PSO are consistent only with the measured
responses in the change trend, and the predicted value has a large deviation. When the
measured responses fluctuate violently, the predicted results of the two methods are quite
different from the measured response.

Considering the volume effect of electromagnetic waves and the static effect near
the surface, the response curve of the one-dimensional geoelectric model has difficulty
matching the measured curve perfectly. In addition, the violent fluctuations in the measured
data are mainly concentrated in the high-frequency range, which is also influenced by
human noise, magnetic storms and substation interference. This nonrandom noise increases
the difficulty of inversions.
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Figure 14. Comparison of the predicted and measured responses in XY mode. (a–d) represent the
apparent resistivity response curves, and (e–h) represent the phase response curves. (a,e) represent
the response curves of the fifth observation station, (b,f) represent the response curves of the tenth
observation station, (c,g) represent the response curves of the 15th observation station, and (d,h)
represent the response curves of the 20th observation station. The blue lines represent the measured
response curves. The yellow lines represent the response curves predicted by traditional PSO.
The yellow lines represent the response curves predicted by the proposed memetic strategy.

6. Conclusions

For MT inversions, we propose a memetic strategy on the basis of traditional PSO,
which includes four parts: opposition-based learning, dynamic inertia weights, sine-cosine
acceleration coefficients and gene mutation. The test results of the different models show
that reverse learning can selectively enhance the population diversity and accelerate the
optimization process. The dynamic inertia weights based on sine mapping can strengthen
the optimization ability by fusing previous cognitive experience. By balancing the influence
of individual cognition and group cognition on the evolutionary process, the sine-cosine
acceleration coefficients can improve the global optimization capability in the early stages
of the optimization process and maintain convergence stability in the later stages. Genetic
mutation can further strengthen the ability to find the best solution by enhancing the
population diversity.

The noise test verifies that this memetic strategy can improve the noise immunity of
PSO. Moreover, the proposed strategy outperforms the traditional PSO method on the
measured MT data. We have greatly improved the ability of PSO to invert MT data by
enhancing the diversity of the population and fusing the individual and social cognition of
the population.
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