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Abstract: Accurate and reliable dam inflow prediction models are essential for effective reservoir
operation and management. This study presents a data-driven model that couples a long short-term
memory (LSTM) network with robust input predictor selection, input reconstruction by wavelet
transformation, and efficient hyper-parameter optimization by K-fold cross-validation and the
random search. First, a robust analysis using a “correlation threshold” for partial autocorrelation and
cross-correlation functions is proposed, and only variables greater than this threshold are selected as
input predictors and their time lags. This analysis indicates that a model trained on a threshold of
0.4 returns the highest Nash–Sutcliffe efficiency value; as a result, six principal inputs are selected.
Second, using additional subseries reconstructed by the wavelet transform improves predictability,
particularly for flow peak. The peak error values of LSTM with the transform are approximately
one-half to one-quarter the size of those without the transform. Third, for a K of 5 as determined
by the Silhouette coefficients and the distortion score, the wavelet-transformed LSTMs require a
larger number of hidden units, epochs, dropout, and batch size. This complex configuration is
needed because the amount of inputs used by these LSTMs is five times greater than that of other
models. Last, an evaluation of accuracy performance reveals that the model proposed in this study,
called SWLSTM, provides superior predictions of the daily inflow of the Hwacheon dam in South
Korea compared with three other LSTM models by 84%, 78%, and 65%. These results strengthen the
potential of data-driven models for efficient and effective reservoir inflow predictions, and should
help policy-makers and operators better manage their reservoir operations.

Keywords: dam inflow prediction; long short-term memory; wavelet transform; input predictor
selection; hyper-parameter optimization

1. Introduction

Reservoirs and dams serve a variety of critical purposes, including flood mitigation,
freshwater storage, irrigation, hydroelectric power, and ecological conservation. Substan-
tial efforts have been made over the past century to develop optimal reservoir operating
strategies. Proposing an optimal operating solution for a multipurpose reservoir is not
straightforward because it can be affected by various factors, the most important of which
is reservoir inflow estimates [1–3]. Accurate and reliable inflow forecasts are essential to
effective reservoir operation [4,5]. Predictive models can be divided into process-based and
data-driven varieties [6,7]. As process-based models use mathematical formulations based
on physical principles, embracing state variables and fluxes that are theoretically observ-
able and scalable [8], they provide a superior understanding of physical processes [9–12].
However, these models also require detailed data volumes and high computational costs
for a study basin [13–16], and when simplified assumptions related to scaling problems
are applied, their predictions can be accompanied by considerable amounts of uncer-
tainty [17–21]. Empirical data-driven models are based on past observations. They are
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simple and easy to apply, do not directly consider the underlying physical processes,
and rely solely on historical hydro-meteorological data, resulting in less input and fewer
parameter data [22,23].

With advances in statistical and machine-learning techniques, data-driven models
have attracted attention for their strong learning capabilities and suitability for modeling
complex nonlinear processes [24–27]. Techniques such as artificial neural networks (ANNs),
recurrent neural network (RNNs), support vector regression (SVR), genetic programming,
multilayer perceptrons (MLPs), adaptive neuro-fuzzy inference systems, and long short-
term memory (LSTM) can provide satisfactory outcomes in meteorological and hydrological
prediction studies. One of the latest network architectures and a special type of RNN,
LSTM overcomes the notorious problem of vanilla RNN, in which gradients disappear and
explode when performing backpropagation over multiple timesteps [28,29]. This difficulty
in long-range dependency learning can be addressed by using memory cells of an LSTM
architecture with cell states that are maintained over time [30]. LSTM is therefore able to
learn the nonlinearity of input variables with an arbitrary length and effectively capture
long-term time dependencies. Prior studies have demonstrated that streamflow predictions
of LSTM are more accurate than those of ANNs, RNNs, SVR, and MLP [31–34].

Proper input selection and data processing play a crucial role in achieving a high-
performing data-driven model [27,35]. First, a thorough understanding of the underlying
physical processes and available data are required to select the appropriate input. Inconsis-
tent selection of inputs can lead to a loss of convergence in model-training or poor accuracy
in model application [36]. Most previous studies (Table 1) have used a trial-and-error
approach based on multiple scenarios of input combinations or ad-hoc selections for critical
factors [31,33,34,37,38]. Statistical properties of the data series derived from principal
component analysis and correlation analysis can help identify explanatory variables [38].
The cross-correlation function (CCF) and the partial autocorrelation function (PACF) are
often used to analyze correlations between candidate inputs and output. Second, data-
driven models may not be able to handle nonstationary data if preprocessing is not carried
out properly [33]. Cleaning, normalization, transformation, and reduction of data can sig-
nificantly improve accuracy [24,39,40]. A wavelet transform (WT) can effectively process
nonstationary data by decomposing time series into multiple subseries of lower resolu-
tion, and extract nontrivial and potentially useful information from the original data [24].
It has been employed extensively to solve problems related to the diagnosis, classification,
and forecasts of extreme weather events [33]. Although the individual effects of distinctive
features in Table 1 have been demonstrated in several studies, investigating the combined
impacts of these methods in dam inflow predictions has not yet been performed. Therefore,
the best models and methodologies in this subject need to be revealed.

Table 1. Streamflow prediction studies using a data-driven model.

Study Data-Driven Model Predictor Selection Data Processing Hyper-Parameter
Determination

Kratzert et al. [37] LSTM Ad-hoc Normalization Trial and error
Hu et al. [31] ANN, LSTM Ad-hoc Normalization Ad-hoc
Lee et al. [38] AR, FFNN, RNN Ad-hoc Copula-based transformation Trial and error
Ni et al. [33] LSTM, CNN Ad-hoc WT Ad-hoc

Xiang et al. [34] LSTM Ad-hoc Moving average Ad-hoc
Yang et al. [4] ANN, RF, SVM Visual * Normalization Trial and error

Ahmad and Hossain [41] ANN Visual * Moving average Trial and error
This study LSTM Optimal ** WT, Normalization Optimization

Note: * Selecting visually from CCF and/or PACF plots; ** Selecting optimally from a “threshold” analysis.

The main objective of this study is to investigate the potential of the combined methods
of LSTM, predictor selection, data processing, and hyper-parameter optimization, thereby
developing a unified data-driven modeling framework that can produce accurate dam
inflow predictions. Of specific interest are (1) the robust selection of principal inputs
and their sequence lengths, (2) the transformation of input time series to better capture
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extremes, and (3) the efficient optimization of LSTM hyper-parameters. The rest of this
study is organized as follows. Section 2 describes the methodologies of LSTM structure,
input selection, wavelet transform, and hyper-parameter optimization. Section 3 provides
the study area, dataset, and performance measures. Section 4 presents the experimental
results and discussion, and a conclusion follows in Section 5.

2. Methodology
2.1. Long Short-Term Memory Network

Long short-term memory is a special kind of RNN that includes memory cells that are
analogous to the states of physically based models [28]. An advantage of LSTM over an
RNN is that LSTM can learn long-term dependencies between input and output features
by resolving gradients that are exploding or vanishing [37]. The main difference between
LSTM and RNN structures is that LSTM adds a cell state; four times more parameters
should be trained because three gate functions are employed to calculate the cell and the
hidden states. The internal structure of LSTM is sketched in Figure 1a.

A LSTM-based data-driven model is composed of repeating LSTM blocks, each of
which contains three gates (forget gate ft, input gate it, and output gate ot) to determine
which information is renewed, discarded, and outputted from the memory cell. Given
the inputs xt =

[
x1,t, x2,t, . . . , xNin ,t

]
at time t with the number of inputs Nin, cell state ct

(a long-term memory) and hidden state ht (a short-term memory) at time t are computed
using three gates and the cell state at a previous time step. A new state ct can be controlled
through a forget gate that can forget information from the past state ct−1 and an input gate
that can accept new information from the cell update c̃t. The output gate determines how
much information from the cell state ct flows into the new hidden state ht. Mathematically,

ct = ft × ct−1 + it × c̃t (1)

ht = ot × tan h(ct) (2)

where the intermediate cell update c̃t and three gates are calculated for xt and ht−1:

c̃t = tan h(Wc̃xt + Uc̃ht−1 + bc̃) (3)

ft = σ
(

W f xt + U f ht−1 + b f

)
(4)

it = σ(Wixt + Uiht−1 + bi) (5)

ot = σ(Woxt + Uoht−1 + bo) (6)

where W, U, and b are learnable parameters specific to the three gates and determined
through the training process. The activation functions of σ and tan h are the sigmoid and
the hyperbolic tangent, respectively. At t = 1, the hidden and cell states are initialized as
zero vectors [37]. LSTM models can also be built with more than one layer by stacking
multiple layers on top of each other. The output of a stacked LSTM connects to a final
“dense layer.” A target output yt can be computed from ht in the dense layer:

yt = Wdht + bd (7)

where Wd and bd are learnable parameters known as the weight matrix and the bias term,
respectively, of the dense layer. The total number of LSTM parameters is therefore 12 for
each layer plus 2 for the dense layer. The shapes of these parameters can be expressed in a
matrix (Table 2). At the beginning of training, the learnable parameters are initialized using
an Xavier initialization and later optimized by the Adam algorithm, preferred in abundant
studies [42].
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Figure 1. (a) The internal structure of long short-term memory (LSTM), where xt and yt denote input predictors and a
target output; f , i, o stand for the forget, input, and output gate, respectively; ct, c̃t, and ht denote cell state, cell update,
and hidden state at time t, respectively. (b) Diagram of wavelet transform; the input time series xt can be subdivided into
multiple subseries down to the j-th level (i.e., Dj

t and Aj
t); Dj

t and Aj
t denote ‘Detail’ and ‘Approximation’ time series of

the original xt at the level j; the input predictors and their subseries (shown as gray circles) are all used as the input of the
LSTM models. (c) Schematic overview of K-fold cross-validation. The training and validation dataset (corresponding to
90% of total dataset in this study) is randomly split into K folds. A fold (shown as gray color) is used to validate the LSTM
trained for the other folds (white color) at each iteration.
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Table 2. Learnable parameters of each layer of LSTM and their shapes.

Layer Parameter Shape

1
Wc̃, W f , Wi, Wo [Nhu Nin]
Uc̃, U f , Ui, Uo [Nhu Nhu]
bc̃, b f , bi, bo [Nhu]

2
Wc̃, W f , Wi, Wo [Nhu Nhu]
Uc̃, U f , Ui, Uo [Nhu Nhu]
bc̃, b f , bi, bo [Nhu Nhu]

...
...

...

Nl

Wc̃, W f , Wi, Wo [Nhu Nhu]
Uc̃, U f , Ui, Uo [Nhu Nhu]
bc̃, b f , bi, bo [Nhu Nhu]

Dense
Wd [Nhu 1]
bd [1]

2.2. Input Predictor Selection

Maintaining a high correlation between inputs and outputs can guarantee the pre-
dictability of data-driven models. Therefore, to arrive at the optimal combination of inputs
that correlate closely with the output, statistical properties of the respective time series can
be used. Specifically, the cross-correlation function (CCF) and the partial autocorrelation
function (PACF) are used to determine the appropriate predictors and the number of
lagged values.

The CCF measures the similarity of a time series (e.g., dam inflow, y) with its lagged
versions (e.g., candidate input variables, v = [v1, v2, . . . , vNv ] with Nv candidates):

CCFvy
k =

cvy
k√

SDvSDy
(8)

where k is the lag time; SDv and SDy are the standard deviations of v and y, respectively;
cvy

k , which is the cross-covariance function of v and y, is defined as:

cvy
k =

1
Nt − 1

Nt−k

∑
t=1

(yt − y)(vt+k − v) (9)

where t is the time step; y is the average of y; v is the average of v; Nt denotes the number
of data points of time series.

The PACF measures the linear correlation between a time series (yt) and a lagged
version of itself (yt+k) and can be defined as:

PACFk,k =
ρk −∑k−1

j=1 PACFk−1,j × ρk−j

1−∑k−1
j=1 PACFk−1,j × ρj

(10)

where j denotes an index for lag k; ρk is an autocorrelation coefficient at lag k between yt
and yt+k. At k = 1, PACF1,1 is equal to ρ1.

ρk =
∑Nt−k

t=1 (yt − y)(yt+k − y)

∑Nt
t=1 (yt − y)2 (11)

Additionally, an approximate 95% confidence interval (CI) on the CCF and PACF [43]
can be estimated by:

95% CI = − 1
Nt
± 2√

Nt
(12)
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Based on the calculated CCF and PACF, modelers can determine the number of
antecedent values that should be included in the input vector. Other variables that may
not have a significant effect on model performance can be cut off from the input vector.
Generally, the CCF can be used as a reference when selecting highly correlative input
predictors, while the PACF can indicate an appropriate lag for the selected variables.

2.3. Wavelet Transform

A WT is a mathematical tool that decomposes one signal into several with lower
resolution levels by controlling the scaling and shifting factors of a single wavelet—the
mother wavelet function exists locally as a pattern. It offers time–frequency localization of
a given time series and analyzes nonstationary elements such as breakdown points, discon-
tinuities, and local minima and maxima [35]. Due to the nature of streamflow represented
by discrete signals, a discrete wavelet transform (DWT) is usually preferred in hydrological
applications [33]. A DWT is easier to implement compared with a continuous wavelet
transform and has a shorter computational time [44]. However, a DWT is not inherently
shift-invariant. If any new values are added to the end of a time series, certain values of
the wavelet component can change. This means it cannot be applied to problems related
to singularity detection, forecasting, and nonparametric regression [45]. To overcome
this “boundary” problem, an à trous algorithm that uses redundant information attained
from observation data has been suggested [46]. The decomposition formulas of an à trous
algorithm are defined as [47]:

Dj
t = Aj−1

t − Aj
t (13)

Aj
t =

L−1

∑
l=0

gl A
j−1
t−2j−1l mod Nt

(14)

where Dj
t and Aj

t represent the jth-level wavelet (detail) and scaling (approximation)
coefficients of the original time series at time t; gl is a scaling filter with gl = gDWT

l /
√

2
where gDWT

l is a scaling filter for DWT; L is the length of the scaling filter; l denotes an
index for L; mod refers to the modulo operator. At j = 0, A0

t is equal to the original time
series of xt. The latter can be obtained by the additive reconstruction:

xt =
J

∑
j=1

Dj
t + AJ

t (15)

As depicted in Figure 1b, an original signal decomposes into D1
t and A1

t through the
wavelet and scaling filters, and A1

t further decomposes into D2
t and A2

t through the same
process. This expansion is repeated until j reaches to the maximum level J. The number of
decomposed subseries is J + 1. For example, if J = 3, the subseries would be [D1

t , D2
t , D3

t , A3
t ]

for each original time series. The total number of subseries for Nin input variables is
therefore (J + 1)× Nin. The approximation Aj becomes increasingly rough as j increases.
As data processing using a Daubechies 5 wavelet at level 3 has been preferred in studies of
flow predictions [33,48–51], the discrete wavelet at level 3 (J = 3) was used in this study.

2.4. LSTM Hyper-Parameters

Configuring an LSTM network by adjusting hyper-parameters is a difficult task, but it
can have a significant impact on the performance of data-driven models [37]. Additionally,
the shape of the learnable parameters depends heavily on the number of inputs (Nin),
the hyper-parameters of the number of hidden units (NhU), and the number of layers
(Nl), as shown in Table 2. As inappropriate values of NhU and Nl can lead to unreliable
LSTM models, close attention should be paid to their selection. If these values are too
large, the learnable parameters that need to be trained will increase, the size of the training
dataset will be large, and considerable training time will be required. Complicating matters
further, too many hidden units can cause overfitting phenomena in data-driven models [52].
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To compensate for this issue, a dropout technique is often used, as reducing the number of
cells in the network during training can prevent overfitting. The number of cells can be
adjusted from 0 to 1 depending on the dropout rate (ND).

To train an LSTM network by estimating the learnable parameters W, U, and b,
an objective function (or a loss function) for a given hyper-parameters must be evaluated.
Here, the value of the loss function was computed from a subset (i.e., a mini-batch) of
LSTM predictions and their corresponding observations; the learnable parameters during
training were updated according to a given loss function at each iteration step. The number
of iterations (Nit) was determined based on Nt, the mini-batch size (Nb), and the number of
epochs (Ne) (i.e., Nit = Nt/Nb× Ne). Neural networks using small batch sizes can achieve
convergence with fewer epochs [53]. However, using an Nb that is too small can lead to
a large number of iterations, which will take excessive time to compute them. For this
study, Nash–Sutcliffe efficiency (NSE) was chosen as a loss function as it can build LSTM
with greater prediction accuracy compared with other metrics, such as the mean square
error [54].

The hyper-parameters associated with the configuration of this study consisted of
mini-batch size (Nb), dropout rate (ND), the number of hidden units (NhU), the number
of layers (Nl), and the number of epochs (Ne). When tuning the hyper-parameters, two
popular approaches, grid search and random search, are often used [55]. In the first
approach, the grid search can be considered exhaustive as it defines a search space as
a grid of hyper-parameter values and evaluates grid position for all combinations of all
hyper-parameter values. A random search defines a search space as a bounded domain of
hyper-parameter values and chooses random combinations in that domain for evaluations.
The latter approach can create a more reliable model with more combinations of hyper-
parameters, particularly when large amounts of training are used [55–57]. A random search
was therefore used to determine an appropriate set of hyper-parameters to optimize the
LSTM network in this study.

We chose a special form of resampling procedure, K-ld cross-validation, to evaluate
the LSTM model’s performance with a limited dataset. First, the dataset was partitioned
into equally (or nearly equally) K-sized folds or clusters. Subsequently, K iterations were
performed for training and validation such that within each iteration, a different fold of
the dataset was held out for validation (gray cells in Figure 1c) while the remaining K-1
folds were used for training (white cells in Figure 1c) [58]. A useful set of hyper-parameters
can provide almost equally good validation values for an object function for each iteration.
To determine an appropriate number of clusters (K), the average of Silhouette coefficients
(s) is commonly used [59]. For a given data point i in a cluster, the Silhouette coefficient
s(i) is defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (16)

where a(i) is the average distance between point i and all other points in the same cluster,
and b(i) is the average distance between the point i and all points in the nearest cluster.
It is advisable to choose a K that provides a high value of s.

2.5. Summary of Modeling Framework

A brief overview of the methodology adopted for dam inflow prediction, hereafter
called SWLSTM, follows the schematic in Figure 2:

(1) Collect the time series of both the target output yt (i.e., dam inflow) and the candidate
input predictors vt = [v1,t, v2,t, . . . , vNv ,t], t = 1, . . . , Nt. Any inappropriate or missing
values in the collected data should be reviewed carefully.

(2) Determine the explanatory “principal” variables xt =
[
x1,t, x2,t, . . . , xNin ,t

]
, t = 1, . . . , Nt

among the candidate predictors, with an appropriate lag time, using the CCF and PACF.
(3) Decompose and reconstruct the selected input predictors into the wavelet-transformed

subseries
[

D1
1,t, D2

1,t, D3
1,t, A3

1,t, . . . , D1
Nin,t, D2

Nin,t, D3
Nin,t, A3

Nin,t

]
. These reconstructed data
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are normalized to values between 0 and 1, and then split into one set for training and
validation and another for testing. In this study, we set 90% of the total data length
for training and validation and 10% for test.

(4) Determine the number of clusters for the K-fold cross-validation and then optimize
five hyper-parameters by the random search over the training and validation set.

(5) Train and build the LSTM models, using the optimal values of hyper-parameters over
the training and validation set.

(6) Assess and compare the performance of LSTM models in predicting dam inflow
for the test dataset. The LSTM models chosen to demonstrate the effectiveness of
SWLSTM presented here are (1) a regular LSTM without both the determination of
principal lags and variables and the WT, (2) a “WLSTM,” which is a regular LSTM
coupled with a WT, and (3) a “SLSTM,” which is similar to a regular LSTM but
performs the input specification in the Step 2.
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2.6. Evaluation Metrics

Three evaluation metrics of NSE, mean absolute error (MAE), and peak error (PE) were
used to qualitatively measure the performance of model accuracy. Each was computed
over the test period as:

NSE = 1− ∑Nt
t=1
(
yt − yobs

t
)2

∑Nt
t=1

(
yobs

t − yobs
)2 (17)

MAE =
∑Nt

t=1

∣∣yt − yobs
t
∣∣

Nt
(18)

PE =

∣∣yobs
max − ymax

∣∣
yobs

max
× 100 (19)

where yobs
t denotes the observation of dam inflow at time t; yobs is the average of yobs; ymax

and yobs
max are the predicted and observed peak dam inflow, respectively.

2.7. Open Source Software

Our research relies on open source software with the programing language of Python
3.7 [60]. The libraries of Numpy [61], Pandas [62] and Scikit-learn [63] were used for
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managing and preprocessing the data. TensorFlow [64] and Keras [65] were utilized to
implement LSTM. The hardware environment was configured with Intel(R) Xeon(R) Gold
6242 CPU at 2.80 GHz × 32 processors, and 376 GB of RAM.

3. Study Area and Dataset

The Hwacheon dam watershed in the central part of the Korean Peninsula (its latitude
and longitude are 127◦47′ E and 38◦7′ N, respectively) was chosen as a case study (Figure 3).
The watershed created by the dam covers 3901 km2, approximately 80% of which is forest,
and its elevation varies from close to 120 m at the dam site to 1600 m. The Hwacheon dam
was designed as a multipurpose dam for generate electricity, prevent floods, and store water.
Its power generation capacity is 326 GWh and its total storage capacity is approximately
1018 Mm3, making it a relatively large dam for South Korea. The Peace dam, located
upstream of the Hwacheon dam, was built to prevent flooding and prepare for North
Korean military (flood) attacks, and is normally operated as a dry-water dam. A daily
dataset for 5844 days from 1 January 2004, to 31 December 2019 was collected and is
described in Table 3. Wherein, the first 5260 days (90% of the total data) were used for
training and validation, while the rest was left for testing the trained models. The data
collected includes inflow to the Hwacheon dam (Qin), dam outflow from Peace dam
(Qo), and meteorological data such as precipitation (Pr), temperature (Ta), humidity (H),
wind speed (Ws), and pressure (Pre). Any inappropriate (negative) or missing values in
the collected data were replaced with those interpolated linearly. The amount of such
an inappropriate data is however less than 0.01%. Spatially averaged precipitation was
computed using Thiessen polygons for six rain gauges in Table 3 and Figure 3.
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Table 3. Information about the data used for predicting the inflow of the Hwacheon dam.

Variable * Station Name Station ID Longitude Latitude Source

Qin (m3/s) Hwacheon dam 1010310 127◦46′60′′ 38◦ 7′0”

Water Resources Management
Information System

(http://www.wamis.go.kr:
8081/ENG/, accessed on 1st

January 2020)

Qo (m3/s) Peace dam 1009710 127◦50′55′′ 38◦12′43′′

Pr (mm)

Hwacheongunchung 10094010 127◦50′54′′ 38◦12′34′′

Bangsanchogyo 10104030 127◦56′35′′ 38◦12′36′′

Hwacheondam 10104050 127◦46′38′′ 38◦ 7′2′′

Geumakri 10104060 127◦55′52′′ 38◦11′36′′

Suibcheon 10104170 127◦54′5′′ 38◦10′59′′

Yanggu Seocheon 10104171 127◦59′3′′ 38◦ 6′28′′

Ta (◦C)

Chuncheon 101 127◦44′8.51” 37◦54’59.27”

Automated Surface
Observing System

(https://data.kma.go.kr/
cmmn/main.do, accessed on 1st

January 2020)

H (%)

Ws (m/s)

Pre (hPa)

* Qin: inflow to Hwacheon dam; Qo: outflow from Peace dam; Pr: precipitation; Ta: temperature; H: humidity; Ws: wind speed; Pre:
pressure.

4. Results and Discussion
4.1. Determining Principal Input Predictors and Their Sequence Lengths

To construct an appropriate input combination for the LSTM model, the principal
variables and sequence lengths were determined using the statistical properties of the can-
didate variables. Figure 4 provides the statistical correlations between the seven candidate
input variables (i.e., Qin, Qo, Pr, Ta, H, Ws, and Pre) and the target variable (Qin). Figure 4a
shows the CCF between the seven candidate variables with a time lag of zero, indicating
that Qo and Pr were strongly correlated with Qin (their CCFs were approximately 0.63
and 0.48, respectively); Ta and H had a relatively weaker correlation with Qin; and Ws and
Pre had a negative correlation with Qin. The correlations for other combinations of the
remaining variables were all less than 0.2, with the exception of the correlation between
H and Ta. Regarding the correlations between Qin and the seven candidate variables at
different time lags from 0 to 10, Figure 4b shows that Qin had a strong autocorrelation up
to a 1-day lag (the PACF is approximately 0.8), and the correlation became significantly
lower when the time lag was greater than 1 day. The CCF values for Qo and Pr, which had
a strong correlation with Qin, became smaller as the time lag increased, while the values
for the remaining four variables were not influenced by the magnitude of the time delay
(see Figure 4c–h).

Based on the PACF and CCF analyses, a final set of input variables and sequence
lengths (time lags) that had a high correlation with the target output Qin were selected.
However, choosing only the input variables and the lags that have a close correlation
with the target variable posed some challenges. In previous research, such a selection was
typically based on user decisions made through trial and error, and no specific rules or
criteria were used to determine the which key inputs were optimal [5,37,66]. We proposed
a robust analysis using a “correlation threshold” for the PCAF and CCF values, and only
variables greater than this threshold were used as input predictors and their time lags to
construct and train a model. If the correlation threshold was small (e.g., 0.026, the upper
bound of the 95% CI from Equation (12)), most of the variables and sequence lengths
could be adopted to predict the target variable. Conversely, if the threshold was large (e.g.,
0.8), the SLSTM model was constructed using only a limited number of predictors that
were highly correlated with the target variable. Figure 5 depicts the performance of the
SLSTM against the correlation threshold as a loss function (NSE). A model trained on a
threshold of 0.4 produced the highest NSE value of 0.66, which was considered optimal.
The model performed the poorest with a small threshold of 0.026, which means that a large

http://www.wamis.go.kr:8081/ENG/
http://www.wamis.go.kr:8081/ENG/
https://data.kma.go.kr/cmmn/main.do
https://data.kma.go.kr/cmmn/main.do
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number of inputs (up to 44 in this study) that were not highly correlated with the target
variable led to overfitting and less-accurate outcomes. However, if using a high threshold
(greater than 0.6), the number of input predictors may be limited (only 1 in this study) and
not be sufficient to describe the target variable. By selecting the principal variables and
their corresponding sequence lengths based on the optimal threshold of 0.4, Qint−1, Qot−1,
Qot−2, Qot−3, Prt−1, and Prt−2 became the inputs to predict the inflow of Hwacheon dam.
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The black dot lines denote 95% confidence interval computed from Equation (12).
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Figure 5. The effects of a correlation threshold for the PCAF and CCF values on the NSE of SLSTM
over the validating period below (see the black line). The dashed line on the right axis denotes
the number of inputs (Nin) including principal predictors and their time lags for each threshold.
The black dots indicate the optimal threshold value. The first 4680 days (80%) data and the next
580 days (10%) are employed for training and validation, respectively. The hyper-parameters
suggested by Kratzert, Klotz [37] are employed.
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4.2. Decomposing Input Time Series by a Wavelet Transform

Three levels of DWT decomposition were performed on the seven candidate input
variables for WLSTM and the six selected inputs defined above for SWLSTM, extract-
ing four subseries for each. Figure 6 shows the original and transformed time series of
the three principal variables of Qin, Qo, and Pr. The degree of fluctuations in the “De-
tail” time series is smoother and has a lower frequency at higher decomposition levels.
The “Approximation” A3 has a rougher and slower gradual trend than the original time
series x.
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Figure 6. Decomposed time series for the three principal input variables (Qin, Qo, and Pr) after wavelet transform. x
denotes the original time series; D1, D2, and D3 denote the ‘Detail’ time series at the levels of 1, 2, and 3, respectively; A3

refers to the ‘Approximation’ time series among the decompositions of x at the level 3. The subplots from the second row to
the end row are zoomed in for the peak of the subplots of the first row (a period of 900–1000).

Data processing by the three levels of decomposition created an additional time series
that is five times the number of the original time series (i.e., one original time series plus
four decomposed time series). Eventually, the inputs used to train the LSTM models
presented in this study and predict dam inflow were (1) for LSTM, all seven candidate
variables at t-1 timestep (i.e., Qint−1, Qot−1, Prt−1, Tat−1, Ht−1, Wst−1, and Pret−1); (2) for
SLSTM, six variables selected from the above “correlation threshold” analysis (i.e., Qint−1,
Qot−1, Qot−2, Qot−3, Prt−1, and Prt−2); (3) for WLSTM, in addition to the seven candidate
variables, subtime series on each by WT (for a total of 35 inputs); (4) for SWLSTM, a total
of 30 variables made by WT on the six variables. For more details, see Table 4.
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Table 4. Summary of input and output variables used for training four data-driven models (LSTM,
SLSTM, WSLTM, and SWLSTM).

Model x y

LSTM Qint−1, Qot−1, Prt−1, Tat−1, Ht−1, Wst−1, Pret−1

Qint

SLSTM Qint−1, Qot−1, Qot−2, Qot−3, Prt−1, Prt−2

WLSTM

Qint−1, D1
Qin, t−1, D2

Qin, t−1, D3
Qin, t−1, A3

Qin, t−1,
Qot−1, D1

Qo, t−1, D2
Qo, t−1, D3

Qo, t−1, A3
Qo, t−1,

Prt−1, D1
Pr, t−1, D2

Pr, t−1, D3
Pr, t−1, A3

Pr,t−1,
Tat−1, D1

Ta, t−1, D2
Ta,t−1, D3

Ta,t−1, A3
Ta,t−1,

Ht−1, D1
H,t−1, D2

H,t−1, D3
H, t−1, A3

H,t−1,
Wst−1, D1

Ws,t−1, D2
Ws,t−1, D3

Ws,t−1, A3
Ws,t−1,

Pret−1, D1
Pre,t−1, D2

Pre,t−1, D3
Pre,t−1, A3

Pre,t−1

SWLSTM

Qint−1, D1
Qin, t−1, D2

Qin, t−1, D3
Qin, t−1, A3

Qin, t−1,
Qot−1, D1

Qo, t−1, D2
Qo, t−1, D3

Qo, t−1, A3
Qo, t−1,

Qot−2, D1
Qo, t−2, D2

Qo, t−2, D3
Qo, t−2, A3

Qo, t−2,
Qot−3, D1

Qo, t−3, D2
Qo, t−3, D3

Qo, t−3, A3
Qo, t−3,

Prt−1, D1
Pr, t−1, D2

Pr, t−1, D3
Pr, t−1, A3

Pr,t−1,
Prt−2, D1

Pr, t−2, D2
Pr, t−2, D3

Pr, t−2, A3
Pr,t−2

4.3. Optimizing the Hyper-Parameters

Choosing an appropriate set of hyper-parameters significantly affected model per-
formance. To investigate the effects of the five hyper-parameters on the value of the loss
function (i.e., NSE), their configurations were set as listed in Table 5, with controlled
values suggested by Kratzert, Klotz [37]. As shown in Figure 7, change in NSE values
was negligible (neither increasing nor decreasing) as the value of each hyper-parameter
increased. SWLSTM consistently provided the largest NSE, with values in the range of
0.7–0.8, while LSTM provided the smallest NSE range of 0.5–0.6. These results indicate in
part that SWLSTM outperformed the other models.

Table 5. The configurations of the hyper-parameters to investigate the effects of each hyper-parameter on the model
performance in Figure 7. The controlled value for each hyper-parameter was borrowed from Kratzert, Klotz [37].

The Number of Layers The Number of
Hidden Units Dropout Rate Batch Size The Number of Epochs

Figure 7a 1, 2, 3, 4, 5, 6, 7 100 0.1 512 200

Figure 7b 1 10, 50, 100, 150, 200,
250, 300, 350, 400 0.1 512 200

Figure 7c 1 20 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9 512 200

Figure 7d 1 20 0.1 2, 4, 8, 16, 32, 64, 128,
256, 512 200

Figure 7e 1 20 0.1 512 10, 50, 100, 200, 250, 300,
350, 400, 450, 500

In this study, an optimal hyper-parameter set for the four data-driven models was
determined from K-fold cross-validation and the random search. First, an appropriate
number of clusters for K-fold cross-validation was chosen based on the average Silhouette
coefficients, s, and the “distortion score” of the elbow method (Figure 8). In general,
K values can be selected that provide a high value of s and those corresponding to the
“elbow” of the distortion score curve. As K increased, the s value tended to decrease overall,
so K values from 2 to 5 could be chosen. The gray dashed line in Figure 8 shows an elbow
with a K near 5–7. A K of 5 was therefore selected to optimize the hyper-parameters of the
four data-driven models in this study.
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Figure 7. The effects of hyper-parameters, (a) the number of layers, (b) the number of hidden units,
(c) dropout rate, (d) batch size and (e) the number of epochs on NSE, computed over the validating
period using the four data-driven models (LSTM, SLSTM, WLSTM, and SWLSTM). The first 4680 days
(80%) data and the next 580 days (10%) are employed for training and validation, respectively. Hyper-
parameters used for each subplot are illustrated in Table 5.

For a K of 5 and a confined range specified in the second column of Table 6, a set of
hyper-parameters for the four models was found using the random search method (see
Table 6 for the optimal hyper-parameter set). As a result, two LSTM layers were required
for all four models, while the values of other hyper-parameters varied. Specifically, WLSTM
and SWLSTM required a larger number of hidden units, epochs, dropout, and batch size
compared with the other two models. Such a complex configuration was required because
the amount of inputs used by WLSTM and SWLSTM was five times more than in other
models. The CPU time required for this process is 2–6 min, much more than LSTM training
that takes about 50 s and other processes (LSTM prediction, wavelet transformation,
and normalization) that only take a few seconds.

Table 6. The prior ranges of the hyper-parameters used in the Random search (see the second column)
and determined optimal values of the hyper-parameters for four data-driven models by random
search and K-fold cross-validation with K of 5 (see the rest columns).

Hyper-Parameters Range LSTM SLSTM WLSTM SWLSTM

The number of layers [1–7] 2 2 2 2

The number of hidden units [10–400] 100 150 200 200

The number of epochs [10–500] 250 250 250 250

Dropout rate [0.1–0.9] 0.3 0.5 0.5 0.6

Batch size [2–512] 8 8 32 32
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Figure 8. Silhouette coefficient s(i) versus the number of clusters (K) used in K-fold cross-validation. Boxplots are drawn
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score’ computed in the elbow method.

4.4. Predicting Dam Inflow with Trained LSTMs

LSTM models trained using optimal hyper-parameters were applied to the test dataset
to predict inflow at the Hwacheon dam. Comparing the hydrographs with observations,
the overall variation and magnitude of predicted inflow using SWLSTM agreed more
closely with observations than did the results produced by other models (Figure 9). Quanti-
tatively, SWLSTM had an R2 of 0.96 in a 1:1 comparison between prediction and observation,
which outperformed the 0.77, 0.92, and 0.92 values produced by LSTM, SLSTM, and WL-
STM, respectively. The results produced by NSE, MAE, and PE confirm that the predictions
from SWLSTM were closest to observations. In particular, compared with LSTM, which has
an NSE of 0.65 and a PE of 29.1%, both metrics were significantly improved to an NSE of
0.89 and a PE of 7.7% (see Figure 9 for specific values).
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Figure 9. The comparisons of the dam inflow predicted by four models of (a) LSTM, (b) SLSTM, (c) WLSTM, and (d)
SWLSTM with observations for the reserved ‘test’ dataset. The subplots demonstrate 1:1 comparisons between observations
and predictions of dam inflow at each timestep. The optimal hyper-parameters specified in Table 6 and the 5-folds (K = 5)
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To examine the superiority of SWLSTM proposed in this study compared with the
other models, a relative “difference” metric (∆) in Equation (20) was introduced:

∆ =
|MetricA −Metricideal | − |MetricB −Metricideal |

|MetricA −Metricideal |
× 100 (20)

where MetricA and MetricB are the values of a metric for two models A and B, Metricideal
represents the ideal (perfect) value of the metrics of R2, NSE, MAE, and PE (1, 1, 0, and 0,
respectively). The positive (or negative) values of ∆ indicate that the prediction results of
model B are more (or less) accurate than those computed by model A. Table 7 shows that
the accuracy performance of SWLSTM was superior to that of LSTM, SLSTM, and WLSTM.
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Table 7. Accuracy improvements of SWLSTM to three other models of LSTM, SLSTM, and WLSTM
for dam inflow predictions for the test dataset. A relative “difference” metric (∆Metric) in Equation
(20) is computed for four evaluation metrics (R2, NSE, MAE, and PE). The positive (or negative)
values of ∆Metric indicate that the prediction results of SWLSTM are more (or less) accurate than
those computed by other models. The optimal hyper-parameters specified in Table 6 and the 5-folds
(K = 5) are employed.

Relative “Difference”
Metric (%)

SWLSTM vs.
LSTM

SWLSTM vs.
SLSTM

SWLSTM vs.
WLSTM

∆R2 82.5 50 49.5
∆NSE 68.4 27.7 53.4
∆MAE 29.8 −8.4 25.5
∆PE 75 77.3 48.8

Based on these results, we concluded that the selection of appropriate input predictors
and time lags helped create a more reliable data-driven model (see comparisons of SLSTM
vs. LSTM and SWLSTM vs. WLSTM). In general, all factors related to weather and
hydrology as well as the past histories of each variable, can affect dam inflow predictions,
but using too much information that is not highly correlated (Figure 4) creates an overfitting
model. As the number of input data increases, the noise for that input will also increase,
and it is difficult to accurately estimate weights (or learnable parameters) for each input.
Additionally, the historical period that affects the future inflow varies depending on the
predictor. For example, Qin is closely related to itself a day ago, while for Qo and Pr,
data from 3 and 2 days ago are also important.

It is interesting to note that the use of WT improved the flood peak predictability of
data-driven models. That is, the PE values of WLSTM and SWLSTM were approximately
one-half and one-quarter the size of those from LSTM and SLSTM, respectively. Addi-
tionally, near the flood peak in the test dataset, the bias values for both models using WT
were much smaller than those for the non-WT models (Figure 10). With the aid of WT,
five times as much data were used, and they can be reconstructed with various levels of
decomposition. To train extreme data such as flood peaks, including separate time series
such as WT appeared to be effective. If only one original data point was used for training,
abnormally extreme high-frequency data may be considered noisy rather than critical
information to be learned, which may fail to recognize, learn, and predict these events.
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4.5. Feasibility to Multimodal, Multitask, and Bidirectional Learning

Recently, multimodal, multitask, and bidirectional learning has received great in-
terest [33,34,66,67], and it is worth discussing the feasibility of hydrological time series
predictions (e.g., dam inflow, runoff, or flood predictions). First, both multimodal learning
with multiple inputs and multitask learning with multiple outputs are related to high-
dimensional problems. In hydrological time series predictions, there are three reasons for
increasing the dimension, namely, a case where the number of input or output variables is
large, a case where the sequence length or lead time of each variable is long, and a case
where the values of the variables vary spatially. In the latter case, the number of dimensions
can increase significantly up to O(102 to 106) while it is not very large, O(100 to 101) in the
first two cases. In this study, multimodal learning for the first two cases was performed
with a maximum of 30 dimensions. As a future study, it will be necessary to review the
learning ability for ultra-high-dimensional problems that can take into account the spatial
heterogeneity of variables.

The second is to examine the applicability of bidirectional learning in predicting
hydrologic time series. Several studies have mentioned the superiority of bidirectional
learning [68], which combines information from both the past and the future at the same
time. However, this is limited to predictions of language models or hindcasting problems
in which future data exist. It is challenging to apply it to hydrological forecasting cases
because future information about weather variables (e.g., precipitation) and human (e.g.,
dam) operation is unknown at the present time.

5. Conclusions

In this study, data-driven models based on an LSTM network were built to pre-
dict daily inflow at the Hwacheon dam in South Korea. Three important aspects were
considered to improve the accuracy of dam inflow predictions in an integrated fashion:
(1) principal input predictors and their time lags were determined from a robust analysis
of the statistical properties of the data series; (2) the original time series was converted to
multiscale subseries by a WT; (3) hyper-parameters of all models were efficiently optimized
through K-fold cross-validation and the random search. The effectiveness of SWLSTM,
a model trained to consider these aspects, was compared with LSTM (trained without input
selection and data transformation), SLSTM (trained with input selection only), and WLSTM
(trained with data transformation only). The primary findings of this study are presented
in the following paragraphs.

First, seven candidate input variables (i.e., inflow to the Hwacheon dam, outflow
from Peace dam, precipitation, temperature, humidity, wind speed, and pressure) were
initially chosen to investigate the correlation properties for the target output, Qin. Based
on PACF and CCF analyses, we selected a final set of input variables and their sequence
lengths (time lags). However, how to choose only the input variables and the lags that
are closely correlated with the target variable remains an open question. In this study,
a robust analysis using a correlation threshold for the PCAF and CCF values was proposed,
and only variables greater than this threshold were selected as input predictors and their
time lags. As shown in Figure 5, a model trained on a threshold of 0.4 produced the highest
NSE value. Eliminating variables that have a low correlation with Qin helped prevent
divergence and restrict overfitting in the learning model. Conclusively, Qint−1, Qot−1,
Qot−2, Qot−3, Prt−1, and Prt−2 become the principal inputs to predict the inflow of the
dam. The effectiveness of such an input specification was validated because the models
using it (SLSTM and SWLSTM) provided exceptionally accurate predictions compared
with the unused models (i.e., LSTM and WLSTM).

Second, using additional data series reconstructed by a WT improved predictability,
particularly for flow peak (see the comparisons of WLSTM vs. LSTM and SWLSTM vs.
SLSTM). The PE values of WLSTM and SWLSTM were approximately one-half and one-
quarter the size of those produced by LSTM and SLSTM, respectively. For training extreme
data such as flow peaks, including separate time series by WT can be effective. If only one
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original data point is used for training, abnormally extreme high-frequency data may be
considered noisy rather than critical information to be learned, and the system may fail to
recognize, learn, and predict these events.

Third, for a K of 5 as determined by the Silhouette coefficients and the distortion score
(Figure 8), a set of hyper-parameters for the four models was found using a random search
(Table 6). Both WLSTM and SWLSTM require a larger number of hidden units, epochs,
dropout, and batch size compared with the other two models. The need for this complex
configuration is clear because the amount of inputs used by WLSTM and SWLSTM was
five times greater than that of the other models.

Last, accuracy performance investigated by various evaluation metrics revealed that
SWLSTM is superior to LSTM, SLSTM, and WLSTM by 84%, 78%, and 65%, respectively.
When the SWLSTM framework in this study is coupled with the procedures of a WT and
the input specifications, overall and peak accuracy of time-dependent flow prediction
improved. Ultimately, accurate forecasts of inflow will help policy makers and operators
better manage their reservoir operations and tasks.
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