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1. Introduction

In this paper, we were only concerned with undirected, simple and finite graphs. We
followed [1] for terminology and notations not defined here. For a given graph G, we
denoted its vertex set, edge set, maximum degree and minimum degree by V(G), E(G),
∆(G) and δ(G), respectively. For a vertex v ∈ V(G), we used degG (v) and NG(v) to denote
the degree and neighbours of v in G, respectively. The neighbourhood of a vertex v ∈ V(G)
are denoted by NG(v) = {u ∈ V(G) | uv ∈ E(G)} and NXj(v) = {u ∈ V(Xj) | uv ∈ E(G)}.

As usual, a cycle and a path on n vertices are denoted by Cn and Pn, respectively. A
complete graph on n vertices, denoted Kn, is a graph in which every vertex is adjacent, or
connected by an edge, to every other vertex in G. By a stripe mK2, we mean a graph on 2m
vertices and m independent edges. A clique is a subset of vertices such that there exists
an edge between any pair of vertices in that subset of vertices. An independent set of a
graph is a subset of vertices such that there exists no edges between any pair of vertices
in that subset. Let C be a set of colors {c1, c2, ..., cm} and E(G) be the edges of a graph G.
An edge coloring f : E→ C assigns each edge in E(G) to a color in C. If an edge coloring
uses k color on a graph, then it is known as a k-colored graph. The complete multipartite
graph with the partite set (X1, X2, . . . Xj), |Xi| = s for i = 1, 2, . . . j, denoted by Kj×s. We
use [Xi, Xj] to denote the set of edges between partite sets Xi and Xj. The complement
of a graph G, denoted by G, is a graph with the same vertices as G and contains those
edges which are not in G. Let T ⊆ V(G) be any subset of vertices of G. Then, the induced
subgraph G[T] is the graph whose vertex set is T and whose edge set consists of all of the
edges in E(G) that have both endpoints in T.

Since 1956, when Erdös and Rado published the fundamental paper [2], major research
has been conducted to compute the size of the multipartite and bipartite Ramsey numbers.
A big challenge in combinatorics is to determining the Ramsey numbers for the graphs.
We refer to [3] for an overview on Ramsey theory. Ramsey numbers are related to other
areas of mathematics, like combinatorial designs [4]. In fact, exact or near-optimal values
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of several Ramsey numbers depend on the existence of some combinatorial designs like
projective planes, which have been studied to date. Many of these connections are briefly
described in [3,5]. There are many applications of Ramsey theory in various branches of
mathematics and computer science, such as number theory, information theory, set theory,
geometry, algebra, topology, logic, ergodic theory and theoretical computer science [6]. In
particular, multipartite Ramsey numbers have applications in decision-making problems
and communications [7]. There are many mathematicians who present the new results of
multipartite Ramsey numbers every year. As a result of this vast range of applications, we
were motivated to conduct research on multipartite Ramsey numbers.

For given graphs G1, G2, . . . , Gn and integer j, the size of the multipartite Ramsey
number mj(G1, G2, . . . , Gn) is the smallest integer t such that any n-coloring of the edges
of Kj×t contains a monochromatic copy of Gi in color i for some i, 1 ≤ i ≤ n, where
Kj×t denotes the complete multipartite graph having j classes with t vertices per each
class. G is n-colorable to (G1, G2, . . . , Gn) if there exist a t-edge decomposition of G say
(H1, H2, . . . , Hn), where Gi * Hi for each i = 1, 2, . . . , n.

The existence of such a positive integer is guaranteed by a result in [2]. The size of
the multipartite Ramsey numbers of small paths versus certain classes of graphs have
been studied in [8–10]. The size of the multipartite Ramsey numbers of stars versus
certain classes of graphs have been studied in [11,12]. In [13,14], Burger, Stipp, Vuuren,
and Grobler investigated the multipartite Ramsey numbers mj(G1, G2), where G1 and
G2 are in a completely balanced multipartite graph, which can be naturally extended to
several colors. Recently, the numbers mj(G1, G2) have been investigated for special classes:
stripes versus cycles; and stars versus cycles, see [10] and its references. In [15], authors
determined the necessary and sufficient conditions for the existence of multipartite Ramsey
numbers mj(G, H) where both G and H are incomplete graphs, which also determined
the exact values of the size multipartite Ramsey numbers mj(K1,m, K1,n) for all integers
m, n ≥ 1 and j = 2, 3. Syafrizal et al. determined the size multipartite Ramsey numbers of
path versus path [16]. m3(G, P3) and m2(G, P3) where G is a star forest, namely a disjoint
union of heterogeneous stars have been studied in [17]. The exact values of the size Ramsey
numbers mj(P3, K2,n) and mj(P4, K2,n) for j ≥ 3 computed in [18].

In [12], Lusiani et al. determined the size of the multipartite Ramsey numbers of
mj(K1,m, H), for j = 2, 3, where H is a path or a cycle on n vertices, and K1,m is a star of
order m + 1. In this paper, we computed the size of the multipartite Ramsey numbers
mj(K1,2, P4, nK2) for n, j ≥ 2 and mj(nK2, C7), for j ≤ 4 and n ≥ 2 which are the new results
of multipartite Ramsey numbers. Computing classic Ramsey numbers is very a difficult
problem, therefore we can use multipartite and bipartite Ramsey numbers to obtain an
upper bound for a classic Ramsey number. In particular, the first target of this work was to
prove the following theorems:

Theorem 1. mj(K1,2, P4, nK2) = b 2n
j c+ 1 where j, n ≥ 2.

In [10], Jayawardene et al. determined the size of the multipartite Ramsey numbers
mj(nK2, Cm) where j ≥ 2 and m ∈ {3, 4, 5, 6}. The second goal of this work extends these
results, as stated below.

Theorem 2. Let j ∈ {2, 3, 4} and n ≥ 2. Then

mj(nK2, C7) =



∞ j = 2, n ≥ 2,

2 (j, n) = (4, 2),

3 (j, n) = (3, 2), (4, 3),

n j = 3, n ≥ 3,

d n+1
2 e j = 4, n ≥ 4.
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We estimate that this value of mj(nK2, C7) holds for every j ≥ 2. We checked the proof
of the main theorems into smaller cases and lemmas in order to simplify the idea of the
proof.

2. Proof of Theorem 1

In order to simplify the comprehension, let us split the proof of Theorem 1 into small
parts. We begin with a simple but very useful general lower bound in the following lemma:

Lemma 1. mj(K1,2, P4, nK2) ≥ b 2n
j c+ 1 where j, n ≥ 2.

Proof. Consider G = Kj×t where t = b 2n
j c with partition sets Xi, Xi = {xi

1, xi
2, . . . , xi

t} for

i ∈ {1, 2, . . . , j}. Consider x1
1 ∈ X1, decompose the edges of Kj×t into graphs G1, G2, and

G3, where G1 is a null graph and G2 = G3, where G3 is G[X1 \ {x1
1}, X2, . . . , Xj]. In fact G2

is isomorphic to K1,(j−1)t and:

E(G2) = {x1
1xr

i | r = 2, 3, . . . , j and i = 1, 2 . . . , t}.

Clearly E(Gt) ∩ E(Gt′) = ∅, E(G) = E(G1) ∪ E(G2) ∪ E(G3), K1,2 6⊆ G1 and P4 6⊆ G2.
Since |V(Kj×t)| = j× b 2n

j c ≤ 2n, we have |V(G3)| ≤ 2n− 1, that is, nK2 6⊆ G3, which

means that m3(K1,2, P4, nK2) ≥ b 2n
j c+ 1 and the proof is complete.

Observation 1. Let G = K2,3( or K4− e). For any subgraph of G, say H, either H has a subgraph
isomorphism to K1,2 or H has a subgraph isomorphism to P4.

Proof. Let H ⊆ G = K2,3, for G = K4 − e the proof is same. Without loss of generality
(w.l.g.), let X = {x1, x2} and Y = {y1, y2, y3} be a partition set of V(G) and P be a maximum
path in H. If |P| ≥ 3, then H has a subgraph isomorphic to K1,2, so let |P| ≤ 2. If |P| = 1,
then H(= G) has a subgraph isomorphic to P4. Hence, we may assume that |P| = 2, w.l.g.,
and let P = x1y1. Since |P| = 2, x1y2, x1y3 and x2y1 are in E(H) and there is at least one
edge of {x2y2, x2y3} in H, in any case, P4 ⊆ H and the proof is complete.

We determined the exact value of the multipartite Ramsey number of m2(K1,2, P4, nK2)
for n ≥ 2 in the following lemma:

Lemma 2. m2(K1,2, P4, nK2) = n + 1 for n ≥ 2.

Proof. Let X = {x1, x2, . . . , xn+1} and Y = {y1, y2, . . . , yn+1} be a partition set of G =
Kn+1,n+1. Consider a three-edge coloring Gr, Gb and Gg of G. By Lemma 1, the lower bound
holds. Now, let M be the maximum matching in Gg. If |M| ≥ n, then the lemma holds, so
let |M| ≤ n− 1. If |M| ≤ n− 2, then we have K3,3 ⊆ Gg and by Observation 1, the lemma
holds, so let |M| = n− 1. W.l.g., we may assume that M = {x1y1, x2y2, . . . , xn−1yn−1}.
By considering the edges between {xn, xn+1} and Y \ {yn, yn+1} and the edges between
{yn, yn+1} and X \ {xn, xn+1}, we have K3,2 ⊆ Gr ∪ Gb. Hence, by Observation 1, the
lemma holds.

In the next two lemmas, we consider m3(K1,2, P4, nK2) for certain values of n. In partic-
ular, we proved that m3(K1,2, P4, nK2) = n, for n = 2, 3 in Lemma 3 and m3(K1,2, P4, 4K2) =
3 in Lemma 4.

Lemma 3. m3(K1,2, P4, nK2) = n for n = 2, 3.

Proof. Let Xi = {xi
1, xi

2, . . . , xi
n} for i ∈ {1, 2, 3} be a partition set of G = K3×n. Consider a

three-edge coloring Gr, Gb and Gg of G. By Lemma 1 the lower bound holds. Now, let M
be the maximum matching in Gg and consider the following cases:
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Case 1: n = 2. If |M| ≥ 2 then nK2 ⊆ Gg and the proof is complete. So let |E(M)| ≤ 1.
W.l.g., we may assume that x1

1x2
1 ∈ E(M), hence, we have K4 − e ∼= G[x1

2, x2
2, X3] ⊆ Gr ∪ Gb

and by Observation 1, the proof is complete.
Case 2: n = 3. In this case, if |E(M)| ≤ 1 or |E(M)| ≥ 3, then the proof is the same as

case 1. So let |E(M)| = 2 and w.l.g., we may assume that E(M) = {e1, e2}—considering
any e1 and e2 in E(G). In any case, we have Gr ∪ Gb has a subgraph isomorphic to K3,2,
hence, by Observation 1, the lemma holds. Therefore, we have m3(K1,2, P4, 3K2) = 3. Now,
through cases 1 and 2, the proof is complete.

Lemma 4. m3(K1,2, P4, 4K2) = 3.

Proof. Let Xi = {xi
1, xi

2, xi
3} for i ∈ {1, 2, 3} be a partition set of G = K3×3. By Lemma 1,

the lower bound holds. Consider a three-edge coloring (Gr, Gb, Gg) of G where 4K2 * Gg.
Let M be a maximum matching in Gg, if |M| ≤ 2, then the proof is same as Lemma 3.
Hence, we may assume that |M| = 3 and w.l.g., let E(M) = {e1, e2, e3}. By Observation 1,
there is at least one edge between X1 and X2 in Gg, say e1 = x1

1x2
1, and similarly, there is

at least one edge between X3 and {x1
2, x1

3} in Gg, say e2 = x1
2x3

1, otherwise K3,2 ⊆ Gr ∪ Gb

and the proof is complete. Now, by Observation 1, there is at least one edge between
{x1

3, x3
2, x3

3} and {x2
2, x2

3} in Gg, and let e3 be this edge. If x1
3 /∈ V(e3) (say e3 = x2

2x3
2 ), then

K3 ⊆ Gr ∪ Gb[x1
3, x2

3, x3
3].

Now, consider the vertex x1
1 and x2

1, since |M| = 3 and e1 = x1
1x2

1, it is easy to check
that x1

1x3
3, x2

1x3
3 ∈ E(Gg) and x1

1x2
3, x2

1x1
3 ∈ E(Gg), otherwise K4 − e ⊆ Gg and the proof

is complete. Similarly, we have x1
2x2

3, x3
1x2

3 ∈ E(Gg) and x1
2x3

3, x3
1x1

3 ∈ E(Gg). Now, by
considering the edges of G[X1, x2

1, x2
3, x3

1, x3
3], it is easy to check that K4 − e ⊆ Gr ∪ Gb and

the lemma holds. Hence, we have x1
3 ∈ V(e3) (say e3 = x1

3x2
2), in this case, and we have

K2,2 ∼= G[x2
2, x2

3, x3
2, x3

3] ⊆ Gr ∪ Gb, otherwise, if there exists at least one edge between
{x3

2, x3
3} and {x2

2, x2
3} in Gg, say e, then set e = e3 and the proof is the same. Hence, by

considering the vertex x1
1 and x2

1, since |M| = 3 and e1 = x1
1x2

1, it is easy to check that
K3,2 ⊆ Gr ∪ Gb and by Observation 1 the proof is complete.

Lemma 5. m3(K1,2, P4, nK2) ≤ b 2n
3 c+ 1 for each n ≥ 2.

Proof. Let Xi = {xi
1, xi

2, . . . , xi
t} for i ∈ {1, 2, 3} be a partition set of G = K3×t where

t = b 2n
3 c+ 1. We will prove this Lemma by induction. For the base step of the induction,

since b 2×2
3 c+ 1 = 2, b 2×3

3 c+ 1 = 3 and b 2×4
3 c+ 1 = 3, lemma holds by Lemmas 3 and 4.

Suppose that n ≥ 5 and m3(K1,2, P4, n′K2) ≤ b 2n′
3 c+ 1 for each n′ < n. We will show that

m3(K1,2, P4, nK2) ≤ b 2n
3 c+ 1. By contradiction, we may assume that m3(K1,2, P4, nK2) >

b 2n
3 c+ 1, that is, K3×(b 2n

3 c+1) is three-colorable to (K1,2, P4, nK2). Consider a three-edge

coloring (Gr, Gb, Gg) of G, such that K1,2 6⊆ Gr, P4 6⊆ Gb and nK2 6⊆ Gg. By the induction
hypothesis and Lemma 1, we have m3(K1,2, P4, (n − 1)K2) = b 2(n−1)

3 c + 1 ≤ b 2n
3 c + 1.

Therefore, since K1,2 6⊆ Gr and P4 6⊆ Gb, we have (n − 1)K2 ⊆ Gg. Now, we have the
following cases:

Case 1: b 2n
3 c = b

2(n−1)
3 c+ 1.

Since b 2n
3 c = b 2(n−1)

3 c + 1, we have a copy of H = K
3×(b 2(n−1)

3 c+1)
in G. In other

words, for each i ∈ {1, 2, 3}, there is a vertex, say x ∈ Xi, such that x ∈ V(G) \ V(H).
W.l.g., we may assume that A = {x1

1, x2
1, x3

1} would be these vertices. Since H ⊆ G, we
have K1,2 6⊆ Gr[V(H)] and P4 6⊆ Gb[V(H)]. Hence, by the induction hypothesis, we have
M = (n − 1)K2 ⊆ Gg[V(H)] ⊆ Gg. We consider that the three vertices do not belong
to V(H), i.e., A. Since nK2 6⊆ Gg, we have G[A] ⊆ Gr ∪ Gb. Now, we consider the
following Claim:

Claim 1. n ∈ B ∪ D where B = {3k | k = 1, 2, ...} and D = {3k + 2 | k = 1, 2, ...}.
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Proof of the Claim. By contradiction, we may assume that n /∈ B ∪ D. In other words,
let n = 3k + 1, then we have:

2k = b6k
3
c = b6k

3
+

2
3
c = b6k + 2

3
c = b2(3k + 1)

3
c

= b2n
3
c = b2(n− 1)

3
c+ 1 = b2(3k)

3
c+ 1 = 2k + 1,

which is a contradiction implying that n ∈ B ∪ D.

Claim 2. There is at least one vertex in V(H) \V(M).

Proof of the Claim. Let M = (n− 1)K2 ⊆ Gg, then |V(M)| = 2(n− 1) = 2n− 2. Since
b 2n

3 c = b
2(n−1)

3 c+ 1, by Claim 1, if n ∈ B, we have n = 3k for k ≥ 2. Now, we have:

b2(n− 1)
3

c+ 1 = b2(3k− 1)
3

c+ 1 = b2(3k)
3
− 2

3
c+ 1 = 2k− 1 + 1 = 2k.

Hence, we have |V(H)| = 3× (2k) = 6k = 2n and thus |V(H) \V(M)| = 2. If n ∈ D
then we have:

b2(n− 1)
3

c+ 1 = b2(3k + 1)
3

c+ 1 = b2(3k)
3

+
2
3
c+ 1 = 2k + 1.

Hence, |V(H)| = 3× (2k + 1) = 6k + 3 = 2n− 1. Therefore, |V(H) \V(M)| = 1.
By Claim 2, let x ∈ V(H) \V(M). Since nK2 6⊆ Gg, we have K4 − e ∼= G[A ∪ {x}] ⊆

Gr ∪ Gb. Hence, by Observation 1, we again have a contradiction.
Case 2: b 2n

3 c = b
2(n−1)

3 c.
In this case, by Claim 1 we have n = 3k + 1. Since K1,2 6⊆ Gr and P4 6⊆ Gb, by the

induction hypothesis, we have M = (n− 1)K2 ⊆ Gg. Now, we have the following claim:

Claim 3. |V(G) \V(M)| = 3.

Proof of the Claim. Let M = (n− 1)K2 ⊆ Gg. Since |V(Xj)| = b 2n
3 c+ 1 and n = 3k + 1,

we have b 2n
3 c+ 1 = b 2(3k+1)

3 c+ 1 = b 6k
3 + 2

3c+ 1 = 2k + 1 and therefore, |V(G)| = 3×
(2k+ 1) = 6k+ 3 = 2(3k+ 1)+ 1 = 2n+ 1, that is, |V(G) \V(M)| = (2n+ 1)− (2n− 2) =
3.

By Claim 3, we have |V(G) \V(M)| = 3. W.l.g., we may assume that A′ = {x, y, z}
has three vertices, since nK2 6⊆ Gg, and we have G[A′] ⊆ Gr ∪ Gb. We consider the three
vertices belonging to A′, and now, we have the following subcases:

Subcase 2-1: A′ ⊆ Xj for only one j ∈ {1, 2, 3}. W.l.g. we may assume that A′ ⊆ X1
and E(M) = {ei | i = 1, 2, . . . , (n − 1)}. Since k ≥ 2 and 3k + 1 = n ≥ 7 we have
|Xj| ≥ 5 and |E(M) ∩ E(G[X2, X3])| ≥ 3, otherwise, K3,3 ⊆ Gr ∪ Gb and by Observation 1;
a contradiction. W.l.g. we may assume that {x2

i x3
i | i = 1, 2, 3} ⊆ (E(M) ∩ E(Gg[X2, X3])).

Consider G′ = G[A′, x2
1, x2

2, x2
3, x3

1, x3
2, x3

3]
∼= K3×3. Since nK2 6⊆ Gg, if M′ is a maximum

matching in G′g, then |M′| ≤ 3, otherwise we have nK2 = M \ {e1, e2, e3} ∪M′ ⊆ Gg; a
contradiction again. Since m3(K1,2, P4, 4K2) = 3 and |M′| ≤ 3, we have K1,2 ⊆ G′r ⊆ Gr or
P4 ⊆ G′b ⊆ Gb; also a contradiction.

Subcase 2-2: |A′ ∩ Xj| = 1 for each j ∈ {1, 2, 3}. W.l.g., we may assume that x ∈
X1, y ∈ X2 and z ∈ X3. Hence G[A′] ∼= K3 ⊆ Gr ∪ Gb. Since |Xj| ≥ 5, we have |E(M) ∩
E(Gg[Xi, Xj])| ≥ 2 for each i, j ∈ {1, 2, 3}. W.l.g., we may assume that x′y′ ∈ E(M) ∩
E(Gg[X1 \ {x}, X2 \ {y}]), x′ ∈ X1 and y′ ∈ X2. If x′y and x′z ∈ E(Gr ∪ Gb) then we
have K4 − e ⊆ Gr ∪ Gb and by Observation 1; a contradiction. So let x′y or x′z ∈ E(Gg). If
x′y ∈ E(Gg), then, since nK2 6⊆ Gg, we have y′x, y′z ∈ E(Gr ∪Gb), that is, K4− e ⊆ Gr ∪Gb;
we have a contradiction again. So let x′z ∈ E(Gg) and x′y ∈ E(Gr ∪ Gb). Since nK2 6⊆ Gg,
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we have y′x ∈ E(Gr ∪ Gb). If |E(Gr) ∩ E(G[A′])| 6= 0, then we have P4 ⊆ Gb. So let
xy, yz, zx ∈ E(Gb) and xy′, yx′ ∈ E(Gr). Since |E(M) ∩ E(Gg[Xi, Xj])| ≥ 2 there is at
least one edge, say y′′z′′ ∈ E(M) ∩ E(Gg[X2 \ {y}, X3 \ {z}]). W.l.g., we may assume that
y′′ ∈ X2 and z′′ ∈ X3. Since K1,2 6⊆ Gr and P4 6⊆ Gb we have y′′x, z′′y ∈ E(Gg). Hence, we
had a nK2 = M \ {y′′z′′} ∪ {y′′x, z′′y}; a contradiction.

Subcase 2-3: |A′ ∩ Xj| = 2 for only one j ∈ {1, 2, 3}. W.l.g., we may assume that x, y ∈
X1 and z ∈ X2. Hence, we have G′[A′] ∼= P3 ⊆ Gr ∪ Gb. Since k ≥ 2, we have |Xj| ≥ 5, that
is, |E(M) ∩ E(Gg[X2, X3])| ≥ 3. W.l.g., we may assume that vu, v′u′ ∈ E(M) ∩ Gg[X2, X3]
where v, v′ ∈ X2 and u, u′ ∈ X3. Now, we have the following claim:

Claim 4. |NGg(x) ∩ {v, v′}| = |NGg(y) ∩ {v, v′}| = 0.

Proof of the Claim. By contradiction, w.l.g., we may assume that xv ∈ E(Gg). Since
nK2 6⊆ Gg, we have yu, zu ∈ E(Gr ∪ Gb). Consider A′′ = {y, z, u} and M′ = M \ {vu} ∪
{xv}. Hence, M′ = (n− 1)K2 ⊆ Gg and |A′′ ∩ Xj| 6= 0 for each j ∈ {1, 2, 3}; we have a
contradiction to subcase 2-2.

Now, by Claim 4, we have K2,3 = G[A′ ∪ {v, v′}] ⊆ Gr ∪ Gb. In this case, by
Observation 1, we have K1,2 ⊆ Gr or P4 ⊆ Gb; we have a contradiction again.

Therefore, by Cases 1 and 2, we have m3(K1,2, P4, nK2) ≤ b 2n
3 c+ 1 for n ≥ 2.

Now, by Lemmas 1 and 5, we have the following lemma:

Lemma 6. m3(K1,2, P4, nK2) = b 2n
3 c+ 1 for n ≥ 2.

In the next two lemmas, we consider mj(K1,2, P4, nK2) for each values of n ≥ 2 and
j ≥ 4. In particular, we proved that mj(K1,2, P4, nK2) = b 2n

j c+ 1 for n ≥ 2 and j ≥ 4. We
started with the following lemma:

Lemma 7. Let j ≥ 4 and n ≥ 2. Given that mj(K1,2, P4, (n− 1)K2) = b 2(n−1)
j c+ 1, it follows

that mj(K1,2, P4, nK2) ≤ b 2n
j c+ 1.

Proof. Let j ≥ 4 and n ≥ 2. For i ∈ {1, 2, . . . , j} let Xi = {xi
1, xi

2, . . . , xi
t} be partition set

of G = Kj×t where t = b 2n
j c+ 1. Assume that mj(K1,2, P4, (n− 1)K2) = b 2(n−1)

j c+ 1 is

true. To prove mj(K1,2, P4, nK2) ≤ b 2n
j c+ 1. Consider three-edge coloring (Gr, Gb, Gg) of

G. Suppose that nK2 6⊆ Gg, we prove that K1,2 ⊆ Gr or P4 ⊆ Gb. Let M∗ be the maximum
matching in Gg. Hence, by the assumption, |M∗| ≤ n− 1, that is |V(Kj×t) ∩ V(M∗)| ≤
2(n− 1). Now, we have the following claim:

Claim 5. |V(Kj×t) \V(M∗)| ≥ 3.

Proof of the Claim. Consider the following cases:
Case 1: Let 2n = jk (2n ≡ 0(mod j)). In this case, we have:

|V(G)| = j× t = j× (b2n
j
c+ 1) = j× b2n

j
c+ j = jk + j = j(k + 1).

Hence:

|V(G) \V(M∗)| ≥ j(k + 1)− 2(n− 1) = jk + j− 2n + 2 = j + 2 ≥ 6 (j ≥ 4).

Case 2: Let 2n = jk + r (2n ≡ r(mod j) where r ∈ {1, 2, . . . , j− 1}). In this case, we
have:

|V(G)| = j × (b 2n
j c + 1) = j × (b jk+r

j c + 1) = j × (b jk
j + r

j c + 1) = j × b jk
j c + j =

jk + j.
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Hence we have:
|V(G) \ V(M∗)| ≥ j(k + 1) − 2(n − 1) = jk + j − 2n + 2 = jk + j − jk − r + 2 =

j− r + 2 ≥ 3.
By Claim 5, G contains three vertices, say x, y and z in V(Kj×t) \ V(M∗). Con-

sider the vertex set {x, y, z} and let {x, y, z} ⊆ A = V(G) \ V(M∗). Now, we have the
following cases:

Case 1: Let x ∈ X1, y ∈ X2 and z ∈ X3, where Xi for i = 1, 2, 3 are distinct partition
sets of G = Kj×t. Note that all vertices of A are adjacent to each other in Gg. Since t ≥ 2,
we have |Xi| ≥ 2. Consider the partition Xj for j ≥ 4. Since |Xj| ≥ 2, if |A ∩ Xj| ≥ 1 for
at least one j ≥ 4, then we have K4 ⊆ Gr ∪ Gb and the proof is complete by Observation
1. Now, let |A ∩ Xj| = 0 for each j ≥ 4. Hence, for x4

1 ∈ X4 there exists a vertex, say
u such that x4

1u ∈ E(M∗). Consider NGg(x4
1) ∩ {x, y, z}. If |NGg(x4

1) ∩ {x, y, z}| ≤ 1,
then we have K4 − e ⊆ Gr ∪ Gb and by Observation 1, the proof is complete. Therefore,
let |NGg(x4

1) ∩ {x, y, z}| ≥ 2. W.l.g., we may assume that {x, y} ⊆ NGg(x4
1) ∩ {x, y, z}.

In this case, we have |NGg(u) ∩ {x, y, z}| = 0. On the contrary, let xu ∈ E(Gg) and
set M′ = M∗ \ {x4

1u} ∪ {x4
1y, ux}. Clearly M′ is a match where |M′| > |M∗|, which

contradicts the maximality of M∗. Hence, we have |NGg(u) ∩ {x, y, z}| = 0. Therefore, we
have K4 − e ⊆ Gr ∪ Gb[x, y, z, u] and, by Observation 1, the proof is complete.

Case 2: Let x, y ∈ Xi and z ∈ Xi′ where Xi, Xi′ are distinct partition sets of G. W.l.g.,
let i = 1 and i′ = 2. Consider the partition Xj(j 6= 1, 2). Since |Xj| ≥ 2, if |A∩ Xj| ≥ 1, then
we have K4 − e ⊆ Gr ∪ Gb and by Observation 1, the proof is complete. So let |A ∩ Xj| = 0
for each j ≥ 3. Now, we have the following claim.

Claim 6. Let e = v1v2 ∈ E(M∗), and w.l.g. let |NGg(v1) ∩ {x, y, z}| ≥ |NGg(v2) ∩ {x, y, z}|.
If |NGg(v1) ∩ {x, y, z}| ≥ 2, then |NGg(v2) ∩ {x, y, z}| = 0. If |NGg(v1) ∩ {x, y, z}| =
|NGg(v2) ∩ {x, y, z}| = 1, then v1, v2 has the same neighbor in {x, y, z}.

Proof of the Claim. Let |NGg(v1) ∩ {x, y, z}| ≥ 2. W.l.g., we may assume that {w, w′} ⊆
NGg(v1)∩{x, y, z}. By contradiction, let |NGg(v2)∩{x, y, z}| 6= 0, w.l.g., let w′′ ∈ NGg(v2)∩
{x, y, z}. In this case, we set M′ = (M∗ \ {v1v2})∪{v1w, v2w′′}. Clearly M′ is a match with
|M′| > |M∗|, which contradicts the maximality of M∗. Thus, let |NGg(vi) ∩ {x, y, z}| = 1
for i = 1, 2, if vi has a different neighbor, then the proof is same.

Claim 7. There is at least one edge, say e = uiuj ∈ E(M∗), such that ui, uj /∈ X1, X2.

Proof of the Claim. If |Xj| ≥ 3, then there is at least one edge, say e = uiuj ∈ E(M∗),
such that ui, uj /∈ X1, X2. Otherwise, we have K3,2 ⊆ Gr ∪Gb[Xj, Xj′ ] where j, j′ ≥ 3 , hence,
by Observation 1; we have a contradiction. So, let |Xj| = 2. In this case, if j ≥ 5, then the
proof is same. Now, let j = 4. We have |M∗| ≤ 2, that is, n ≤ 3. Hence, there is at least one
vertex, say w ∈ (X3 ∪ X4) ∩ A; a contradiction to |A ∩ Xj| = 0.

By Claim 7, there is at least one edge, say e = uiuj ∈ E(M∗), such that ui, uj /∈ X1, X2.
W.l.g., let e = u1u2 ∈ E(M∗) such that ui /∈ X1, X2, also, w.l.g., assume that |NGg(u1) ∩
{x, y, z}| ≥ |NGg(u2) ∩ {x, y, z}|. If |NGg(u1) ∩ {x, y, z}| ≥ 2, then by Claim 7, we have
|NGg(u2) ∩ {x, y, z}| = 0. Hence, we have K4 − e ⊆ Gr ∪ Gb. So, let |NGg(u1) ∩ {x, y, z}| =
|NGg(u2)∩ {x, y, z}| = 1, in this case, by Claim 7, we have NGg(u1)∩ {x, y, z} = NGg(u2)∩
{x, y, z}, and if x or y is this vertex, then K4 − e ⊆ Gr ∪ Gb; otherwise, K3,2 ⊆ Gr ∪ Gb. In
any case, by Observation 1, the proof is complete.

Case 3: Let x, y, z ∈ Xi where Xi is a partition set of G = Kj×t, say i = 1. If there
exists a vertex, say w ∈ Xj ∩ A, where j 6= 1, then the proof is the same as Case 2.
Hence, let |A ∩ Xj| = 0. Since |Xj| ≥ 3, there exists an edge, say e = vu ∈ E(M∗), such
that v, u /∈ X1. Consider the neighbors of vertices v and u in X1. W.l.g., let |NGg(v) ∩
{x, y, z}| ≥ |NGg(u) ∩ {x, y, z}|. If |NGg(v) ∩ {x, y, z}| = 0, then we have K3,2 ⊆ Gr ∪ Gb,
so let |NGg(v) ∩ {x, y, z}| ≥ 1. In this case, by Claim 7, we had |NGg(u) ∩ {x, y, z}| ≤ 1.
Hence, w.l.g., we may assume that yu and zu be in E(Gr ∪ Gb) and x ∈ NGg(v). Now, set



Mathematics 2021, 9, 764 8 of 12

M∗∗ = (M∗ \ {vu}) ∪ {vx} and A′ = (A \ {x}) ∪ {u}, the proof is the same as Case 2 and
the proof is complete.

According to the Cases 1, 2 and 3 we have mj(K1,2, P4, nK2) ≤ b 2n
j c+ 1.

The results of Lemmas 1, 2, 6 and 7, concludes the proof of Theorem 1.

3. Proof of Theorem 2

In this section, we investigate the size multipartite Ramsey numbers mj(nK2, C7)
for j ≤ 4 and n ≥ 2. In order to simplify the comprehension, let us split the proof of
Theorem 2 into small parts. For j = 2, since the bipartite graph has no odd cycle, we have
m2(nK2, C7) = ∞. For other cases, we start with the following proposition:

Proposition 1. m3(nK2, C7) = 3 where n = 2, 3.

Proof. Clearly, m3(nK2, C7) ≥ 3. Consider K3×3 with the partition set Xi = {xi
1, xi

2, xi
3} for

i = 1, 2, 3. Let G be a subgraph of K3×3. For n = 2, if 2K2 ⊆ G, then proof is complete, so
let 2K2 6⊆ G. In this case, we have K3,2,2 ⊆ G, hence C7 ⊆ G, that is, m3(2K2, C7) = 3. For
n = 3 by contradiction, we may assume that m3(3K2, C7) > 3, that is, K3×3 is 2-colorable
to (3K2, C7), say 3K2 6⊆ G and C7 6⊆ G. Since m3(3K2, C6) = 3 [10], and 3K2 6⊆ G, we have
C6 ⊆ G. Let A = V(C6) and Yi = A ∩ Xi for i = 1, 2, 3. If there exists i ∈ {1, 2, 3} such that
|Yi| = 0, say i = 1, then we have A = X2 ∪X3 and C6 ⊆ G[X2, X3]. Let C6 = w1w2 . . . w6w1.
Since C7 6⊆ G, for each xi ∈ X1 in G, xi cannot be adjacent to wi and wi+1 for i = 1, 2, . . . , 6.
Hence, we have |NG(xi) ∩ V(C6)| ≥ 3 for each xi ∈ X1. One can easily check that in
any case, we have 3K2 ⊆ G; a contradiction, hence, let |Yi| ≥ 1 for each i = 1, 2, 3. Set
B = (|Y1|, |Y2|, |Y3|). Now, we have the following cases:

Case 1: B = (3, 2, 1). let A = X1∪{x2
1, x2

2, x3
1}. In this case, we have C6 ∼= x1

1x2
1x1

2x2
2x1

3x3
1x1

1.
Consider the vertex set A′ = V(K3×3) \ A = {x2

3, x3
2, x3

3}. Since C7 6⊆ G, we have
|NG(x3

2) ∩ {x1
1, x2

1}| ≤ 1. Hence, |NG(x3
2) ∩ {x1

1, x2
1}| ≥ 1. W.l.g., let x3

2x1
1 ∈ E(G). By

similarity, we have |NG(x3
3) ∩ {x1

2, x2
2}| ≥ 1 and |NG(x2

3) ∩ {x1
3, x3

1}| ≥ 1, see Figure 1. In
any case, we have 3K2 ⊆ G; a contradiction again.

x2
3 x1

3 x2
2 x3

3

x3
1 x1

2

x1
1 x2

1

x3
2

Figure 1. B = (3, 2, 1).

Case 2: B = (2, 2, 2). W.l.g., let Yi = {xi
1, xi

2} for i = 1, 2, 3. In this case, we have
C6 ∼= w1w2w3w4w5w6w1. W.l.g., let w1 = x1

1, w2 = x2
1. Since |Y3| = 2 and w4w5 ∈ E(C6),

we have |{w3, w6} ∩Y3| ≥ 1. If |{w3, w6} ∩Y3| = 2, then considering Figure 2a, the proof is
the same as case 1. So let |{w3, w6}∩Y3| = 1. W.l.g., let w3 = x3

1, x3
2 = w5, x1

2 = w4, x2
2 = w6.

In this case, consider Figure 2b and the proof is the same as case 1. Hence, in any case, we
have 3K2 ⊆ G; again a contradiction.
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x2
3 x1

2 x2
2 x1

3

x3
2 x3

1

x1
1 x2

1

x3
3

x1
3 x3

2 x1
2 x2

3

x2
2 x3

1

x1
1 x2

1

x3
3

a b

Figure 2. (a) |{w3, w6} ∩Y3| = 2, (b) |{w3, w6} ∩Y3| = 1.

By Cases 1 and 2, we have 3K2 ⊆ G. Thus, the proof is complete and the proposition
holds.

We determine the exact value of the multipartite Ramsey number m3(nK2, C7) for
n ≥ 3 in the following lemma:

Lemma 8. For each n ≥ 3 we have m3(nK2, C7) = n.

Proof. First, we show that m3(nK2, C7) ≥ n. Consider the coloring given by K3×(n−1) =

Gr ∪ Gb where Gr ∼= Kn−1,n−1 and Gb ∼= Kn−1,2(n−1). Since |V(Gr)| = 2(n − 1) and Gb

is bipartite, we have nK2 6⊆ Gr and C7 6⊆ Gb, that is, m3(nK2, C7) ≥ n. For the upper
bound, consider K3×n with partite sets Xi = {xi

1, xi
2, . . . , xi

n} for i = 1, 2, 3. We will
prove this by induction. For n = 3, by Proposition 1, the lemma holds. Suppose that
m3(nK2, C7) ≤ n for each n ≥ 4. We will show that m3((n + 1)K2, C7) ≤ n + 1, as follows:
by contradiction, we may assume that m3((n + 1)K2, C7) > n + 1, that is, K3×(n+1) is 2-
colorable to ((n + 1)K2, C7), say (n + 1)K2 6⊆ G and C7 6⊆ G. Let X′i = Xi \ {xi

1}. Hence,
by the induction hypothesis, we have m3(nK2, C7) ≤ n. Therefore, since |X′i | = n and
C7 6⊆ G[X′1, X′2, X′3], we have M = nK2 ⊆ G[X′1, X′2, X′3]. If there exists i and j such that
xi

1xj
1 ∈ E(G), then we have (n + 1)K2 ⊆ G; a contradiction. Hence, we have xi

1xj
1 ∈ E(G)

for i, j ∈ {1, 2, 3}. Let A = V(K3×n) \ V(M). Hence, we have |A| = 3n− 2n = n. Since
(n + 1)K2 6⊆ G, we have G[A, x1

1, x2
1, x3

1] ⊆ G. Since |A| = n ≥ 4, one can easily check that,
in any case, we have H ⊆ G, where, H ∈ {K5,1,1, K4,2,1, K3,3,1, K3,2,2}. If H ∈ {K3,3,1, K3,2,2},
one can easily observe that we have C7 ⊆ H ⊆ G; a contradiction again. So let H ∈
{K5,1,1, K4,2,1} and consider the following cases:

Case 1: A ⊆ Xi for only one i, that is, H = K5,1,1. W.l.g., let A ⊆ X1 and {x1
2, x1

3, . . . , x1
5} ⊆

A. Then, we have Kn+1,1,1 ⊆ G and M ⊆ G[X2, X3]. Since n ≥ 4, we have |M| ≥ 4,
that is, there exists at least two edges, say e1 = x1y1 and e2 = x2y2 in E(M), where
{x1, x2, y1, y2} ⊆ X2 ∪ X3. W.l.g., let |NG(xi) ∩ A| ≥ |NG(yi) ∩ A| for i = 1, 2. One can
easily check that |NG(yi) ∩ A| ≤ 1, otherwise, we have (n + 1)K2 ⊆ G; a contradiction.
Since |NG(yi) ∩ A| ≤ 1 and |A| ≥ 5, we have |NG(yi) ∩ A| ≥ 4. Hence, we have |NG(y1) ∩
NG(y2) ∩ A| ≥ 3. W.l.g., we may assume that {x1

1, x1
2, x1

3} ⊆ NG(y1) ∩ NG(y2) ∩ A. In this
case, we have C7 ⊆ G[x1

1, x1
2, x1

3, x2
1, x3

1, y1, y2] ⊆ G; a contradiction again.
Case 2: H = K4,2,1. W.l.g., let |A∩X1| = n− 1 and |A∩X2| = 2. Let {x1

2, x1
3, . . . , x1

4} ⊆
A ∩ X1 and x2

2 ∈ A ∩ X2, that is, we have K4,2,1 ⊆ Kn,2,1 = G[A, x1
1, x1

2, x1
3] ⊆ G and

M ⊆ K1,n−1,n. That is, there exists at least one edge, say e = xy, where x ∈ X2 and y ∈ X3.
W.l.g., let |NG(x) ∩ A| ≥ |NG(y) ∩ A|. One can easily check that |NG(y) ∩ A| ≤ 1. Hence,
we have |NG(y) ∩ A| ≥ 3 and the proof is same as case 1.

By cases 1 and 2, we have the assumption that m3((n + 1)K2, C7) > n + 1 does not
hold. Now we have m3(nK2, C7) = n for each n ≥ 3. This completes the induction step
and the proof.

Lemma 9. For j ≥ 3 and n ≥ j, we have mj(nK2, C7) ≥ d 2n+2
j e.
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Proof. To show that mj(nK2, C7) ≥ d 2n+2
j e, assume that d 2n+2

j e ≥ 1. Consider the coloring

given by Kj×t0 = Gr ∪ Gb where t0 = d 2n+2
j e − 1 such that Gr ∼= K(j−1)×t0

and Gb ∼=
Kt0,(j−1)t0

. Since Gb is bipartite, we have C7 6⊆ Gb, and

|V(Gr)| = (j− 1)× t0 = (j− 1)(d2n + 2
j
e − 1) = (j− 1)(d2n + 2

j
e)− (j− 1)

≤ (j− 1)(
2n + 2

j
+ 1)− (j− 1) = j× (

2n + 2
j

)− 2n + 2
j

.

Since n ≥ j, we have |V(Gr)| < 2n. Hence, we have nK2 6⊆ Gr. Since Kj×t0 = Gr ∪ Gb,
we have mj(nK2, C7) ≥ d 2n+2

j e for n ≥ j ≥ 3.

Lemma 10. m4(4K2, C7) = 3.

Proof. By Lemma 9, we have m4(4K2, C7) ≥ 3. For the upper bound, consider the coloring
given by K4×3 = Gr ∪ Gb such that C7 6⊆ Gb. Since m3(3K2, C7) = 3, we have 3K2 ⊆
Gr[X1, X2, X3] ⊆ Gr. Let M = 3K2; hence, we have |V(X1 ∪ X2 ∪ X3) \ V(M)| = 3.
W.l.g., let A = {w1, w2, w3} be these vertices. If E(Gr) ∩ E(G[X4, A]) 6= ∅, then we have
4K2 ⊆ Gr. So let K3,3 ⊆ G[X4, A] ⊆ Gb. Consider the edge e = v1v2 ∈ E(M), and it is
easy to show that |NGb(vi) ∩ X4| ≥ 2 for some i ∈ {1, 2}, otherwise, we have 4K2 ⊆ Gr.
In any case, one can easily check that C7 ⊆ Gb; which is a contradiction. Thus, we obtain
m4(4K2, C7) = 3.

Lemma 11. For n ≥ 4 we have m4(nK2, C7) = d n+1
2 e.

Proof. By Lemma 9, we have m4(nK2, C7) ≥ d n+1
2 e. To prove m4(nK2, C7) ≤ d n+1

2 e,
consider K4×t with partite set Xi = {xi

1, xi
2, . . . , xi

t} for i = 1, 2, 3, 4, where t = d n+1
2 e. We

will prove this by induction. For n = 4 by Lemma 10, the lemma holds. Now, we consider
the following cases:

Case 1: n = 2k, where k ≥ 3. Suppose that m4(n′K2, C7) ≤ d n′+1
2 e for each n′ < n.

We will show that m4(nK2, C7) ≤ d n+1
2 e as follows: by contradiction, we may assume

that m4(nK2, C7) > d n+1
2 e, that is, K4×t is 2-colorable to (nK2, C7), say nK2 6⊆ G and

C7 6⊆ G. Let X′i = Xi \ {xi
1} for i = 1, 2, 3, 4. Hence, by the induction hypothesis, we

have m4((n− 1)K2, C7) ≤ d n
2 e = k. Therefore, since |X′i | = k = n

2 and C7 6⊆ G, we have

M = (n− 1)K2 ⊆ G[X′1, X′2, X′3, X′4]. If there exists i, j ∈ {1, 2, 3, 4}, where xi
1xj

1 ∈ E(G),
then nK2 ⊆ G; a contradiction. Now, we have K4

∼= G[x1
1, x2

1, x3
1, x4

1] ⊆ Gg. Since nK2 6⊆ G
and d n+1

2 e = d
2k+1

2 e = k + 1, we have |V(K4×k) \ V(M)| = 2n − 2(n − 1) = 2, that is,
there exists two vertices, say w1 and w2 in V(K4×k) \ V(M). Since nK2 6⊆ G, we have
G[S] ⊆ G, where S = {xi

1 | i = 1, 2, 3, 4} ∪ {w1, w2}. Hence, we have the following claim:

Claim 8. Let e = v1v2 ∈ E(M) and w.l.g., we may assume that |NG(v1) ∩ S| ≥ |NG(v2) ∩ S|.
If |NG(v1) ∩ S| ≥ 2 then |NG(v2) ∩ S| = 0. If |NG(v1) ∩ S| = 1 then |NG(v2) ∩ S| ≤ 1. If
|NG(vi) ∩ S| = 1 then v1 and v2 have the same neighbor in S.

Proof of the Claim. By contradiction. We may assume that {w, w′} ⊆ NG(v1) ∩ S and
w′′ ∈ NG(v2) ∩ S, in this case, we set M′ = (M \ {v1v2}) ∪ {v1w, v2w′′}. Clearly, M′ is a
match with |M′| > |M| = n− 1, which contradicts the nK2 6⊆ G . If |NG(vi) ∩ S| = 1 and
vi has a different neighbor, then the proof is same.

Since n ≥ 4 and |M| ≥ 3. If {w1, w2} ⊆ Xi, say X1, then there is at least one edge, say
e = vu ∈ E(M) such that v, u /∈ X1. Otherwise, we have C7 ⊆ K3×3 ⊆ G[X2, X3, X4]; we
again have a contradiction. W.l.g., let |NG(v)∩ S| ≥ |NG(u)∩ S|. Now, by Claim 8 we have
|NG(u) ∩ S| ≤ 1. One can easily check that in any case, we have C7 ⊆ G[S ∪ {u}]; again a
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contradiction. So w.l.g., let w1 ∈ X1 and w2 ∈ X2. In this case, since |NG(u) ∩ S| ≤ 1, we
have C7 ⊆ G[S ∪ {u}]; a contradiction again.

Case 2: n = 2k + 1 where k ≥ 2, |Xi| = k + 1. Suppose that m4((n − 2)K2, C7) ≤
d n−2+1

2 e for n ≥ 2. We show that m4(nK2, C7) ≤ d n+1
2 e as follows: by contradiction,

we may assume that m4(nK2, C7) > d n+1
2 e, that is, K4×t is 2-colorable to (nK2, C7), say

nK2 6⊆ G and C7 6⊆ G. Let X′i = Xi \ {xi
1}. By the induction hypothesis, we have

m4((n− 2)K2, C7) ≤ d n−1
2 e = d

2k
2 e = k. Therefore, since |X′i | = k and C7 6⊆ G, we have

M = (n− 2)K2 ⊆ G[X′1, X′2, X′3, X′4] and thus, we have the following claim:

Claim 9. There exist two edges, say e1 = uv and e2 = u′v′ in E(M) = E((n− 2)K2), such that
v, v′, u and u′ are in different partites.

Proof of the Claim. W.l.g., assume that v ∈ X′1 and u ∈ X′2. By contradiction, assume
that |E(M) ∩ E(G[X′3, X′4])| = 0, that is, G[X′3, X′4] ⊆ G. Since |V(M)| = 2(n − 2) and
|X′i | = k, we have |V(M) ∩ X′i | ≥ k− 2. Since k ≥ 3, |V(M) ∩ X′j| ≥ 1 (j = 3, 4). W.l.g., let
e′j = xjyj ∈ E(M) where xj ∈ V(M) ∩ X′j. W.l.g., we may assume that y3 ∈ V(M) ∩ X′1.
Hence, we have y4 ∈ V(M) ∩ X′1. In other words, take e1 = x3y3 and e2 = x4y4 and
the proof is complete. Hence, we have |E(M) ∩ E(G[X′2, X′j])| = 0 for j = 3, 4, in other
words, if there exists e′′ ∈ E(M) ∩ E(G[X′2, X′j]), then set e1 = e′1 and e2 = e′′ and the
proof is complete. Therefore, for each e ∈ E(M) we have v(e) ∩ X′1 6= ∅ which means that
|M| ≤ X′1 = k; a contradiction to |M|.

Now, by Claim 9 there exist two edges, say e1 = uv and e2 = u′v′ in E(M) =
E((n − 2)K2), such that v, v′, u and u′ are in different partite. W.l.g., let e1 = x1x2 and
e2 = x3x4, since are these edges, and let xi ∈ X′i for i = 1, 2, 3, 4. Set X′′i = Xi \ {xi},
hence, we have |X′′i | = k. Since C7 6⊆ G, we have C7 6⊆ G[X′′1 , X′′2 , X′′3 , X′′4 ]. Therefore, by
the induction hypothesis, we have (n− 2)K2 ⊆ G[X′′1 , X′′2 , X′′3 , X′′4 ]. Let M = (n− 2)K2 ⊆
G[X′′1 , X′′2 , X′′3 , X′′4 ], set M∗ = M ∪ {e1, e2} hence |M∗| = n, that is, nK2 ⊆ G; again a
contradiction. Hence, the assumption that m4(nK2, C7) > d n+1

2 e does not hold and we
have m4(nK2, C7) ≤ d n+1

2 e. This completes the induction step and the proof is complete.
By Cases 1 and 2, we have m4(nK2, C7) = d n+1

2 e for n ≥ 4.

The results of Proposition 1 as well as Lemmas 8 and 11 concludes the proof of
Theorem 2.

4. Concluding Remarks and Further Works

There are several papers in which the multipartite Ramsey numbers have been studied.
In this paper, as a first target, we compute the size of the multipartite Ramsey number
mj(K1,2, P4, nK2) for n, j ≥ 2. To approach this purpose, we prove four lemmas as follows:

1. mj(K1,2, P4, nK2) ≥ b 2n
j c+ 1 where j, n ≥ 2;

2. m2(K1,2, P4, nK2) = n + 1 for n ≥ 2;
3. m3(K1,2, P4, nK2) = b 2n

3 c+ 1 for n ≥ 2;

4. Let j ≥ 4 and n ≥ 2. Given that mj(K1,2, P4, (n− 1)K2) = b 2(n−1)
j c+ 1, it follows that

mj(K1,2, P4, nK2) ≤ b 2n
j c+ 1.

We computed the size of the multipartite Ramsey numbers mj(nK2, C7), for j ≤ 4 and
n ≥ 2 as the second purpose of this paper. This extended the result of [10]. To approach
this purpose, we proved the following:

1. m3(nK2, C7) = 3 where n = 2, 3;
2. For each n ≥ 3 we have m3(nK2, C7) = n;
3. For n ≥ 4 we have m4(nK2, C7) = d n+1

2 e; We estimated our result for mj(nK2, C7)
which holds for every j ≥ 2, so it could be a good problem to work on.

In addition, one can compute mj(K1,2, P4, m1K2, m2K2) and also mj(nK2, C7), for j ≥ 5
and n ≥ 2 in the future, using the idea of proofs in this paper.
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