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Abstract: Question Answering (QA) enables the machine to understand and answer questions posed
in natural language, which has emerged as a powerful tool in various domains. However, QA is a
challenging task and there is an increasing concern about its quality. In this paper, we propose to
apply the technique of metamorphic testing (MT) to evaluate QA systems from the users’ perspectives,
in order to help the users to better understand the capabilities of these systems and then to select
appropriate QA systems for their specific needs. Two typical categories of QA systems, namely, the
textual QA (TQA) and visual QA (VQA), are studied, and a total number of 17 metamorphic relations
(MRs) are identified for them. These MRs respectively focus on some characteristics of different
aspects of QA. We further apply MT to four QA systems (including two APIs from the AllenNLP
platform, one API from the Transformers platform, and one API from CloudCV) by using all of the
MRs. Our experimental results demonstrate the capabilities of the four subject QA systems from
various aspects, revealing their strengths and weaknesses. These results further suggest that MT can
be an effective method for assessing QA systems.

Keywords: textual question answering; visual question answering; metamorphic testing; metamor-
phic relations; quality assessment

1. Introduction

Question answering (QA) [1,2] focuses on returning right answers to given questions.
Among various QA systems, the textual question answering (TQA) and visual question
answering (VQA) represent a typical paradigm that enables the machine to answer a
question in natural language by referring to the given contents (i.e., text or image). As
shown in Figure 1, TQA [3] focuses on answering a question about a passage of text, which
is also known as an NLP task of machine reading comprehension; while VQA [4] focuses
on answering a question based on an image, which leverages techniques from the domains
of NLP and computer vision. Both TQA and VQA have various potential applications.
For example, TQA has been widely adopted by conversational agents [5] and customer
service support [6]; VQA has a broad range of applications in the autonomous agents and
virtual assistants [7]. On the other hand, a large number of neural network models have
been created for implementing both TQA and VQA. For instances, BiDAF [8], BERT [9],
RoBERTa [10] for TQA, and ViLBERT [11] for VQA.

Due to the importance and popularity of QA, it it critical to properly assess QA sys-
tems in order to demonstrate their capabilities and limitations. QA systems are commonly
evaluated by a test dataset. However, the dataset may not necessarily be representative
of the real world. Due to this, various different approaches have been proposed and
applied to evaluate QA systems, revealing a series of problems concerning different aspects.
Jia et al. [12] proposed an adversarial evaluation scheme to investigate whether QA can
answer questions about passages containing adversarially inserted sentences, and their
experimental results revealed that the QA models under investigation had poor perfor-
mance. Divyansh et al. [13] investigated popular QA benchmarks and then revealed that
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TQA might ignore the passage of text when answering questions. Mudrakarta et al. [14]
proposed to apply the notion of attribution to generate adversarial questions, based on
which it was observed that QA systems often ignored important terms in questions. On the
other hand, recent studies investigated the robustness of QA systems [15,16] and further
proposed strategies for improving their robustness [17].

Figure 1. Textual question answering (TQA) and visual question answering (VQA): TQA answers a
question with reference to a passage, while VQA answers a question with respect to an image.

This study focuses on assessing TQA and VQA systems from the users’ perspective
in order to reveal to which degree QA systems satisfy the users’ expectations. This kind
of assessment is helpful for the users to better understand QA systems such that they are
able to select appropriate QA systems for their specific needs. To this end, we propose
to adopt the technique of metamorphic testing (MT). MT is a property based testing
technique, which has shown promising effectiveness in various software engineering
activities, such as testing [18], fault localization [19], and program repair [20,21]. The key
component of MT is metamorphic relations (MRs), which encode system properties via
the relationship among multiple related inputs and outputs. MT is originally applied
for software verification. In recent year, it has been successfully extended to software
validation and system comprehension [22,23].

In this study, we identify a total number of 17 MRs for QA systems. These MRs
respectively focus on different aspects of TQA and VQA, which can help the users to
understand the capability of TQA and VQA systems from different perspectives, and can
also provide guidances for the users to select appropriate systems to satisfy their specific
needs. We conduct experiments by employing four QA systems (two TQA APIs provided
by AllenNLP [24] and Transformers [25], and two VQA APIs provided by AllenNLP and
CouldCV) using all of the MRs, demonstrating the capabilities and limitations of the QA
systems under investigation. To summarize, the paper makes three major contributions.

• We proposed to apply the technique of metamorphic testing to assess QA systems
from the users’ perspectives, and presented 17 MRs by considering different aspects
of QA systems.

• We conducted experiments on four common QA systems (two TQA systems and two
VQA systems), demonstrating the feasibility and effectiveness of MT in assessing
QA systems.

• We conducted comparison analysis among subject QA systems to reveal their ca-
pabilities of understanding and processing the input data, and also demonstrated
how the analysis results can help the user to select appropriate QA system for their
specific needs.

The remainder of the paper is organized as follows. Section 2 introduces the technique
of metamorphic testing. Section 3 clarifies the overall approach, and Section 4 presents a
list of MRs identified for QA systems. Our experimental setup is introduced in Section 5,
and the experimental results are presented and analyzed in Section 6. Section 7 discusses
related work, and Section 8 concludes the present study.
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2. Metamorphic Testing

Metamorphic testing (MT) [26,27] is a property based testing technique. MT proposes
to describe the necessary properties of the target system through the relationships among
inputs and outputs of multiple executions. Such properties are expressed by metamorphic
relation (MRs). Specifically, an MR describes how to construct the follow-up input from
the given input (which is known as the source input), and also encodes the relationship
among the source and follow-up outputs (namely, the outputs for the source and follow-
up inputs respectively). As an example for illustration, consider the program Max that
implements the algorithm of finding the maximum value among two input values. An
MR for Max can be “Suppose that the source input is ts = (x, y), where x and y can be
arbitrary numeric values, and the follow-up input t f is constructed by swapping the two
input values of ts (that is, t f = (y, x)). As a result, the source and follow-up outputs are
expected to be identical”.

Generally, MRs can be identified by referring to the system’s requirements or based
on the users’ expectations on the system. Given an MR and a set of its source inputs (which
can be generated by arbitrary strategies), MT can be conducted as below. At first, the
corresponding follow-up inputs are constructed based on the source inputs according
to the MR. After that, for every group of source and follow-up inputs, MT respectively
runs the target program on both source and follow-up inputs, yielding the source and
follow-up outputs. MT finally checks each group of source and follow-up inputs and
outputs against the relevant MR to see whether or not the MR is violated. Any group
of source and follow-up inputs with which the program violates the MR is regarded to
incur an MR violation. Specifically, an MR violation is an indicator of the existence of
defects in the target system if the relevant MR is identified with reference to the system’s
requirements. Nevertheless, an MR violation reveals either the existence of defects or the
the discrepancies between the system behavior and the users expectations if the MR is
identified with respect to the users’ expected characteristics of the system.

Different from traditional testing techniques that check the correctness of the output
of individual inputs, MT checks the satisfaction of MRs on individual groups of source and
follow-up executions. Because of this, MT can be conducted without using oracles, and has
been applied for software verification and validation [18,22] as well as for helping users
to understand the system behaviors [23]. It is also noted that after MRs are identified, the
whole procedure of MT can be easily automated.

3. Methodology

This study proposes to apply MT to evaluate QA systems by considering different
users’ requirements. An overview of the approach is presented in Figure 2. Given a
set of source inputs (namely, passage-question pairs for TQA and image-question pairs
for VQA) and a list of MRs, a corresponding set of perturbed passage-question pairs
and image-question pairs are generated, which are respectively the follow-up inputs
for TQA and VQA. By executing the TQA and VQA systems with source and follow-
up inputs that are relevant to individual MRs, their source and follow-up answers are
collected. Since both TQA and VQA provide a phrase or a sentence as an output answer,
we conduct semantic similarity analysis on groups of original and follow-up answers
with respect to the relevant MR to determine the testing result. At last, for each MR and
every TQA and VQA system under investigation, we calculate the violation rate, which
denotes the rate of occurrence of MR violations. A higher violation rate indicates a higher
degree to which the system’s behaviors deviate from the users’ expectations. Based on
the evaluation data, we further conduct comparison analysis to reveal the capabilities of
QA systems under investigation. Our analysis mainly focuses on three aspects: both TQA
and VQA’s capabilities of understanding and answering questions, TQA’s capabilities of
understanding and processing passages, and VQA’s capabilities of understanding and
processing images. We also demonstrate how our analysis results can help the users to
select appropriate QA systems according to their specific needs.
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Figure 2. Overview of how metamorphic testing (MT) is applied to evaluate QA systems.

The key task of applying MT to QA systems lies in the identification of MRs by
considering the characteristics of QA systems as well as the users’ expectations on these
systems. Moreover, upon the identification of MRs, the whole evaluation procedure can
be automated.

4. Metamorphic Relations of Question Answering Systems

In order to evaluate QA systems by MT, we defined a series of MRs. These MRs
consider the users’ expected characteristics of QA systems, and thus the satisfaction and
violation of these MRs can help users to better understand the capability and limitations
of QA systems. In total, 17 MRs are identified, each of which focuses on some aspects of
QA. This section presents the details of these MRs, and also gives illustrative examples for
some MRs.

4.1. Output Relationships

Let ts and t f be a group of source and follow-up inputs of a QA system with respect
to an MR, and let As and A f be the corresponding source and follow-up outputs. In this
study, we consider the following relationships between As and A f .

• Equivalent: As and A f are regarded to be equivalent if they have similar semantics.
• Different: As and A f are regarded to be different if they have distinct semantics.

In order to determine whether two answers As and A f have similar semantics, we
first transform them into vector representations. This is done by employing the bert-
as-service API [28], which encodes a sentence with a fixed length vector by using the
BERT model [9]. BERT is a pre-trained transformer network built upon the attention
mechanism [29]. The model has multiple layers, each of which consists of an attention
sub-layer and a feed-forward network sub-layer. The former helps the model to gain a
broad range of information from the input. For an input, the attention sub-layer extracts
three vectors, namely, the query vector, key vector and value vector, and packs them
together into matrices Q, K, and V, respectively. Based on this, it conducts the self-attention
calculation as below [29].

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (1)

where dk represents the dimension of keys of the input, and softmax is a learned normalized
exponential function. Specifically, BERT adopts a multi-head attention mechanism, which
concats multiple attention calculations of linearly transformed queries, keys and values.
The output of the attention sub-layer is provided for another sub-layer that contains
a feed-forward network, which is responsible for conducting linear transformations as
below [29].

FFN(x) = max(0, xW1 + b1)W2 + b2. (2)
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Based on the digital vectors yielded by BERT for As and A f , we further apply the
cosine similarity analysis [30] to decide whether or not they are semantically equivalent.
Suppose that the size of the resulting vectors is n, let vs = [vs1, ..., vsn] and v f = [v f1, ..., v fn]
be the vectors representing As and A f , respectively. The semantic similarity of As and A f
is measured by

sim(As, A f ) =
∑n

i=1 vsi × v fi√
∑n

i=1 vs2
i

√
∑n

i=1 v f 2
i

. (3)

As a result, a similarity score that is higher than a threshold value indicates the
equivalence of As and A f in terms of their semantics.

4.2. MRs for QA Systems

The input of TQA consists of a passage and a question, and the input of VQA contains
an image and a question. As such, we use Ps (or Is) and Qs to denotes the passage (or
image) and question in ts, and use Pf (I f ) and Q f to denote the corresponding information
in t f . That is, ts = (Ps, Qs) and t f = (Pf , Q f ) for TQA, while ts = (Is, Qs) and t f = (I f , Q f )
for VQA. Different MRs may operate on different input parameters of ts to construct t f ,
leading to discrepancies between ts and t f . According to this, we classify all MRs into three
categories, which are summarized in Table 1 and are explained as below.

• MR1.x has ts = (P, Qs) and t f = (P, Q f ) or ts = (I, Qs) and t f = (I, Q f ). That is, ts and
t f of MR1.x have the same P (or I), but different questions Qs and Q f . This category
of MRs operates on Qs to construct Q f . Hence, they focus on QA’s capability of
understanding and answering questions

• MR2.x has ts = (Ps, Q) and t f = (Pf , Q). That is, ts and t f of MR2.x have the same Q, but
different passages Ps and Pf . This category of MRs operate on Ps to construct Pf , and
they focus on the TQA’s capability of processing and understanding the input passage.

• MR3.x has ts = (Is, Q) and t f = (I f , Q). That is, ts and t f of MR3.x have the same Q,
but different images Is and I f . This category of MRs operate on Is to construct I f ,
and they concentrate on the VQA’s capability of processing and understanding the
input image.

Table 1. Summary of metamorphic relations (MRs).

Source and Follow-Up Inputs Number of MRs

MR1.x ts = (P, Qs), t f = (P, Q f ) 4 (MR1.1–MR1.4)
ts = (I, Qs), t f = (I, Q f )

MR2.x ts = (Ps, Q), t f = (Pf , Q) 5 (MR2.1–MR2.5)

MR3.x ts = (Is, Q), t f = (I f , Q) 8 (MR3.1–MR3.8)

4.2.1. MR1.x

This category of MRs are designed to investigate the QA’s capability of understanding
and answering questions. For each MR, ts and t f use the same input passage or image but
different questions, that is, (P, Qs) and (P, Q f ) for TQA, while (I, Qs) and (I, Q f ) for VQA.
Different MRs alter Qs in different ways to construct Q f and also encode the relationship
that is expected to be satisfied by As and A f . We identify four MRs, which are described
as follows.

MR1.1 (Capitalization): Q f is constructed by replacing lowercase letters of Qs with
the corresponding uppercase letters. As a result, A f is expected to be equivalent to As.

MR1.2 (Rephrasing comparative question): Suppose that Qs contains comparative
phrases. Q f is constructed by rephrasing Qs without changing the meaning of Qs. As a
result, A f is expected to be equivalent to As.

MR1.3 (Replacing the comparative word with its antonym): Suppose that Qs contains
comparative words. Q f is constructed by replacing a comparative word in Qs with its
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antonym such that Q f expresses a different meaning from Qs. As a result, A f is expected
to be different from As.

MR1.4 (Changing the subject of a question): Q f is constructed by changing the subject
of Qs with another noun. This change leads to different meanings of these two questions.
As a result, A f is expected to be different from As.

Table 2 shows some illustrative examples of Qs and Q f of MR1.1–MR1.4, where
Q f is highlighted with underlines. For each MR, the interpretation of MR violations is
also presented.

Table 2. Interpretations and illustrations of MR1.x.

MRs Interpretation of MR Violation Examples of Pairs of (Qs,Q f )

MR1.1 QA is sensitive to the letter
case of a question.

What song won Best R&B Performance?
WHAT SONG WON BEST R&B PERFORMANCE?

MR1.2 QA is sensitive to questions using
different comparative descriptions.

In how many years will A remain higher than B in population?
In how many years will B remain lower than A in population?

MR1.3
QA cannot properly understand
the questions expressed via
different comparative words.

What type of residents tend to be more fluent than rural ones?
What type of residents tend to be less fluent than rural ones?

MR1.4
QA cannot properly understand
the questions involving
different subjects.

What is the name of the final studio album from Destiny’s Child?
What is the name of the final studio album from Bob’s Child?

4.2.2. MR2.x

This category of MRs are identified to study the TQA’s capability of processing and
understanding the input passage. For each MR, the source input is ts = (Ps, Q), and the
corresponding follow-up input is t f = (Pf , Q). Every MR proposes a way of altering Ps
to construct Pf and also predicts the relationships between the corresponding As and A f .
Table 3 summarizes this category of MRs, the details of which are presented as below.

Table 3. Summary of MR2.x.

MRs Interpretation of MR Violations Operation Used for Constructing Pf

MR2.1 TQA is sensitive to
the letter case of a passage. Capitalization

MR2.2 TQA is sensitive to the order
of sentences in a passage. Order reversing

MR2.3 TQA is sensitive to the added sentences
that are irrelevant to the question. Addition

MR2.4 TQA is sensitive to the deleted sentences
that are irrelevant to the question. Removal

MR2.5 TQA is incapable of properly understanding
and processing the question related texts. Replacement

MR2.1 (Capitalization): Pf is constructed by replacing lowercase letters of Ps with the
corresponding uppercase letters. As a result, A f is expected to be equivalent to As.

MR2.2 (Reversing the order of sentences): Pf is constructed by reversing the order of
sentences of Ps. As a result, A f is expected to be equivalent to As.

MR2.3 (Addition of irrelevant sentences): Pf is constructed by adding some sentences
that are irrelevant to the question into Ps. As a result, A f is expected to be equivalent to As.

MR2.4 (Removal of irrelevant sentences): Pf is constructed by removing sentences that
are irrelevant to the question from Ps. As a result, A f is expected to be equivalent to As.

MR2.5 (Replacing the answer-related words): Suppose that As is a numeric value,
which is an answer to questions of types of how many, how old, how long, or when. Pf
is constructed by replacing As in Ps with As + n, where n is a randomly selected numeric
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constant, which makes As + n a numeric value that is different from As and is also unique
in Ps. As a result, A f is expected to be different from As but is equal to As + n.

MR2.5 is designed by considering a special case where TQA returns a numeric value
as an answer to a given question. In this study, we consider four types of questions, namely,
how many, how old, how long, and when. An illustrative example of MR2.5 is presented in
Table 4, which demonstrates the way of constructing Pf based on both Ps and As. Obviously,
MR2.5 can only be applied to source inputs that contain the aforementioned four types
of questions.

Table 4. Example Ps and Pf of MR2.5 (n is set to be 3).

Ps:

After graduating from high school, West received a scholarship to attend Chicago’s American Academy
of Art in 1997 and began taking painting classes, but shortly after transferred to Chicago State University
to study English. He soon realized that his busy class schedule was detrimental to his musical work, and
at 20 he dropped out of college to pursue his musical dreams.This action greatly displeased his mother,
who was also a professor at the university.

Qs: How old was Kanye when he dropped out of college?
As: 20

Pf :

After graduating from high school, West received a scholarship to attend Chicago’s American Academy
of Art in 1997 and began taking painting classes, but shortly after transferred to Chicago State University
to study English. He soon realized that his busy class schedule was detrimental to his musical work, and
at 23 he dropped out of college to pursue his musical dreams.This action greatly displeased his mother,
who was also a professor at the university.

4.2.3. MR3.x

This category of MRs are identified for evaluating the VQA’s capability of processing
and understanding the input image. For each MR, the source input is ts = (Is, Q), and the
corresponding follow-up input is t f = (I f , Q). Accordingly, each MR designs a way of
altering Is to construct I f and also predicts the relationships between source and follow-up
outputs. Researchers have proposed a series of operations, such as image scaling and image
rotation, to perturb images for evaluating deep neural network based models [31]. In this
study, we consider 2D input images, and identify MRs by adopting some of the operations.

We first consider the rotation operation. To rotate an image with a given angle, a
rotation matrix is constructed and applied on the image (https://github.com/jrosebr1
/imutils, accessed on 8 October 2020). Suppose that c is the center of the rotation, θ is the
rotation angle, and x denotes the scale factor. The rotation matrix is as follows:[

α β (1− α) ∗ c.x− β ∗ c.y
−β α β ∗ c.x + (1− α) ∗ c.y

]
, (4)

where α = x ∗ cosθ and β = x ∗ sinθ. Three MRs, namely, MR3.1–MR3.3, are identified by
adopting varying rotation angles.

MR3.1: I f is constructed by rotating Is by 90 degrees. As a result, A f is expected to be
equivalent to As.

MR3.2: I f is constructed by rotating Is by 180 degrees. As a result, A f is expected to
be equivalent to As.

MR3.3: I f is constructed by rotating Is by 270 degrees. As a result, A f is expected to
be equivalent to As.

We next consider the changing of RGB images into grayscale images. This can be
implemented by using the ITU-R 601-2 (Luma transform https://github.com/python-
pillow/Pillow, accessed on 8 October 2020), where each pixel of an image is expressed as
8-bits, and is transformed as below.

L = R ∗ 299/1000 + G ∗ 587/1000 + B ∗ 114/1000, (5)

where R, G, and B are the RGB values in range of 0–255, and L is the resulting single
channel output. Based on this, MR3.4 is identified.

https://github.com/jrosebr1/imutils
https://github.com/jrosebr1/imutils
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
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MR3.4: Suppose that Is is a RGB image. I f is constructed by converting Is to its
corresponding grayscale image. As a result, A f is expected to be equivalent to As.

We further consider another two types of images operations, image flipping and resiz-
ing. Flipping an image utilizes a similar method as for rotating images but with different
parameter configurations, while resizing an image can be implemented by adopting scale
factors along the horizontal and vertical axes. Based on these two types of operations, the
following four MRs are identified.

MR3.5: I f is constructed by flipping Is horizontally. As a result, A f is expected to be
equivalent to As.

MR3.6: I f is constructed by flipping Is vertically. As a result, A f is expected to be
equivalent to As.

MR3.7: I f is constructed by magnifying the size of Is by 1.5 times. As a result, A f is
expected to be equivalent to As.

MR3.8: I f is constructed by reducing the size of Is by 1.5 times. As a result, A f is
expected to be equivalent to As.

5. Experimental Setup

A series of experiments were conducted to evaluate four QA systems by using all of
the 17 MRs. This section presents our experimental setup, including the implementation of
MRs, our subject QA systems, the datasets used in the experiments, and the source inputs
of MRs.

5.1. MRs Implementation

All of the identified MRs were implemented in order to automatically evaluate QA
systems by MT. Some specific MR implementations are presented as below.

MR1.3: MR1.3 replaces the comparative word in Qs with its antonym for constructing
Q f . To this end, we applied nltk (http://www.nltk.org/, accessed on 23 October 2020) for
part-of-speech tagging, which can identify comparative form of an adjective or adverb
in Qs. We further searched the antonym of the given word by using PyDictionary (https:
//github.com/geekpradd/PyDictionary, accessed on 23 October 2020).

MR1.4: MR1.4 changes the subject of Qs to construct Q f . In this study, we treated
a word of Qs representing the entity of PERSON as the subject of Qs. To identify and
change the subject of Qs, we applied the Named Entity Recognizer StanfordNERTag-
ger (https://nlp.stanford.edu/software/CRF-NER.html, accessed on 2 November 2020).
Given a Qs, StanfordNERTagger was first applied to extract the PERSON entity from Qs.
If the the PERSON entity was successfully identified, we further replaced it with another
PERSON entity that was not included in the passage.

MR3.1–MR3.3: These MRs rotate Is to construct I f . To automate this procedure, we uti-
lized a package called imutils (https://github.com/jrosebr1/imutils, accessed on 2 Novem-
ber 2020), which provides a function rotate_bound for rotating images by given degrees.

MR3.4–MR3.8: MR3.4 changes a RGB image to a grayscale image, MR3.5 and MR3.6
flip Is to construct I f , while MR3.7 and MR3.8 enlarge (shrink) Is to construct I f . To
implement these MRs, we used two libraries PIL (https://github.com/python-pillow/
Pillow, accessed on 8 October 2020) and OpenCV (https://opencv.org/, accessed on
8 October 2020).

To automatically check the relationship of As and A f , we employed the bert-as-service
API [28], which determines the degree to which the given two sentences have similar
semantics. This API represented a sentence as a fixed length vector according to BERT [9],
based on which we calculated the cosine similarity of vectors of As and A f to determined
whether they are equivalent or different.

5.2. Subject QA Systems

In the experiments, two TQA APIs and two VQA APIs were employed as our subject
systems, which are listed as below:

http://www.nltk.org/
https://github.com/geekpradd/PyDictionary
https://github.com/geekpradd/PyDictionary
https://nlp.stanford.edu/software/CRF-NER.html
https://github.com/jrosebr1/imutils
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://opencv.org/
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• AllenNLP-TQA (https://demo.allennlp.org/reading-comprehension, accessed on 10
November 2020), which is a TQA API at the AllenNLP platform [24]. AllenNLP-TQA
is an implementation of the BiDAF model [8] with ELMo embeddings.

• Transformers-TQA (https://github.com/huggingface/transformers, accessed on 10
November 2020), which is a TQA API at the Transformers platform [25]. This API is
built upon the the DistilBERT model [32].

• AllenNLP-VQA (https://demo.allennlp.org/visual-question-answering, accessed on
10 November 2020), which is a VQA API at the AllenNLP platform [24]. This API is
built upon the ViLBERT model [11].

• CloudCV-VQA (http://vqa.cloudcv.org/, accessed on 10 November 2020), which is
an API provided by the CloudCV. This API utilizes the Pythia model [33].

5.3. Datasets and Source Inputs of MRs

The SQuAD 2.0 dataset [34] was used for preparing source inputs of TQA. SQuAD2.0
contains over 150,000 questions. For VQA, we utilized the DAQUAR dataset [35], which
contains 1449 images and 12,468 questions. A source input obtained from the SQuAD 2.0
dataset was a passage-question pair, while a source input extracted from the DAQUAR
dataset was an image-question pair.

Nine MRs, namely, MR1.1–MR1.4 and MR2.1–MR2.5, were used to evaluate TQA
systems, while 12 MRs, namely, MR1.1–MR1.4 and MR3.1–MR3.8, were used to evaluated
TQA systems. Each MR was applied to individual source inputs in order to generate the
relevant follow-up inputs. Note that MRs may not be applicable to some source inputs
due to its preconditions and the operations used for constructing follow-up inputs. For
example, MR1.3 operates on comparative words, and thus it cannot be applied to source
inputs whose questions contain no comparative word. As a result, different MRs may have
varying numbers of groups of source and follow-up inputs. In total, over 50,000 groups of
source and follow-up inputs are used for evaluating TQA systems, and over 80,000 groups
of source and follow-up inputs are used for evaluating VQA systems.

6. Results and Analysis

In this section, the MT results of evaluating the four subject QA systems are presented.
Then, the capabilities of our subject QA systems are analyzed and discussed with respect
to relevant MRs.

6.1. MT Results for QA Systems

To evaluate QA systems, the violation rate (VR) was used as the evaluation metric.
Given an MR and a QA system, let y be the total number of groups of source and follow-up
inputs of the MR that were applied to test the QA system, and x be the number of groups
of source and follow-up inputs with which the system violated the MR. The VR of this QA
system with respect to this MR is y

x . Obviously, a lower VR value indicated a higher degree
to which the QA system conformed to the relevant MR, revealing a higher satisfaction of
the users’ needs. Oppositely, a higher VR value denoted that the QA system was more
sensitive to the MR operations, and thus was more likely to produce unexpected answers
for the given question. Particularly, a violation rate of 0 means that no violation of the
relevant MR was revealed in our experiments, suggesting that the system was likely to be
robust with respect to the MR and all of its source and follow-up inputs.

Table 5 summarizes the VR values of four QA systems with respect to all identified
MRs. It is observed that all of the QA systems violated some MRs with different degrees,
showing VR values ranging from 0.61% to 92.98%. Consider, for example, the VR value
(65.10%) of AllenNLP-TQA with respect to MR1.1. This VR value indicated that among all
groups of source and follow-up inputs of MR1.1 that were applied to test AllenNLP-TQA,
65.10% revealed MR violations. It can also be found from Table 5 that every QA system
violated different MRs with varying VR values and that different QA systems also violated

https://demo.allennlp.org/reading-comprehension
https://github.com/huggingface/transformers
https://demo.allennlp.org/visual-question-answering
http://vqa.cloudcv.org/
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the same MR with varying VR values. This results further suggest that the proposed MRs
were capable of reflecting the QA systems’ capability from different aspects.

Table 5. Violation rates of question answering (QA) systems (‘*’ denotes that the number of source
input is 0, while ‘-’ means that the relevant MR is not applicable to the system).

AllenNLP-TQA Transformers-TQA AllenNLP-VQA CloudCV-VQA

MR1.1 65.10% 91.11% 10.34% 20.14%
MR1.2 42.86% 7.14% * *
MR1.3 92.98% 3.51% * *
MR1.4 86.97% 68.45% * *

MR2.1 67.37% 86.86% - -
MR2.2 8.12% 6.14% - -
MR2.3 2.05% 0.61% - -
MR2.4 3.73% 1.18% - -
MR2.5 33.18% 23.99% - -

MR3.1 - - 81.10% 66.14%
MR3.2 - - 80.79 % 62.71%
MR3.3 - - 33.58% 66.42%
MR3.4 - - 55.25 % 47.68%
MR3.5 - - 48.10% 20.86%
MR3.6 - - 79.54% 62.74%
MR3.7 - - 32.06% 29.73%
MR3.8 - - 32.68% 31.51%

Average 44.71% 32.11% 56.68% 48.47 %

6.2. Further Analysis

Based on the MT results reported in Table 5, an in-depth analysis was conducted
to reveal the capabilities of the four QA systems from different perspectives. Each VR
value reported in Table 5 represents the extent to which a system deviated from the
properties specified by the relevant MR. Furthermore, as described and explained in
Section 4, different MRs handled varying input parameters and also referred to different
capabilities of QA. More importantly, a system may have performed well in some aspects
but may have had bad performance in some other aspects, while different users may have
had concern with varying QA capabilities due to their distinct application scenarios. It was
therefore important for the users to know the strength and weakness of different systems
such that appropriate systems could be selected to satisfy their needs. Because of this,
we compared subject QA systems by inspecting VR values of MRs pertaining to specific
QA capabilities in order to reveal the strength and weakness of individual systems from
different aspects.

6.2.1. QA’s Capability of Understanding and Answering Questions

Both TQA and VQA have to understand the question and then to give an appropriate
answer to the question. When using these systems, the users may want to know which
QA system has a better capability of processing questions. Four of the proposed MRs,
namely, MR1.1–MR1.4, focus on this aspect by describing the relationships among source
and follow-up inputs that differ exactly in the input questions.

Figure 3 compares different TQA systems and VQA systems based on MR1.1–MR1.4.
As shown in Figure 3a, Transformers-TQA had lower VR values than AllenNLP-TQA for
three out of four MRs. It can be further observed from Table 5 that the average VR value
of Transformers-TQA on these four MRs was also much lower than that of AllenNLP-
TQA. Therefore, as compared with AllenNLP-TQA, Transformers-TQA exhibited better
capabilities of understanding and answering questions. Similarly, as shown in Figure 3b,
the two VQA systems also had varying violation rates for MR1.1 (the other three MRs had
0 source input for VQA and thus no data was collected). As compared with CloudCV-VQA,
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AllenNLP-TQA had a relatively lower violation rate with respect to MR1.1, suggesting that
AllenNLP-VQA was more robust to the letter case of input questions. Moreover, Figure 3b
also showed that the two VQA systems under investigation were of better capability of
handling questions with lowercase or uppercase letters than the two TQA systems, because
the former two had much lower VR values (namely, 10.34% and 20.14%) than the latter
(namely, 65.10% and 91.11%) with respect to MR1.1.

(a) Violation rates of TQA with respect to MR1.x. (b) Violation rates of QA with respect to MR1.1.

Figure 3. Violation rates of QA with respect to MR1.1–MR1.4.

6.2.2. TQA’s Capability of Understanding and Processing Passages

TQA answers a given question based on a passage, it thus needs to understand and
process the passage for exacting information related to the given question. We defined five
MRs, MR2.1–MR2.5, for investigating TQA’s capability of understanding and processing
input passages.

Figure 4 compares the violation rates of the two TQA systems (AllenNLP-TQA and
Transformers-TQA) with respect to MR2.1–MR2.5. Firstly, both TQA systems had much
lower violation rates for MR2.2–MR2.5 (VR values are lower than 35%) as compared with
those for MR2.1 (VR values are higher than 65%). These results reveal that the two TQA
systems were much more robust to the adding, removing or replacing some contents of
the input passage, but were less robust to the conversion of lowercase letters to uppercase
letters of the input passage. Secondly, Transformers-TQA had similar violation rates as
AllenNLP-TQA for MR2.2–MR2.4 (the discrepancies between the VR values of the two
systems with respect to individual MRs were about 2%), but had a very different violation
rates from AllenNLP-TQA for the other two MRs (the VR value of the former was about
20% higher than that of the latter with respect to MR2.1, while the VR value of the former
was about 10% lower than that of the latter with respect to MR2.5). In other words, the
two TQA systems had equivalent capability of dealing with passages containing sentences
of different orders as well as containing more or less irrelevant sentences. Nevertheless,
AllenNLP-TQA did better for handling passages containing lowercase or uppercase letters,
while Transformers-TQA performed better when dealing with passages containing minor
replaced contents.

6.2.3. VQA’s Capability of Understanding and Processing Images

While TQA understands and processes the input passage for answering a question, VQA
relies on the input image for giving an answer to a question. We identified eight MRs, MR3.1–
MR3.8, for investigating the VQA’s capability of understanding and processing images.
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Figure 4. TQA’s violation rates with respect to MR2.1–MR2.5.

Figure 5 compares AllenNLP-VQA and CloudCV-VQA with respect to MR3.1–MR3.8.
It was observed that except for MR3.3, CloudCV-VQA always had lower violation rates
than AllenNLP-VQA, indicating that CloudCV-VQA performed better in terms of MR3.1,
MR3.2, MR3.4–MR3.8. On the other hand, both VQA systems had different violation rates
for MRs involving the same image perturbation operation, such as rotation and flipping.
For example, consider MR3.1–MR3.3, which rotated a source image to construct a follow-up
image (but each MR rotated the image by a specific angle, such as 90 degrees, 180 degrees,
and 270 degrees). For these three MRs, AllenNLP-VQA had VR values of of 81.10%, 80.79%
and 33.58%, and CloudCV-VQA had VR values of 66.14%, 62.71% and 66.42%. A similar
observation can also be obtained when inspecting these two VQA systems with respect to
MR3.4 and MR3.5 that both flipped the source image to construct the follow-up image (but
with different flipping directions).

Figure 5. VQA’s violation rates with respect to MR3.1–MR3.8.

6.2.4. Further Analysis and Discussion

TQA and VQA had the commonality that they both needed to understand and process
the given question. Figure 3b compares our four subject systems with respect to MR1.1,
showing that the two VQA systems had relatively better capabilities than the two TQA
systems in terms of processing questions containing lowercase or uppercase letters. How-
ever, TQA and VQA differed in that the former relied on the passage of text while the
latter relied on the image. Concerning these aspects, we respectively used MR2.x and
MR3.x for evaluating TQA and VQA. It can still be found from Table 5 that the two TQA
systems generally had lower violation rates for MR2.x (which focused on TQA’s capability
of understanding and processing passages) as compared with the VQA’s violation rates for
MR3.x (that concentrated on VQA’s capability of understanding and processing images).
These results indicated that compared with the image processing capability of the two VQA
systems, the two TQA systems had better capability of processing passages. Furthermore,
Table 5 presents the average violation rates across all applied MRs for individual subject
QA systems (as shown in the last row of Table 5). Base on the average VR values, it was
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found that the two TQA systems generally performed better than the two VQA system,
because the former two had average VR values of 44.71% and 32.11% while the latter two
had average VR values of 56.68% and 48.47%.

In summary, the proposed 17 MRs encoded some characteristics of QA system, based
on which MT results revealed the capabilities of our subject TQA and VQA systems from
different perspectives. On one hand, the MT results reported the VR values for every
subject system with respect to individual MRs, which could help the users to gain a better
understanding about the capability and limitations of the relevant systems. For example,
by inspecting the VR values of AllenNLP-TQA, the users could find that this system
was good at extracting the question-related information from the passage either with or
without some irrelevant sentences (as suggested by the VR value of 2.05% of MR2.3), but it
was very incapable of properly understanding questions containing comparative words
(as indicated by the VR value of 92.98% of MR1.3). On the other hand, the MT results
supported the comparison of different QA systems by considering different aspects, which
thus provided guidance for the user to select appropriate QA systems for their specific
needs. For example, if the users wanted to use VQA systems without concerning the use
of lowercase or uppercase letters in the question description, they could check the VQA
systems’ VR values with respect to MR1.1. The reason for this is that MR1.1 encoded the
relationship between source and follow-up inputs to reflect to which degree a QA system
was sensitive to the letter case of a question. In our experiments, AllenNLP-VQA had a VR
value of 10.34%, while CloudCV-VQA had a VR value of 20.14%, with respect to MR1.1.
Based on this result, it was natural that the users would utilize AllenNLP-VQA rather than
CloudCV-VQA. Note that different users may have had varying needs and expectations
on the QA systems, and thus MT results of different MRs should be referred in different
application scenarios.

7. Related Work

A large body of studies focus on assessing the QA systems’ robustness. In order to
construct input data, various strategies have been proposed, such as adversarially inserting
sentences into the input passages of TQA [12], perturbing questions with respect to high
attribute terms [14], rephrasing questions by applying linguistic variations [36], introducing
noises into questions [15,37], and applying universal adversarial triggers [38]. Another
line of work focuses on improving or explaining QA systems’ robustness. Chen et al. [17]
proposed a model for TQA through sub-part alignment, which was able to filter out bad
prediction results and thus was of higher robustness, while Patro et al. [16] proposed a
collaborative correlated network for providing visual and textual explanations of the VQA’s
answers. Although robustness is important for evaluation, these studies are orthogonal to
our focus on assessing to what degree QA systems satisfy the users’ specific expectations.
On the other hand, most of existing studies focused on either of TQA or VQA, and proposed
strategies for changing only parts of an input (namely, question or passage). Nevertheless,
our study proposed a list of MRs, which involve various operations that can be applied to
both the input questions and the input passages (input images) of TQA (VQA).

Apart from focusing on the QA systems’ robustness, Ribeiro et al. [39] evaluated
the logic consistency of QA systems. They transformed a question and also implied the
corresponding answer by considering the positive and negative implications caused by the
given question with respect to the context. While useful, this method still did not take the
other parts of the input (i.e., passages or images) into account, and thus the evaluation was
still restricted to parts of the QA’s capabilities.

Ribeiro et al. [15] introduced MT to one of the QA systems, namely, TQA, and
proposed to use MT for evaluatig the TQA’s robustness. However, in their work, only
one MR was identified, which introduced a specific type of noises (namely, typos) into the
input passage or the input question to generate follow-up inputs. In contrast, our study
proposed applying MT as a comprehensive evaluation method for both TQA and VQA in
a user-oriented way. We have identified a large number of MRs for QA, including MRs
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that reflect systems’ robustness (such as the MRs adopting the capitalization operation on
the inputs), and also MRs that focus on particular system functionalities (such as the MRs
adopting words replacement). Moreover, these MRs are able to construct diverse test data
with changes on both the input passages (images) and questions of TQA (VQA).

8. Conclusions

In recent years, question answering (QA) has emerged as a popular and powerful
tool in various domains, due to its capability of enabling the machine to understand and
answer question posted in natural language. Unfortunately, recent studies have adopted
various techniques to evaluate QA systems, revealing a series of problems concerning
different aspects. In this paper, we focused on the evaluation of two typical categories
of QA systems, namely, the textual QA (TQA) and visual QA (VQA). We applied the
technique of metamorphic testing (MT) to QA, and identified 17 metamorphic relations
(MRs) by considering the users’ varying expectations on QA systems. In the experiments,
we evaluated two TQA systems and two VQA systems by using all of the MRs, and our
experimental results reveal their capabilities from different perspectives. These results
further suggest that the proposed MRs are capable of encoding the expected characteristics
of QA and MT can be an effective evaluation method for QA.
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