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Abstract: The production–inventory system is a problem of multivariable input and multivariant
output in mathematics. Selecting the best system control parameters is a crucial managerial decision
to achieve and dynamically maintain an optimal performance in terms of balancing the order rate and
stock level under dynamic influence of many factors affecting the system operations. The dynamic
performance of the popular APIOBPCS model and the newly modified 2APIOBPCS model for
optimal control of production–inventory systems is examined in the study. This examination is based
on the leveled ground with a new simulation scheme that incorporates a designated multi-objective
particle swarm optimization (MOPSO) algorithm into the simulation, which enables the optimal set
of system control parameters to be selected for achieving the situational best possible performance
of the production–inventory system under study. The dynamic performance is measured by the
variance ratio between the order rate and the sales rate related to the bullwhip effect, and the integral
of absolute error related to the inventory responsiveness in response to a random customer demand.
Our simulation indicates that the 2APIOBPCS model performed better than or at least no worse than,
and more robust than the APIOBPCS model under different conditions.

Keywords: multivariable control; simulation; multi-objective particle swarm optimization (MOPSO);
production–inventory system; dynamic performance

1. Introduction

Simulation of a production–inventory system, even the simplest model comprising
one manufacturer and one retailer, is a problem of multivariable input and multivariant
output in mathematics. The demand (related to new order rate) and the supply or stock
level (related to customer satisfaction) must be balanced under the dynamic influence
of many factors affecting the system operations [1]. A low level of stock may lead to
an increase in customer dissatisfaction and even loss of business opportunities to other
competitors. An over exaggerated order rate may lead to over supply that reduces the
financial flexibility or could drive down the sale price for the retailer. For example, Cisco en-
countered $2.2 billion in overstocked inventory due to an imbalance between supply and
demand in May 2001 [2]. Sony Electronics faced an excessive production cost because
of an over-anticipation of the demand for PlayStation®3 [3]. Either way, the production–
inventory system would not be operating at a desired status for both profit generation and
customer satisfaction.

Overstocking is mainly caused by the “bullwhip” effect in the production–inventory
system, which is the scenario where orders to the suppliers tend to have larger fluctuations
than sales to the buyers [4]. Holweg et al. [5] found that the actual demand signal from the
customers in a supermarket for a soft drink was amplified many times before it reached
the soft drink supplier. As no system is perfect all the time, industries have to cope with
real-world bullwhip, not just a 1-to-2 amplification but a 1-to-20 or higher amplification [6].
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Production–inventory systems are also subject to a variety of sources of uncertainties,
such as unpredicted delay in manufacturing [7]. These combined impacts can affect
the dynamic performance of any production–inventory system. Therefore, studying the
dynamic control of production–inventory systems for achieving optimal performance
under various uncertainties has been attempted with various models and/or methods by
researchers in the world [1,4,6–10].

Among these models and/or methods, control theory with feedback mechanisms has
become a popular choice to analyze and simulate production–inventory systems through
different mathematical tools, such as Laplace transforms, Z-transforms, transfer functions,
block diagrams and frequency analysis, and numerous studies have been conducted in
this space [8–12]. The inventory and order based production control system (IOBPCS)
model proposed by Towill [13] has been recognized as a common framework for mod-
eling the control of a production–inventory system. John et al. [14] made an important
extension to the IOBPCS model by including the work-in-process (WIP) feedback and pro-
posed the automatic pipeline, inventory, and order based production control system (APIOBPCS)
model, which has been widely used for modelling production–inventory systems since
then [15–19].

In a new project started from 2017, the authors have attempted to expend the classic
APIOBPCS model to a new model named two automatic pipeline inventory and order based
production control system (2APIOBPCS) by incorporating the completion production rate
into the production–inventory control system so as to mitigate uncertainties in manufac-
turing for the system modelling [20–22]. Our first outcome from this project produced
a comprehensive literature review on the applications of classical and modern control
theory to production–inventory problems [20]. The second output was mainly focused
on deriving the mathematical formulation of the 2APIOBPCS model in the state space
by Laplace transforms and demonstrating its stability and convergence with respect to
the APIOBPCS model [21]. As both the APIOBPCS and 2APIOBPCS models represent
complicated systems with more control parameters, choosing the control parameters used
to be experience-based. There is a need to find an intelligent way to deal with the selection
of the control parameters to achieve the optimal outcomes. The third study aimed at
adopting the multi-objective particle swarm optimization (MOPSO) for selecting the best
system parameters to achieve optimal control for the production–inventory systems, with a
focus on simulating the well-regarded APIOBPCS model as a benchmark [22].

However, an integrated solution for the 2APIOBPCS model and its performance in
dynamic control of a production–inventory system has not been systematically examined
and compared to the APIOBPCS model to demonstrate its credibility and usefulness for
potential industry adoption. The purpose of this work is to fill this gap by simulating
the dynamic performances of these two models under different scenarios, including the
consistency between the order and the production (lead time) and flexibility in production
capacity for a simple production–inventory system.

The rest of this study is organized as follows. Section 2 provides a brief review of
the APIOBPCS and 2APIOBPCS models and a summary of their mathematical formula-
tions for simulations, including the performance metrics. Section 3 details the procedure
of simulation and experimental considerations. Section 4 presents the simulation out-
comes incorporated with comparisons and discussions. Section 5 concludes the study by
summarizing the main findings of this work.

2. Background Information of the Control Models for Production-Inventory Systems
2.1. A Beief Review of the the APIOPBCS and 2APIOPBCS Models

A production–inventory system is a basic unit in supply chain that integrates inven-
tory control policies with the production process. In modelling and simulation practices,
a production–inventory system is represented by a block diagram, the example of the
well-known APIOPBCS being shown in Figure 1. There are three major parts in APIOPBCS,
the forecasting mechanism, the production lead time, and the controller strategy [15–22].
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Figure 1. Block diagram of the automatic pipeline, inventory, and order based production control
system (APIOBPCS) model.

• The forecasting mechanism is a feed-forward loop designed to provide the estimated
average sales (AVCONS) and to set the desired work-in-process (WIP) level (DWIP).
CONS represents the sales or consumptions. The feed forward gain (T̃p) works as a
safety factor to compensate the production delay and equals the production lead-time
(Tp). The estimated average sales (AVCONS) is commonly used to control the inventory
steady-state error. Exponential smoothing with time constant (Ta) representing the
average age of the data is a forecasting method commonly used to smooth the de-
mand because of its simplicity and comprehensibility in mathematics for practitioners.
The DWIP is obtained from multiplying the AVCONS by feed forward gain T̃p.

• The production lead time represents the total time required between placing an order
and receiving the product as a finished item in the inventory. The controller designer
cannot manipulate the lead time as it is considered as a characteristic of the system.
The production lead time in the production–inventory control system is modelled as a
first order lag with time constant Tp that responds to a sudden change in the demand.

• The controller strategy utilizes the forward and feedback information to generate a so-
phisticated decision to determine the manufacturing rate for the production–inventory
system. In the APIOBPCS model, a production policy based on the pipeline output
where the completion rate (COMRATE) is compared to the averaged demand AVCONS
and their difference is fed back to the controller. Ti is an inventory order constant time
for proportional control.

The APIOBPCS model utilizes three policies (demand, inventory level, pipeline poli-
cies) to determine the Order Rate (ORATE). The average consumption rate AVCONS based
on exponential smoothing forecasts with time constant Ta is the forward control policy.
The feedback consists of two control polices, the fraction 1/Ti of the difference between the
desired inventory Dinv and the actual inventory Ainv and the fraction 1/TW of the difference
between the desired WIP DWIP and the actual WIP AWIP.

The 2APIOBPCS model [21] shown in Figure 2 has the similar structure to the API-
OBPCS model, with an additional feedback loop using the fraction 1/Tc of the difference
between the desired completion production rates DCOMP and the actual completion produc-
tion rates ACOMP as an extra control for the production–inventory system. Tc is a constant
time for the completion rate (COMP) for proportional control.
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Figure 2. Block diagram of the 2APIOBPCS model.

2.2. Mathematical Formulation of the Two APIOPBCS Models in the State Space

The state-space representation of the APIOBPCS model has three state
variables [13,15,20–22]:

Ainv = x1 (1)

AWIP = x2 (2)

AVCONS =
1
Ta

x3 (3)

where x1 denotes the inventory level; x2 is the items in the production process that are not
finished yet (WIP); x3 represents the consumption or sales state. The derivative state of the
APIOBPCS model is:

.
x1 =

1
Tp

x2 − CONS (4)

.
x2 = − 1

Ti
x1 − (

1
Tw

+
1

Tp
)x2 + (

1
Ta

+
T̃p

TwTa
)x3 (5)

.
x3 = − 1

Ta
x3 + CONS. (6)

The outputs of the system are represented by the inventory level Ainv and the order
rate ORATE defined by

ORATE = − 1
Ti

x1 −
1

Tw
x2 + (

1
Ta

+
T̃p

TwTa
)x3. (7)

The continuous closed-loop state space representation of the APIOBPCS model is

.
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− 1
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−( 1
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1
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) (
1
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Ta

x +

 −1
0
1

CONS (8)
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(
ORATE

Ainv

)
=

 − 1
Ti
− 1

Tw
(

1
Ta

+
T̃p

TwTa
)

1 0 0

. (9)

Similarly, by considering the completion rates, the continuous closed-loop state space
representation of the 2APIOBPCS model is expressed as [21]

.
x =


0

1
Tp

0

− 1
Ti
−( 1

Tw
+

1
Tp

+
1

TpTc
) (

1
Ta

+
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TwTa
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Ta

x +
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0
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CONS (10)

(
ORATE

Ainv

)
=

 − 1
Ti
−( 1

Tw
+

1
TpTc

) (
1
Ta

+
T̃p

TwTa
+

1
TpTc

)

1 0 0

. (11)

2.3. Performance Metrics

The performance metrics that are used to evaluate the performance of production–
inventory systems should have implications on total costs (inventory related costs and
productions related costs) and customer service level (CSL) [23]. In this study, the dynamic
performance of the production–inventory system is evaluated by firstly the variance ratio
(Var) between the order rate and the consumption or the sales defined in Equation (12).

Var =
σ2

ORATE
σ2

CONS
(12)

where σ2
ORATE refers to variance of the orders placed to the manufacturer and σ2

CONS
represents the consumption variance. The Var index is used as a metric to measure bullwhip
effect. In this criterion, there is zero bullwhip if Var = 1; the system is amplified if Var > 1;
the system is smoothed if Var < 1.

The second measure to evaluate inventory responsiveness of a production–inventory
system is the integral of absolute error (IAE) between the actual and the target levels of
inventory defined in Equation (13).

IAE =

t∫
0

|E|dt (13)

where t is the period and E refers to the error in the inventory levels measured as the
deviation of the Ainv level from the Dinv level. The IAE measures positive and negative
errors equally. A lower IAE indicates that the system has a better customer service level
(CSL). The bullwhip effect and inventory responsiveness are two objectives that have
direct impacts on the nature of the basic trade-offs between maintaining the order rates
at the optimal performance, in order to avoid the impact of high amplification of orders,
and maintaining stocks at a desired level to improve CSL.

3. Simulation Procedure and Experimental Considerations
3.1. Simulation Procedure

Simulations of a production–inventory system used to be conducted using some sets
of input parameters mainly based on the practitioner’s experience in operating similar
systems. The best values for the control parameters among the different sets of simulation
outcomes are then determined by comparing the statistical results of these outcomes.
The inputs must of course be reset for simulating a new system. By introducing a designated
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MOPSO algorithm into simulation using the APIOBPCS model [22], once feeding the
demand pattern and production lead time to the system, the automatic simulation process
can produce a set of control parameters (Ti, Tw and Ta), in which each set can achieve
the best balance between the variance ratio (Var) and the integral of absolute error (IAE),
in other words, between the bullwhip effect (cost-effectiveness for the industry) and CSL
or customer satisfaction. These sets of control parameters are usually presented as a Pareto
optimality curve, in which the system manager can choose any desired set on the curve as
the best control parameters.

By embedding the designated MOPSO algorithm into the simulation, the process of
dynamic simulation of a production–inventory system can be summarized in Figure 3.
The inputs to the simulation are the demand pattern and the lead time required for orders.
The inputs trigger the MOPSO algorithm for optimization constrained by both Var and IAE.
The outputs of this optimization process are the best choices for the system configuration
that can produce the optimal performance in terms of improving the system responsiveness
related to CSL and reducing the demand amplification related to the bullwhip effect.
A chosen set of the best control parameters is then fed to the system to simulate the desired
order rate ORATE and inventory level Ainv, which would help the manager to adjust the
stock level near the optimal status.

Figure 3. The process of dynamic simulation of a production–inventory system.

3.2. Experimental Considerations

Any simulation is subject to some system constraints and operational assumptions.
As the purpose of our simulation is to make a leveled comparison on the dynamic perfor-
mance between the APIOBPCS model and the 2APIOBPCS model, we choose a simple
production–inventory system comprising one retailer and one manufacturer for one prod-
uct so as to examine the difference in the dynamic performance of the two control models.
Sophisticated production–inventory systems logically can only make the difference larger.

Since the demand pattern can vary largely, following the common practices in simula-
tion of production–inventory systems, we choose a variable sinusoidal pattern as shown
in Figure 4 to represent the random nature of demand to some extent. Other variables
are assigned the values used in various published works in production–inventory simula-
tions [8,13,14,17–19,24–26]. The major assumptions in all our simulations are as follows.

• The period of physical production lead time is four units of time (Tp = 4). Of course,
this can be assigned to different values but it would not largely alter the general trend.

• Backorders (negative inventory) are permitted.
• The desired inventory is set to zero (Dinv = 0).
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• Day is the basic time unit in the model.
• The simulation was run for 180 days for each scenario.
• The production process can only produce a single unit at a time.

Figure 4. The demand pattern for simulations.

The simulations with our designated MOPSO were conducted with MATLAB. The op-
timization process returns the best sets as a vector p1 = {Ta, Ti, Tw} for the APIOBPCS model.
As the completion rate Tc for the 2APIOBPCS model is in practice a certain value not to
be optimized, it is simply added to the vector p1 to form the control for the 2APIOBPCS
model as p2 = {Ta, Ti, Tw, Tc}.

The parameters for MOPSO used in the simulation were:

• The maximum number of iterations was set to 100.
• The number of particles in the swarm was set to 50.
• The learning coefficients for local and global searches were both set to 2.
• The inertia weight was set as 0.6.
• The size of the archive was set to 20.

The performance of the two models was first examined by simulating them by the
demand pattern under a normal scenario: Matched lead time with flexible production
capacity, followed by three different scenarios: Matched lead time with fixed production
capacity, mismatched lead time with flexible production capacity, and mismatched lead
time with fixed production capacity. The implications of these scenarios are as follows.

• Matched lead time means that the actual lead time and the estimated lead time are
assumed to be matched during the operation, or in other words, the ordered amount
of product should be delivered by the manufacturer to the retailer on time.

• Mismatched lead time means that there is a delay of the ordered product from the
manufacturer to the retailer. This may be caused by machine breakdowns and/or
material shortages to the manufacturer. In such a situation, a longer lead time is
expected. The mismatched scenarios evaluate the robustness of the two models by
measuring how the systems can recover from such disruptions and get back to the
normal level. Such a simulation is represented by a lead time starting at the nominal
value Tp = 4, then to Tp = 6 for a period, and back to the normal Tp = 4.

• Flexible production capacity means that the manufacturer has no problem to produce
the ordered product on time. Even if there is a disruption during production, the man-
ufacturer is able to mitigate the negative impact without delaying the delivery of the
ordered product.

• Fixed production capacity means that there is a limit for the manufacturer to produce
the ordered product within the timeframe. In a normal scenario, the ordered amount
would match the top limit of the manufacturer’s capacity. However, the situation is
prone to any disruption to the production caused by machine breakdowns and/or
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material shortages. In such a situation, when the production capacity in a period is
insufficient to complete the production for an order, the capacity of the next period
is used to continue the production of this order. The order in the affected period is
capped by a constant C, i.e.,

ORATE(t) =
{

ORATE(t) ORATE(t) < C
C otherwise

. (14)

In our simulation, the capacity was set to C = 110 items per day (of course it can be a
different number without losing generality).

4. Simulation Results and Discussion

The control vector p1 = {Ta, Ti, Tw} represents a Pareto curve of infinitely many
combinations that can lead to optimal performance, and each combination can result in a
set of simulation results. In this work, we selected three sets to simulate the two models
separately (Table 1). These three selections correspond to three different ranges of the
bullwhip effect as follows.

• Set 1: Bullwhip smoothing in range 0.8 < Var < 1
• Set 2: Bullwhip avoidance where Var = 1
• Set 3: Small bullwhip in range 1 < Var < 1.3

Table 1. Three optimal control sets to simulate the systems (Tc for 2APIOBPCS only).

Set Var Ti Tw Ta Tc

Set 1 0.8–1.0 3.91 0.55 6.71 10
Set 2 1.0 5 1.13 5.66 21.9
Set 3 1.0–1.3 3.5 1.2 6 2

Note the optimal parameters for the simulation are resulted from MOPSO under the
same demand pattern and lead time (Tp) that are the same for the two models in the same
range of bullwhip effect simulated in this study. As a result, the values of the control
parameters for the two models in the same range are the same. The completion rate for the
2APIOBPCS model is chosen in proportion to each set accordingly.

In our discussion on the simulation results, a new indicator named the ‘improved
inventory responsiveness’ (IIR) is used, which is the percentage ratio of the IAE difference
between the two models versus the IAE of the APIOBPCS model, i.e.,

I IR =
IAEAPIOBPCS − IAE2APIOBPCS

IAEAPIOBPCS
× 100%. (15)

4.1. Case 1: Matched Lead Time with Flexible Production Capacity

Table 2 shows the performances of the two models under the three optimal control sets
for the system in this normal scenario. As expected, there is no difference in the bullwhip
effect as the orders should be fulfilled with the same level for both models. However,
with the information of partly completed order as the dynamic feedback, the system with
the 2APIOBPCS model can produce a better IIR compared to the APIOBPCS model. The im-
provement varies from 3% for no and smoothed bullwhip effect to 9% for a small bullwhip
effect. The improvement is the accumulated outcome over the period of simulation when
on most occasions the inventory level of the 2APIOBPCS model is closer to the desired
inventory level of zero compared to that of the APIOBPCS model as shown in Figure 5,
even though the order rates of the two models are almost identical to each other during
the period.
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Table 2. Performances of Case 1 (the normal scenario) for the two models.

Matched Lead Time with Fixed Production Capacity

APIOBPCS 2APIOBPCS
Var IAE Var IAE IIR
0.85 3.57 × 104 0.85 3.46 × 104 3%
1.0 3.07 × 104 1.0 2.97 × 104 3%
1.25 2.84 × 104 1.25 2.59 × 104 9%

Figure 5. Simulation of Case 1 using Set 2 for the APIOBPCS and 2APIOBPCS models. Order rate
(top) and inventory level (bottom).

4.2. Case 2: Matched Lead Time with Fixed Production Capacity

Table 3 shows the performances of the two models under the three optimal control
sets for the system in this scenario. Due to the limit on the production capacity, a delay in
product delivery is highly likely regardless of the level of orders. Owing to the uncertainties
in product production and delivery, by introducing the capacity constraint (Figure 6),
the estimated order was capped at the top limit, which effectively smoothed the bullwhip
effect for both models, reflected in both models by a smaller Var. As the system waits for
the slow production, the actual IAE is the same to the normal scenario in Case 1. This is in
line with the observation reported in [18].

Table 3. Performances of Case 2 for the two models.

Matched Lead Time with Fixed Production Capacity

APIOBPCS 2APIOBPCS
Var IAE Var IAE IIR
0.38 3.57 × 104 0.38 3.46 × 104 3%
0.47 3.07 × 104 0.45 2.97 × 104 3%
0.54 2.84 × 104 0.54 2.59 × 104 9%
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Figure 6. Simulation of Case 2 using Set 2 for the APIOBPCS and 2APIOBPCS models. Order rate
(top) and inventory level (bottom).

4.3. Case 3: Mismatched Lead Time with Flexible Production Capacity

Table 4 shows the performances of the two models under the three optimal control sets
for the system in this scenario. As the production capacity is sufficient to produce the or-
dered product, product delivery on time is guaranteed. In such a situation, the mismatched
lead time between the order and delivery should be caused by miscalculation of the stock
by the retailer or miscommunication between the retailer and the manufacturer. With the
information of partly completed order as the dynamic feedback, the system with the 2API-
OBPCS model in this case shows a significant advantage with a larger IIR compared to
the APIOBPCS model. For example, if the retailer’s miscalculation resulted in a lower
order than the required level, the 2APIOBPCS model can mitigate the potential loss with
the dynamic feedback to reduce the IAE by 17% as if using the APIOBPCS model. If the
retailer’s miscalculation resulted in a higher order than the required level, the 2APIOBPCS
model can also mitigate the potential loss by reducing the IAE for 12% as if using the
APIOBPCS model. For the desired situation without bullwhip effect, the IAE is reduced by
about 14%. This accumulated outcome over the period of simulation is shown in Figure 7.

Table 4. Performances of Case 3 for the two models.

Mismatched Lead Time with Flexible Production Capacity

APIOBPCS 2APIOBPCS
Var IAE Var IAE IIR
0.85 7.60 × 104 0.85 6.32 × 104 17%

1 5.56 × 104 1 4.76 × 104 14%
1.23 4.44 × 104 1.23 3.93 × 104 12%

Figure 7. Cont.



Mathematics 2021, 9, 568 11 of 13

Figure 7. Simulation of Case 3 using Set 2 for the APIOBPCS and 2APIOBPCS models. Order rate
(top) and inventory level (bottom).

4.4. Case 4: Mismatched Lead Time with Fixed Production Capacity

Table 5 shows the performances of the two models under the three optimal control
sets for the system in this scenario. Similar to Case 2, due to the capacity constraint, a delay
in product delivery is highly likely regardless of the level of orders or miscommunication
between the retailer and the manufacturer (Figure 8). The capacity constraint on production
effectively smoothed the bullwhip effect, which is reflected in both models by a smaller
Var. As the system waits for the slow production, the actual IAE is the same to Case 3.

Table 5. Performances of Case 4 for the two models.

Mismatched Lead Time with Fixed Production Capacity

APIOBPCS 2APIOBPCS
Var IAE Var IAE IIR
0.38 7.60 × 104 0.38 6.32 × 104 17%
0.47 5.56 × 104 0.45 4.76 × 104 14%
0.54 4.44 × 104 0.54 3.93 × 104 12%

Figure 8. Simulation of Case 4 using Set 2 for the APIOBPCS and 2APIOBPCS models. Order rate
(top) and inventory level (bottom).

5. Conclusions

Modelling production–inventory system is a problem of multivariable input and
multivariant output in mathematics. Hence, selecting the best system control parameters is
a crucial managerial decision to achieve and dynamically maintain an optimal performance
in terms of balancing the order rate and stock level under dynamic influence of many
factors affecting the system operations. Simulation is perhaps the best means to deal with
the dynamicity of such a system with multivariable input and multivariant output. By inte-
grating our designated multi-objective particle swarm optimization (MOPSO) algorithm
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into the popular control model APIOBPCS and our newly modified model 2APIOBPCS
for the production–inventory systems, this study compared the dynamic performances of
these two models for modelling the production–inventory systems subjected to a random
customer demand and production variations. By using the MOPSO optimized control
parameters, our simulations point to the following trends between the two models:

• Both models can produce the situational best possible balance between the order rate
and inventory level under the same bullwhip effort if the production lead time is
matched, regardless of the production capacity. However, the 2APIOBPCS model
seemed able to improve the inventory responsiveness by a few percentages compared
to the APIOBPCS model.

• The 2APIOBPCS model seemed able to improve the inventory responsiveness by more
than 10% compared to the APIOBPCS model under the same bullwhip effect if the
production lead time is mismatched.

• By imposing a constraint to the production capacity, the bullwhip effect for both
models seemed reduced but the inventory responsiveness kept the same.

The dynamic performance of the 2APIOBPCS model seemed better or no worse than
that of the APIOBPCS model under different conditions. It looks more robust than the
APIOBPCS model when the production lead time is miscalculated. Hence, the 2APIOP-
BCS model may have a good potential for companies to better manage their production–
inventory systems to maintain optimal performance dynamically. However, we only regard
our findings as some general trends in achieving optimal performance for production–
inventory systems as these findings must be further cross-validated using different sophis-
ticated cases for intensive simulation experiments by other researchers for objectiveness in
the future.
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