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Abstract: Porous media with low/moderate regional velocities can exhibit a complex dynamic of
contamination plumes, in which advection and molecular diffusion are comparable. In this work, we
present a two-dimensional scenario with a constant concentration source and impermeable upper and
lower boundaries. In order to characterise the plume patterns, a detailed discriminated dimensionless
technique is used to obtain the dimensionless groups that govern the problem: an aspect ratio of the
domain including characteristic lengths, and two others relating time and the horizontal length of
the spread of contamination. The monomials are related to each other to enable their dependences
to be translated into a set of new universal abacuses. Extensive numerical simulations were carried
out to check the monomials and to plot these type curves. The abacuses provide a tool to directly
manage the contamination process, covering a wide spectrum of possible real cases. Among other
applications of interest, they predict the maximum horizontal and transversal plume extensions and
the time-spatial dependences of iso-concentration patterns according to the physical parameters of
the problem.

Keywords: contamination plume; advection-diffusion; universal curves

1. Introduction

There are many non-stationary scenarios in large extension water-saturated porous
media in which the existence of both the regional velocity and molecular diffusion of a
solute in the fluid are combined. The primary interest in eventual processes of pollutant
spreading is to determine the spatial and temporal evolution of the contaminant plumes in
order to plan actions of control. The environmental effects involve aquifer contamination,
a problem that has been widely treated in the scientific literature since the middle of
the last century. Specific aspects that range from the mathematical-physical theoretical
description of the process [1] to real cases that generally cause socio-economic impacts [2]
have been addressed.

The objective of this work, as in other works where similar methodologies have been
applied [3–8], is to obtain dimensionless groups that govern the expansive dynamics of
the plumes caused by the simultaneous effects of advection and diffusion. These groups
will collect the preponderance of one phenomenon over another, and they are the mono-
mials according to which the temporal evolution of the horizontal and transversal plume
extensions can be described and represented graphically by means of a universal abacus.

From a practical point of view, these type curves or universal abacuses allows hy-
drogeologists and engineers to confront contamination problems in groundwater systems
through direct analyses to gain rapid predictions using curve matching and interpolation
techniques, making computer simulations or field testing unnecessary. Although the accu-
racy of the results depends, to a great extent, on the experimental parameters, which could
be difficult to obtain when time or economic variables are present, the universal curves can
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establish a range of spatial-temporal contamination extensions based on the reliability of
the field data introduced as input, which must be set as a starting hypothesis. These type
curves can also be used to obtain a preliminary idea of the spread of the contamination
when planning in–situ trace tests, which require setting the location of control points [9,10]
as well as delimiting the time-dependent perimeters when establishing different types of
land use [11,12].

To limit the scope of the work, large 2D rectangular scenarios in which the extension
of the contamination is far from reaching the boundaries of the domain have been de-
vised. The regional flow has been implemented from left to right and the horizontal faces
of the domain are impervious to both flow and solute, simulating a narrowly-confined
layer of 1m in depth parallel to the horizontal surface. The methodology described in
this work to obtain the proper monomials consisted of, firstly, applying the discriminated
dimensionless technique to the governing equations to obtain the dimensionless groups
(a standard objective of dimensional analysis [13–18]), secondly, defining the interdepen-
dences among monomials or unknowns using the Pi theorem [19] and, finally, providing
extensive numerical simulations to verify the reliability of the groups and to depict the
universal abacuses.

It is worth mentioning that in the first step of the protocol, the use of a standard
non-discriminated technique to obtain dimensionless groups in the mathematical model
that govern this problem is a topic of heated debate among researchers [20,21]. The classic
techniques used to obtain the dimensionless groups, once the governing equation has been
written in its dimensionless form, would not, in fact, lead to a proper characterisation of
the problem. These techniques do not generally introduce the hidden magnitudes (which
are the unknowns of interest) or the time factor into the process, so that such unknowns
cannot be derived from the groups by applying the Pi theorem. Instead, the proposed
dimensionless protocol (discriminated and normalised nondimensionalisation of the gov-
erning equation) leads directly to the least number of independent groups and to the
function of dependence between the unknowns and the physical and geometric param-
eters of the problem. By means of mathematical approximations and manipulation, the
protocol associates to each addend of the equation a numerical coefficient of a dimensional
character which balances with the rest, deducing the groups as independent ratios between
these coefficients.

It should also be noted that the dimensionless group that characterises this type of
coupled problem (advection and molecular diffusion) is the so-called Peclet number [22].
A dimensional study of the equation has been carried out in some research with different
transport and flow conditions in dispersive scenarios, depicting type curves that are
dependent on the Peclet number [23,24]. Despite the fact that hydrodynamic dispersion
effects can be neglected when regional velocities are small enough, in the scenario presented
here, this number cannot be defined a priori since the extensions of the domain (length
or width) are not relevant to the study of the dynamics of contamination. As mentioned
above, in this work we consider instead the time needed for the contamination plume to
reach the boundaries. The dimensionless groups deduced, all of which contain unknowns,
allow us to establish the functional relationships that we are interested in.

As for the second step in the methodology, once the Pi theorem has been applied and
the dependences of the unknowns have been deduced, the direct quotient between the
regional velocity (vo) and the molecular diffusivity (D) emerges as a determining factor
in the prevalence of the transport phenomenon over diffusion. It is a dimensional factor
(vo/D) whose unit is the inverse of a length (m−1) with no apparent physical meaning.
Indeed, the unknowns (horizontal and transversal extensions of the contamination plume
or global isoline pattern) are also dependent on a time factor. The expression of this
dependence allows us to separate the effect of the quotient (vo/D) and the product voτ (τ
is time) to substantially simplify the universal representation.

Finally, the numerical simulations are performed with SEAWAT [25], a widely recog-
nised and reliable software package used for theoretical [26,27] and practical-technical
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purposes [28,29]. A large number of numerical simulations has allowed us to develop a
wide set of universal abacuses that provide relevant information on the space-time dynam-
ics of the contamination plume. The physical variables of the problem cover a range of
solutions which are fully representative of all the cases that may occur in practice, including
those asymptotic cases of negligible diffusion versus advection, and vice versa. The limit
of negligible diffusivity allows us to represent new universal curves to characterise pure
advective processes. The use of universal graphs is illustrated with examples.

The hypotheses assumed in the physical model are the following: (i) velocities small
enough to neglect the effect of hydrodynamic dispersion, (ii) the Darcy flow (negligible
inertial forces and laminar flow), (iii) isotropic and uniform hydraulic conductivity, (iv)
viscosity independent of concentration, (v) two-dimensional geometry and the absence of
gravitational effects, (vi) isothermal conditions, (vii) water-saturated porous media, (viii)
the absence of sources and/or sinks for flow, (ix) fully miscible single-phase fluid with
negligible compressibility for both the fluid and the porous matrix (constant porosity) and
(x) non-reactive solute transport.

2. Nomenclature
ao numerical constant (dimensionless)
c fluid concentration (kg/m3)
co constant fluid concentration at a certain point (kg/m3)
D molecular diffusivity coefficient (m2/d)
g gravity acceleration (m/s2)
h hydraulic head (energy per unit of specific weight)
H height of the domain (m)
hl, hr hydraulic head at the left and right boundaries, respectively
k permeability (m2)
K hydraulic conductivity (m/d)
l length (m)
L horizontal length of the domain (m)
L length of the domain (m)
H vertical length of the domain (m)
p pressure at the point (Pa)
q specific discharge or Darcy velocity (m/d)
v fluid velocity (m/d)
vo regional Darcy velocity (m/d)
xo location of the constant concentration point (m)
x,y horizontal and transversal coordinates (m)
θ porosity (dimensionless)
µ dynamic viscosity (kg m−1s−1)
π dimensionless groups
ρ fluid density (kg/m3)
ρo density of the fluid with zero concentration (Kg/m3)
τ time (days)
τc time factor (days)
Ψ identifies a general unknown function
~ denotes the same order of magnitude
≡ denotes equivalence for dimensionless groups
Subscripts
1,2, . . . used to identify the dimensionless groups
x,y related with coordinate direction
left refers to the left of the focus
Superscripts
′ denotes the dimensionless variable
* denotes characteristic values of a given quantity
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3. Mathematical Model

Under the conditions mentioned at the end of Section 1, the mathematical model is
composed of the mass conservation equations for the fluid and for the contaminant [30,31].
In mathematical terms, these read as follows:

− [∇·(ρq)] = θ
∂(ρ)

∂τ
(1)

[∇·D(∇c)]−∇·(vc) =
∂c
∂τ

(2)

The relationship between the specific discharge and the actual fluid velocity is given
by q = vθ, with θ being the porosity of the medium. Thanks to the coupling, according to
Equation (2), the velocity of the fluid in the porous medium causes continuous redistri-
bution of the concentration and, therefore, of the density of the solution, which affects its
movement through Equation (1).

Equation (1) can be solved in terms of hydraulic potential or pressure by means of
Darcy’s law (i.e., a stationary momentum equation), expressed by Muskat [32] as follows:

q = − k
µ
∇p (3)

Since the global pressure distribution depends on the global density distribution,
the qx and qy components of the specific discharge are affected by spatial variations in

density. In terms of the hydraulic head, h = P
ρg , and assuming that the fluid viscosity is

not dependent on concentration, Darcy´s equation is written as q = −K ∂h
∂x , with K being

hydraulic conductivity, a physical parameter of the porous medium, which is decisive for
velocity, included in the mathematical model.

We consider a two-dimensional water-saturated rectangular domain with a 2:1 aspect
ratio, according to the schematics of Figure 1.
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The parameters of the soil that will later be shown to influence the values of the mono-
mials have values of between 2.5 and 20 m/d (equivalent to fine sand or silty sand) for the
hydraulic conductivity K, an effective porosity of 0.15 and a molecular diffusivity coefficient
D ranging between 0.0003 and 0.0012 m2/d (representative of different salt species).

A zero-concentration regional flow, with a constant velocity vo and constant density ρo,
enters from the boundary on the left due to a fixed hydraulic potential drop between the left
and right-hand boundaries. The upper and lower horizontal boundaries are impermeable
(zero normal velocity) and do not let the concentration go through by diffusion (zero
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normal concentration gradient). In the position (x = xo, y = 0), which we will call focus,
there is a cell of constant concentration co, representing the source of contaminant. The
boundary conditions can be summarised as follows:

Hydraulic head:

h(x=0,y,τ) = hl, h(x=L, y,τ) = hr,
∂h
∂y (y=±H

2 ,τ)
= 0 (4)

Concentration:

c(x=xo, y=yo,τ=0) = co, c(x ,y,τ=0) = 0 (at the rest of the domain) (5)

Under these conditions, we will study the non-stationary pattern of concentrations
when H is large compared to the transversal dimension of the contamination plume. The
isolines of the concentration pattern are deformed ellipsoids that widen in the horizon-
tal and vertical directions of the domain due to the coupled processes of diffusion and
advection. These ellipsoids surround the focus and finally keep its left end in a fixed
position. As long as the contamination plume does not reach the right and upper (or lower)
boundaries of the domain, the problem is not stationary (except for the small region to the
left of the focus) so we expect the vertical and horizontal extent of the plume to depend on
the parameters of the problem and on time. The interaction between the advection and
diffusion phenomena is not easily predictable, even though each equation is linear in its
unknown, as the position of the plume and isolines are complex non-linear functions of the
velocities, pressure, and their gradients.

In the following section, we rewrite this mathematical model in its dimensionless
form and, after some algebraic manipulations and the application of the Pi theorem, the
dependences between the variables of interests and the physical parameters of the problem
are obtained.

4. Dimensionless Groups
4.1. Deduction of the Dimensionless Groups

Before deriving the dimensionless groups for the coupled diffusion and advection
problems or for purely advective problems, it is worth mentioning the easier problem of
pure diffusion for which analytical solutions have been established [33]. Some comments
should be made regarding the applied protocol.

The procedure followed to deduce the dimensionless groups that rule a given problem
based on the Pi theorem consists of reducing the governing equations to their dimensionless
normalised forms and obtaining such groups by comparing the coefficients that multiply
the derivatives of each addend of the equation. These coefficients, which are physically
or dimensionally homogeneous, are of the same order of magnitude in the normalised
equation so their ratios are the dimensionless groups that are sought. In recent years, a
formal procedure of nondimensionalising has been proposed and successfully applied to
many complex problems in different areas to obtain new universal solutions. For example,
it is worth citing the consolidation problem in soil mechanics, flow and (heat or solute)
transport in porous media, and a variety of mechanical problems, all of which are coupled
and nonlinear [7,8,34]. It should be noted that since the dimensionless numbers for most
engineering or scientific problems are already found in the literature, the former procedure
is generally avoided, and classical known numbers are directly used in the Pi theorem.
This, however, generally leads to poorer predictive capabilities compared to the approach
presented here.

The first step carried out to deduce the dimensionless governing equation is to choose a
suitable list of reference quantities to define the dependent and independent dimensionless
variables. These are chosen either from the input parameters of the problem or (as in this
case) by introducing suitable unknowns whose order of magnitude will later be deduced
as a consequence of the application of the Pi theorem. The only criterion with which these
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reference quantities should be chosen is that the range of values of the normalised variables
is as bounded as possible to the interval [0, 1]. This criterion allows the derivatives of these
variables to be averaged to a value of the order of the unit throughout the entire length
of the scenario. In addition, the discrimination must be applied [35,36]. This means that
vector variables such as position or velocity must be made dimensionless by means of
different references according to their spatial direction. In this way, dimensionless groups
commonly called “aspect ratios” or ”form factors” do not necessarily emerge directly as
independent groups.

As in other problems of similar complexity, the procedure requires good physical
knowledge of the problem and some experience to find the unknowns introduced as refer-
ences, their order of magnitude (by application of the Pi theorem) and their exact solution
through the universal curves obtained by a large number of precise numerical simulations.
This procedure has some advantages over the classical dimensional analysis. Firstly, the
dimensionless groups emerging in the process, some containing unknowns and others
without unknowns, are formally obtained and the relationship between them constitutes
the direct application of the Pi theorem. Secondly, the groups have a unitary order of mag-
nitude since they are obtained as balances between the addends of the governing equation.
Groups of an order of magnitude higher (or lower) than unity, can be neglected in the
governing equation, which simplifies the problem. Thirdly, this procedure incorporates the
dimensionless physical parameters into the deduced monomials, thus reducing the global
number of groups and making the characterisation more precise. The resulting groups are
the proper parameters to represent universal solutions.

4.2. Coupled Advection and Diffusion Case

We assume isotropic molecular diffusivity, the porosity θ to be constant, and we
neglect the transversal velocity (vy) and its spatial derivatives (since they are of an order of
magnitude much lower than the regional velocity and its changes). Therefore, it follows
that vx ≈ vo and ∂vx

∂x is negligible, and Equation (2) in rectangular 2D coordinates is
reduced to:

∂c
∂τ

= −vo
∂c
∂x

+ D
∂2c
∂x2 + D

∂2c
∂y2 (6)

Dimensionless variables for x, y, c, vx, and τ are defined (discriminately) as

x′ =
x
l∗x

y′ =
y
l∗y

c′ =
c
co

τ′ =
τ

τ∗
(7)

In these definitions, co and vo are known parameters, while l∗x, l∗y and τ∗ are unknown
parameters related to each other. For a given time characteristic (τ∗), l∗x and l∗y define the
extension of the solute plume from the constant concentration point. For example, they can
be defined as the region in which the concentrations are above a certain percentage of co.
With this choice, dimensionless variables may be considered normalised since they vary in
the range [0, 1]. Substituting (7) in (6), the last equation becomes dimensionless:

co

τ∗

(
∂c′

∂τ′

)
= −covo

l∗x

(
∂c′

∂x′

)
+

coD
l∗2x

(
∂2c′

∂x′2

)
+

coD
l∗2y

(
∂2c′

∂y′2

)
(8)

Assuming the derivatives between brackets to be of the order of one, four coefficients
are found to describe the solution (or patterns) of the equation in the domain defined by l∗x,
l∗y and time τ∗. These are:

co

τ∗
,

covo

l∗x
,

coD
l∗2x

coD
l∗2y

(9)

These coefficients have to be of the same order of magnitude since their terms in the
equation balance each other. The independent ratios between these coefficients, chosen for
suitability, are the dimensionless groups. We choose them as follows:
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π1 =

coD
l∗2y

coD
l∗2x

=
l∗2x

l∗2y
≡ l∗x

l∗y
π2 =

vol∗x
D

π3 =
voτ
∗

l∗x
(10)

To characterise the solution in the better way, each of the unknowns l∗x, l∗y and τ∗ must
appear only in one group, unless this is not possible (which is the case of l∗x). Therefore,
group π3 can be substituted for the product of groups π2 and π3. This finally leads to the
alternative solution:

π1 =
l∗y
l∗x

π2 =
vol∗x

D
π3 =

vo
2τ∗

D
(11)

Group π1 is an aspect ratio of the domain and provides information about the relation
between l∗x and l∗y. The other groups allow us to relate time and the horizontal length of
the transition or salt contaminated region measured from the focus. According to the Pi
theorem, the solution π2 = Ψ(π3) leads to:

l∗x =
D
vo

Ψ
(

vo
2τ∗

D

)
(12)

with Ψ an unknown function of its arguments. Writing the solution in the following way:

l∗x =

(
D
vo

)
Ψ
{(vo

D

)
voτ
∗
}

(13)

we obtain interesting and useful information. As expected, each iso-concentrated line of the
pattern (defined by the dimensional value c′) depends on time (τ∗), regional velocity (vo)
and molecular diffusivity (D), and for the same values of vo

D and voτ
∗, the concentration

isoline is the same. Equation (13) shows detailed information about this kind of dependence.
Firstly, keeping the ratio vo

D constant, the patterns for each c′ are the same for all the times
so that voτ

∗ is also constant. This means that if we take two scenarios, the first with the
pair of values (vo,D) and the second with the pair (aovo,aoD), the patterns of dimensionless
isolines ( c′) at a given time τ∗ for the first scenario is the same as that of the second one
at time τ∗

ao
. In this way, scenarios of the same value of the ratio vo

D , for a given time τ∗

contain the information from the patterns corresponding to all the regional velocity values.
This allows us to depict a set of abacuses, one for each value of the ratio vo

D , in which the
extension of each concentration isoline, l∗x( c′) may be represented as a function of time τ∗,
choosing c′ as the parameter of the abacus. To use this information, the time has to be
suitably corrected according to the value of the regional velocity. In the following section
related to the construction of the universal curves, this will be further clarified.

With regards to the characteristic transversal length, the group π1 =
l∗y
l∗x

allows us to
write l∗y∼ l∗x, which is equivalent to the dependence

l∗y =

(
D
vo

)
Ψ
{(vo

D

)
voτ
∗
}

(14)

with Ψ being a new function of its argument. The same discussion made above for l∗x
applies here.

Finally, we can expect that the part of the pattern which is located to the left of the
focus (xo, y = 0) will be a steady-state pattern after a relatively short time characteristic for
which each isoline defined by c′ is located at a characteristic distance from (xo,0), l∗x(left).

Indeed, deleting the addend ∂c
∂t from Equation (6) and assuming changes only in the x

coordinate, the only emerging dimensionless group is π =
vol∗x(left)

D . Then, the solution is
given as:

l∗x(left) =

(
D
vo

)
(15)
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The solutions provided by Equations (13)–(15), and the universal curves that make use
of them, constitute an important management tool since they provide the level of global
contamination of the domain and its gradation, at every instant.

4.3. Pure Advection

For this scenario, with the same assumptions as the coupled problem and using the
same dimensionless variables defined in (7), Equation (2) is reduced to:

− covo

l∗x

(
∂c′

∂x′

)
=

co∂c′

τ∗∂ t′
(16)

which leads to two coefficients, covo
l∗x

and co
τ∗ and one single dimensionless group π1 = voτ

∗

l∗x
.

This results in the following dependence:

l∗x = voτ
∗ (17)

As in the former analysis, each isoline defined by its dimensionless concentration c′

has its particular solution. So, l∗x(c′) is the horizontal extension at time τ∗, going from the
furthest point of the isoline to the constant concentration position imposed by the inner
boundary condition. This length is proportional to the regional velocity but changes from
one isoline to another

l∗x
τ∗

= vo Ψ
(
c′
)

(18)

The function Ψ(c′) is universal and may be depicted by a single numerical simulation.
The region of concentration is a slender arrow in which the advancing fronts of the lower
concentration isolines are ahead of the higher concentration fronts. The distance between
the fronts of any pair of isolines c′1 and c′2, increases with time and depends on their
concentrations according to the expression:

l∗x (c′1)
− l∗x (c′2)

= voτ
∗ {Ψ

(
c′1
)
−Ψ

(
c′2
)}

(19)

This result can also be conveniently represented by a universal abacus.

4.4. Perspectives

It is interesting to discuss here what can be deduced from the previous results in
finite domains and large time periods in which contamination reaches the boundaries of
the scenario. Although this is not the main subject of this work, the treatment of finite
scenarios adds new dimensionless groups and makes the solution more complex. For
example, a finite scenario in the horizontal direction (but very large in the transversal
direction) introduces the extension L in the dimensionalising process, giving rise to a new
dimensionless group. In contrast, if the scenario is finite in the transversal direction (and
very extensive in the horizontal one), the extension H of the domain must be considered,
which also gives rise to the appearance of a new group. Finally, if the scenario is finite in
both directions, the introduction of L and H would create two new dimensionless groups.

In this way, the introduction of any new condition like a sink or source (an injection
or abstraction well), or reactive transport (degradation tracers), increases the number of
monomials and, thus, the universal solutions are translated into a set of abacuses in a way
that each one is set according to a specific value of a selected dimensionless group. A
scenario similar to the one here presented but introducing an abstraction well located at
a specific distance would be an interesting case for further research. From the practical
point of view, this represents an often-used procedure in field testing to estimate the
physical parameters of soils. The use of universal abacuses will contribute to obtaining
these parameters by means of an inverse protocol.
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5. Verification by Numerical Simulations

The numerical simulations have been carried out using the programme SEAWAT
V.4 [37]. The following figures illustrate some of the simulated scenarios created to obtain
the universal graphs. For example, Figure 2 shows the iso-concentration patterns in
a large 2D scenario with a focus or constant concentration point located near the left-
hand boundary, in which advection and diffusion effects are coupled. The data are:
vo = 0.0006 m/d, D = 0.0006 m2/d and co = 1000 kg/m3. The concentrations of the isolines
are 10, 200. . . kg/m3, which correspond to 10%, 20%. . . of co. The vertical extension of
each pattern has been trimmed to reduce the size of the figure. As shown, the patterns
progressively extend the contaminated region in vertical and horizontal directions. The
deformation of the isolines (more pronounced for small concentration isolines) with respect
to the circular shape that they would have with pure diffusion is due to the advective effect.
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Figure 2. Iso-concentration patterns for different times in a large scenario with advection and dif-
fusion. t = 500, 2000, 6000  and 10,000  days. The blue lines and grey network represent piezomet-
ric lines and cell extension (1m2), respectively. 

In contrast, the patterns for a scenario with only the advection effect is shown in Fig-
ure 3. The data are: vo = 0.05 m/d, D = 0 and co = 1000 kg/m3. In this scenario, the focus has 
been converted into a vertical segment to better appreciate the progress of the concentra-
tion fronts (of equal length to that of the segment) of each isoline. It can be seen that the 
velocities of each front depend on the concentration of the isoline, with values greater than 
the regional velocity (vo) for the small concentration isolines and lower for those with 
higher concentrations. 

Figure 2. Iso-concentration patterns for different times in a large scenario with advection and
diffusion. t = 500, 2000, 6000 and 10,000 days. The blue lines and grey network represent piezometric
lines and cell extension (1 m2), respectively.

In contrast, the patterns for a scenario with only the advection effect is shown in
Figure 3. The data are: vo = 0.05 m/d, D = 0 and co = 1000 kg/m3. In this scenario, the
focus has been converted into a vertical segment to better appreciate the progress of the
concentration fronts (of equal length to that of the segment) of each isoline. It can be seen
that the velocities of each front depend on the concentration of the isoline, with values
greater than the regional velocity (vo) for the small concentration isolines and lower for
those with higher concentrations.

Figures 4 and 5 show the evolution of the isoline fronts in x direction (for vo = 0.05 m/d)
when D = 0 and advection dominates. The first one shows the temporal evolution of the
width of the region of variable concentration; that is, the area affected by significant con-
tamination, defined as the distance between the isolines of concentration 100 and 900 (10%
and 90% of co, respectively). The solution for an identical scenario with a 2co concentration
has been superimposed. The separation between isolines of the same relative concentration
(10% and 90%) has the same evolution. The different lines depicted in Figure 5 establish
the distance to the focus of any iso-concentration line (defined as a percentage in respect to
the contamination source) as a function of time. As previously mentioned, the velocity of
each front is constant but increases as the concentration diminishes; that is, the variation in
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the inclination of different lines indicates that low concentration isolines spread faster than
high concentration values.

Mathematics 2021, 9, 725 10 of 25 
 

 

 
Figure 3. Iso-concentration patterns for times 50, 200, 500 and 1000 days in a large horizontal sce-
nario due to advection (without diffusion). 

Figures 4 and 5 show the evolution of the isoline fronts in x direction (for vo = 0.05 
m/d) when D = 0 and advection dominates. The first one shows the temporal evolution of 
the width of the region of variable concentration; that is, the area affected by significant 
contamination, defined as the distance between the isolines of concentration 100 and 900 
(10% and 90% of co, respectively). The solution for an identical scenario with a 2co concen-
tration has been superimposed. The separation between isolines of the same relative con-
centration (10% and 90%) has the same evolution. The different lines depicted in Figure 5 
establish the distance to the focus of any iso-concentration line (defined as a percentage in 
respect to the contamination source) as a function of time. As previously mentioned, the 
velocity of each front is constant but increases as the concentration diminishes; that is, the 
variation in the inclination of different lines indicates that low concentration isolines 
spread faster than high concentration values. 

 
Figure 4. Distance between the fronts of concentrations 0.1co and 0.9co as a function of time. co = 
1000 and 2000 kg/m3, vo = 0.05 m/d. 

Figure 3. Iso-concentration patterns for times 50, 200, 500 and 1000 days in a large horizontal scenario
due to advection (without diffusion).

Mathematics 2021, 9, 725 10 of 25 
 

 

 
Figure 3. Iso-concentration patterns for times 50, 200, 500 and 1000 days in a large horizontal sce-
nario due to advection (without diffusion). 

Figures 4 and 5 show the evolution of the isoline fronts in x direction (for vo = 0.05 
m/d) when D = 0 and advection dominates. The first one shows the temporal evolution of 
the width of the region of variable concentration; that is, the area affected by significant 
contamination, defined as the distance between the isolines of concentration 100 and 900 
(10% and 90% of co, respectively). The solution for an identical scenario with a 2co concen-
tration has been superimposed. The separation between isolines of the same relative con-
centration (10% and 90%) has the same evolution. The different lines depicted in Figure 5 
establish the distance to the focus of any iso-concentration line (defined as a percentage in 
respect to the contamination source) as a function of time. As previously mentioned, the 
velocity of each front is constant but increases as the concentration diminishes; that is, the 
variation in the inclination of different lines indicates that low concentration isolines 
spread faster than high concentration values. 

 
Figure 4. Distance between the fronts of concentrations 0.1co and 0.9co as a function of time. co = 
1000 and 2000 kg/m3, vo = 0.05 m/d. 

Figure 4. Distance between the fronts of concentrations 0.1co and 0.9co as a function of time.
co = 1000 and 2000 kg/m3, vo = 0.05 m/d.



Mathematics 2021, 9, 725 11 of 25
Mathematics 2021, 9, 725 11 of 25 
 

 

 
Figure 5. Location of the isoline fronts as a function of time. vo = 0.05 m/d. 

Continuing with the illustration of the coupled diffusion and advection effects, Fig-
ure 6a–c show the typical concentration profiles for different ratios of vo/D and co = 1000 
kg/m3. These figures can be contemplated as a different and more complete configuration 
of Figures 2 and 3; the x-y axis distribution of concentration for specific times is now plot-
ted on the vertical axis of concentration (z coordinate) in Figure 6a–c. Figure 6a is the case 
of no diffusion, with c = 1000 kg/m3 and vo = 0.0006 m/a, a velocity that corresponds to the 
front of the isoline of concentration 0.5co. The profiles gradually decrease their negative 
slope, increasing the distance from the small concentration isolines to those of higher con-
centration. Below the legend, the spreading of contamination in the x-y coordinates cor-
responding to the curve t = 6000 days is represented. Positions of concentrations 900 and 
100 are represented as normalised with the 0.9 and 0.1 values in coordinate z (vertical axis 
in the chart). Figure 6b is a comparison between the profiles after 80 days for a pure dif-
fusion process (D = 0.0006 m2/d), pure advection (vo = 0.0006 m/d) and coupled advection-
diffusion (D = 0.0006 m2/d, vo = 0.0006 m/d). The profile corresponding to the combination 
of both effects presents two marked inflection points, depending on the vo/D ratio. This is 
a consequence of the coupling between both effects. 

Finally, Figure 6c shows the profiles for a coupled problem with D = 0.0006 m2/d and 
vo = 0.0003 m/d for different times. For this ratio, vo/D = 2 as well as for ratios that are 
larger than unity, the profiles present an interesting result. If we consider the same con-
centration value in all the profiles (for example 0.3, which corresponds to c = 300 kg), the 
point of the domain with this concentration moves to the right more and more slowly 
until it stops at a certain distance from the focus at a certain time. This distance is set by 
the curve corresponding to the last time studied. The lower the chosen concentration, the 
greater the distance and time at which the concentration is fixed, and vice versa. As will 
be seen in the next section, similar phenomena occur in the transversal direction. As in 
Figure 6a, an x-y coordinate image of iso-concentration lines for t=14,000 days has been 
included below the legend so it can be compared with the concentration values of the 
same line in the z coordinate (or vertical axis in the chart). 

Figure 5. Location of the isoline fronts as a function of time. vo = 0.05 m/d.

Continuing with the illustration of the coupled diffusion and advection effects, Figure 6a–c
show the typical concentration profiles for different ratios of vo/D and co = 1000 kg/m3.
These figures can be contemplated as a different and more complete configuration of
Figures 2 and 3; the x-y axis distribution of concentration for specific times is now plotted
on the vertical axis of concentration (z coordinate) in Figure 6a–c. Figure 6a is the case of
no diffusion, with c = 1000 kg/m3 and vo = 0.0006 m/a, a velocity that corresponds to the
front of the isoline of concentration 0.5co. The profiles gradually decrease their negative
slope, increasing the distance from the small concentration isolines to those of higher
concentration. Below the legend, the spreading of contamination in the x-y coordinates
corresponding to the curve t = 6000 days is represented. Positions of concentrations 900
and 100 are represented as normalised with the 0.9 and 0.1 values in coordinate z (vertical
axis in the chart). Figure 6b is a comparison between the profiles after 80 days for a
pure diffusion process (D = 0.0006 m2/d), pure advection (vo = 0.0006 m/d) and coupled
advection-diffusion (D = 0.0006 m2/d, vo = 0.0006 m/d). The profile corresponding to the
combination of both effects presents two marked inflection points, depending on the vo/D
ratio. This is a consequence of the coupling between both effects.

Finally, Figure 6c shows the profiles for a coupled problem with D = 0.0006 m2/d
and vo = 0.0003 m/d for different times. For this ratio, vo/D = 2 as well as for ratios that
are larger than unity, the profiles present an interesting result. If we consider the same
concentration value in all the profiles (for example 0.3, which corresponds to c = 300 kg),
the point of the domain with this concentration moves to the right more and more slowly
until it stops at a certain distance from the focus at a certain time. This distance is set by
the curve corresponding to the last time studied. The lower the chosen concentration, the
greater the distance and time at which the concentration is fixed, and vice versa. As will
be seen in the next section, similar phenomena occur in the transversal direction. As in
Figure 6a, an x-y coordinate image of iso-concentration lines for t=14,000 days has been
included below the legend so it can be compared with the concentration values of the same
line in the z coordinate (or vertical axis in the chart).
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Figure 6. Concentration profiles. (a) Only advection, c = 1000 kg/m3 and vo = 0.0006 m/d. (b) For τ = 80 days, pure diffusion 
(D = 0.0006 m2/d), pure advection (vo = 0.0006 m/d) and advection-diffusion (D = 0.0006 m2/d, vo = 0.0006 m/d). (c) Coupled 
problem, D = 0.0003 m2/d and vo = 0.0006 m/d. 

All these results, which have been qualitatively described, will be represented by 
universal curves in the following section, after a large number of numerical simulations 

Figure 6. Concentration profiles. (a) Only advection, c = 1000 kg/m3 and vo = 0.0006 m/d. (b) For τ = 80 days, pure
diffusion (D = 0.0006 m2/d), pure advection (vo = 0.0006 m/d) and advection-diffusion (D = 0.0006 m2/d, vo = 0.0006 m/d).
(c) Coupled problem, D = 0.0003 m2/d and vo = 0.0006 m/d.
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All these results, which have been qualitatively described, will be represented by
universal curves in the following section, after a large number of numerical simulations
have been made. All this will verify the mathematical dependences derived through the
non-dimensionalisation process followed in Section 4.

6. Universal Solutions
6.1. Scenarios with Only Advective Flow

For these scenarios, the only universal curve comes from expression (18), which we
rewrite in the form of:

l∗x/τ∗

vo
=

vc′

vo
= Ψ

(
c′
)

(20)

This relationship represents the ratio between the velocity of the front of the dimen-
sionless concentration c′, and the regional velocity vo. c′ is the ratio between the actual
concentration of the front (c) and the constant concentration of the source. Figure 7 shows
the universal dependence vc′

vo
, or Ψ(c′), on c′. The c′ = 0.5 front travels at the regional

Darcy velocity. For a wide range of concentrations, c′ ∈ [0.15–0.85], the velocities of the
fronts deviate very little from the value of vo (less than 10%). Only for very small or very
large values of c′, the velocities are somewhat higher (up to 1.3vo) or lower (0.7vo) than vo,
respectively.
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6.2. Scenarios with Coupled Diffusion and Advection

The universal curves presented in this sub-section derive from the expressions (13)–(15).
The first expresses the longitudinal extension measured from the source of contamination
of each concentration isoline, the second, the maximum transversal extension, and the
third, the horizontal extension of the polluted region to the left of the focus. Each isoline
is characterised by its dimensionless concentration, taking that of the focus as a reference.
The way in which these characteristic lengths depend on the physical parameters of the
problem, vo and D, allows us to organise the universal curves in the form of an abacus, with
a specific value for the relationship vo/D for each one. Every curve in Figure 8 represents
the horizontal extension (vertical axis) of the isolines of dimensionless concentration c′

(l∗x(c′)) against a time factor τc (horizontal axis), for vo
D = 1. The simulations to determine
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the function of the dependence (13) have been carried out for values vo = 0.0006 m/d and
D = 0.0006 m2/d. In this way, the time factor (τc) is related to real time (τ∗) by

τc =

(
0.0006

vo

)
τ∗ (21)

Thus, for the same ratio ( vo
D =1) and different values of vo and D, the extension of any

isoline (l∗x(c′)) associated with a real time τ∗ is obtained by entering the abscissa axis with
the value τc given by expression (21). For greater detail, the time factor has been separated
into two intervals with ranges [100–2000 days] and [10–100 days], Figure 8a,b, respectively.
For longer times, the contaminated regions stabilise for successively increasing values
of c′. The lower the concentration is, the sooner the stabilisation occurs. Figure 8c,d
show the extensions of some isolines for times of [2000–20,000 days] and [2000–8000 days],
respectively.

The abacus corresponding to the monomials vo
D = 2, 5 and 10 are shown in Figures 9–11,

respectively, with details similar to the previous ones. Numerical solutions have been
obtained by retaining the regional velocity (vo = 0.0006 m/d) and changing the diffusivity
to successive values D = 3·10−4, 1.2·10−4 and 3·10−4 m2/d. In this way, the time factor is
related to real time through the same expression as the former abacus (21).
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Figure 9. Universal curve l ( )∗  as a function of time factor τ . Parameter of the abacus  = 2. vo = 0.0006 m/d. (a) τ  
∈[100–2000 days], (b) τ  ∈[10–100 days], (c) τ  ∈[2000–20,000 days], (d) τ  ∈[2000–8000 days]. 

Figure 9. Universal curve l∗x(c′) as a function of time factor τc. Parameter of the abacus vo
D = 2. vo = 0.0006 m/d.

(a) τc ∈ [100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–20,000 days], (d) τc ∈ [2000–8000 days].
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Figure 10. Universal curve l∗x(c′) as a function of time factor τc. Parameter of the abacus vo
D = 5.

vo = 0.0006 m/d. (a) τc ∈ [100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–8000 days],
(d) τc ∈ [2000–20,000 days].
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Figure 11. Universal curve l∗x(c′) as a function of time factor τc. Parameter of the abacus vo
D = 10. vo = 0.0006 m/d.

(a) τc ∈ [100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–20,000 days].
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Similarly, the abacus corresponding to values vo
D = 0.5 and 0.1, made with vo = 0.0003

and 0.00006 m/d, are shown in Figures 12 and 13, respectively. Accordingly, the time
factors and real time are related by:

τc =

(
0.0003

vo

)
τ∗, τc =

(
0.00006

vo

)
τ∗ (22)
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(a) τc ∈ [100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–10,000 days], (d) τc ∈ [2000–20,000 days].
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Figure 13. Universal curve l ( )∗  as a function of time factor τ . Parameter of the abacus  = 0.1. vo =0.00006 m/d. (a) τ  
∈[100–2000 days], (b) τ  ∈[10–100 days], (c) τ  ∈[2000–20,000 days], (d) τ  ∈[2000–20,000 days]. 
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of one effect or the other. The patterns tend to stabilise when the advective and diffusive 
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Figure 13. Universal curve l∗x(c′) as a function of time factor τc. Parameter of the abacus vo
D = 0.1. vo = 0.00006 m/d.

(a) τc ∈ [100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–20,000 days], (d) τc ∈ [2000–20,000 days].

In relation to the largest transversal extension (l∗y(c′=0.1)) given by dependence (17), the
curves depicted in Figure 14 show this parameter (vertical axis) for isoline c′ = 0.1, which
represents 10% of the concentration of the focus, as a function of time factor τc (horizontal
axis) for vo

D = 0.1, 0.5, 1, 2, 5 and 10. As in the former figures, the time factor scale and

real time are related by expressions τc =
(

0.0006
vo

)
τ∗ for the curves vo

D = 1, 2, 5 and 10,

τc =
(

0.0003
vo

)
τ∗ for the curve vo

D = 0.5 and τc =
(

0.00006
vo

)
τ∗ for the curve vo

D = 0.1. The lack
of monotony in the slope of the curves is a consequence of the coupling between advection
and diffusion, which occurs at different times according to the relative influence of one
effect or the other. The patterns tend to stabilise when the advective and diffusive processes
balance each other, while the preponderance of the diffusive process clearly establishes
an unsteady pattern. There is a relationship between this maximum transversal extension
(l∗y(c′=0.1)) and the horizontal location (l∗∗x(c′=0.1)) measured from the focus (f) at which such
extension occurs. Figure 15 shows this dependence, in addition to that of the dimensionless
concentration c′ = 0.1 and the same ratios of vo

D .
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ary distribution of concentration profiles, estimated from different simulations, is ex-
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To finish, the universal curve corresponding to the location of the stationary contami-
nation fronts to the left of the focus, defined by the extension l∗x(left,c′), is shown in Figure 16
for the general case vo

D = 1, in which advection and diffusion process are equally balanced.
According to Equation (15), the curve is independent of the regional velocity as long as
the ratio vo

D remains constant. The period of time necessary to achieve this stationary
distribution of concentration profiles, estimated from different simulations, is expressed as
t = 1.8

vo
and varies from 750 to 6000 days, depending on the regional velocity (vo = 0.0024 to

6000 m/d, respectively). Further research may aim to establish new curves as a function
of the vo

D ratio as well as to define the characteristic stabilisation time as a function of this
ratio and the regional velocity.
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before it affects the diffusive effect. However, if diffusion predominates over advection, it 
will produce a redistribution of the concentration by diffusion and, over this dampened 
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The scenario addressed here is only a sample of the problems of contaminant flow 
and transport in porous media. First, the geometry of the scenario may be different or 
finite, including the effects associated with gravity flow. In addition, scenarios with a con-
stant initial concentration (not maintained), with a non-constant concentration or with a 
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7. Conclusions and Final Comments

The parametric dimensionless characterisation following a discriminated and nor-
malised dimensionless protocol of the governing equations has allowed us to deduce
precise information about the dynamics of contaminant plumes in extensive 2D scenarios
with a constant concentration focus under the effects of advection and molecular diffu-
sion. The proposed non-dimensionalised procedure as well as the application of the Pi
theorem have resulted in accurate expressions of the unknown functions of interest (that is,
the horizontal and transversal extensions of the plume) on the physical and geometrical
parameters of the problem. In the most complex case, the lengths that define the pattern of
the plume extension depend on three parameters: the dimensionless concentration of the
isoline, the ratio between molecular diffusivity and regional velocity and a time corrected
by the regional Darcy velocity. Based on these results and thanks to a sufficient number
of numerical simulations, the functions can be universally represented by means of an
easy-to-use abacus that facilitates the monitoring and management of the contamination
plume in most real cases.

In the proposed protocol for the search of the dimensionless groups, normalisation
makes it possible to approximate the changes or partial derivatives of the dependent
variables to the unit when these are averaged over the entire domain of the problem, while
discrimination prevents the emergence of monomials of the type of geometric shape factors
that unnecessarily increase the number of dimensionless groups.

The coupling of the diffusive and advective flows is not intuitive since the cross values
of the variables and their derivatives are combined in the governing equation. Small
diffusivities versus advection (to the magnitude of unity, at the most) advance the dragging
effect by redistributing the concentration in the posterior or central area of the plume before
it affects the diffusive effect. However, if diffusion predominates over advection, it will
produce a redistribution of the concentration by diffusion and, over this dampened field of
concentrations, advection occurs.

The scenario addressed here is only a sample of the problems of contaminant flow
and transport in porous media. First, the geometry of the scenario may be different or
finite, including the effects associated with gravity flow. In addition, scenarios with a
constant initial concentration (not maintained), with a non-constant concentration or with
a contaminated fluid injection well could be tackled. Finally, the study of the dynamics of
contaminants under the effects of advection and hydrodynamic dispersion (in general, with
negligible molecular diffusivity) is another pending issue to characterise and for which to
propose new universal solutions.
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