
mathematics

Article

Tropical Balls and Its Applications to K Nearest Neighbor over
the Space of Phylogenetic Trees

Ruriko Yoshida

����������
�������

Citation: Yoshida, R. Tropical Balls

and Its Applications to K Nearest

Neighbor over the Space of

Phylogenetic Trees. Mathematics 2021,

9, 779. https://doi.org/10.3390/

math9070779

Academic Editor: Junseok Kim

Received: 9 March 2021

Accepted: 3 April 2021

Published: 5 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Naval Postgraduate School, 1411 Cunningham Road, Monterey, CA 93943-5219, USA; ryoshida@nps.edu;
Tel.: +1-831-656-2973

Abstract: A tropical ball is a ball defined by the tropical metric over the tropical projective torus. In
this paper we show several properties of tropical balls over the tropical projective torus and also
over the space of phylogenetic trees with a given set of leaf labels. Then we discuss its application
to the K nearest neighbors (KNN) algorithm, a supervised learning method used to classify a high-
dimensional vector into given categories by looking at a ball centered at the vector, which contains K
vectors in the space.

Keywords: classification; max-plus algebra; phylogenomics; ultrametrics

1. Introduction

A phylogenetic tree with a given set of leaf labels [n] = {1, . . . , n} is a weighted tree
whose leaves have labels [n] while their interior nodes do not have labels. In phylogenetics,
leaves in a phylogenetic tree represent observable species [n] in the current time and a tree
represents an evolutionary relationship between these species in a given set [n].

In order to study evolutionary histories of species or genes in terms of molecular
clock, leaves in a phylogenetic tree represent a given set of observable species in the current
time, internal nodes in the tree represent common ancestors and branch lengths in the tree
present evolutionary time in a molecular clock. Since we assume that all species in the tree
have the same most common ancestor (the root of a phylogenetic tree), a phylogenetic tree
of a given set of species has the property that a distance from its root to each leaf is same for
all leaves in the tree. We call such a rooted phylogenetic tree an equidistant tree. An example
of an equidistant tree is shown in Figure 1. In phylogenetics and phylogenomics, we
often use equidistant trees to analyze genome data since multispecies coalescent processes
applied to analyze gene trees and species tree in genome data [1] assume that all gene trees
are equidistant trees.

Phylogenomics is a field in which we apply tools from phylogenetics to problems in
genomics. More specifically, phylogenomics extracts information from comparative study
on entire genomes by constructing phylogenetic trees from each gene. In phylogenomics,
researchers are interested in problems like predictions of gene function; evolutionary
relationships between genes; and finding lateral gene transfers. For specific examples,
genetic drift and gene flow in ancestral populations can cause topological differences
between gene trees [1–4]. In the statistical point of view, these problems can be seen as
finding outliers from a sample of phylogenetics with the same set of leaf labels reconstructed
from genes. However, a space of phylogenetics trees (the set of all possible phylogenetic
trees with a given set of leaf labels [n]) is not Euclidean. Thus, we cannot just simply
apply statistical methods over a Euclidean space. Therefore, we have to consider a space of
phylogenetic trees, which contains all possible phylogenetic trees of the same leaf set.

There are several ways to define a space of phylogenetic trees (also known as a tree
space). These differences come from ways to define a phylogenetic tree and to vectorize each
phylogenetic tree into a vector-representation (see [5] for details on differences between
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different tree spaces). In this paper we focus on the space of phylogenetic trees as the set of
all equidistant trees with a fixed set of labels for leaves.

Figure 1. An equidistant tree with species S1, S2, S3. Leaves in the tree represent observable species
S1, S2, S3 in the given set of labels and internal nodes in the tree represent their common ancestors.
Filled black circles represent observable states and unfilled circles represent unobservable states.
Number in each branch in the tree represent its branch length and the total branch lengths from the
root to each leaf are same for all leaves.

In 2009, Speyer and Sturmfels showed a space of phylogenetic trees is a tropical
Grassmanian [6], that is, a tropicalization of a linear space defined by a set of linear
equations [7], which is a linear subspace of the tropical projective torus, with the max-plus
algebra. Therefore it is natural to use tropical geometry to develop statistical methods to
analyze data points over a space of phylogenetic trees. In this paper, we use the tropical
metric. The tropical metric over a space of phylogenetic tree is well defined and [8,9]
investigated its properties over the tree space. In 2020, Monod et al. in [10] introduced
tropical balls over the space of phylogenetic trees with the tropical metric and defined
probability measures using tropical balls. In [10], Monod et al. defined tropical balls with
the tropical metric over the tropical projective torus. In this paper we show properties of
tropical balls over the tropical projective torus with the tropical metrics as well as the space
of phylogenetic trees. Then, we compare tropical balls with balls defined with L2 norm
and L∞ norm.

The K Nearest Neighbors (KNN) algorithm is an instance-based method which classi-
fies a vector in a high-dimensional vector space into finite categories [11]. The basic idea of
the KNN algorithm is that all data points with the same category should be distributed
near to each other. The KNN algorithm, first, considers the ball around the vector which
you want to categorize. Next it increases the radius of the ball with a given metric until
it contains K many points from the training set. Then we assign the category to the input
vector which is the majority of data points from the training set in the ball. KNN algorithm
is well-studied and it is applied to “Big Data” [12]. For example, [13] showed that the KNN
algorithm is a special case of kernel density estimator.

The KNN algorithm has been applied to classify data points over a lower dimensional
manifold (for example, [14]). However, since a space of phylogenetic trees is not a manifold
over a Euclidean space and currently there has not been applied to classify data points over
a space of phylogenetic trees. Therefore, in this paper, we consider tropical KNN, that is,
KNN algorithm with the tropical metric defined over the tropical projective torus under
the max-plus algebra to KNN and then we applied tropical KNN to classify data points
over a space of phylogenetic trees.
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The contributions of this paper include that

1. we show some properties of a tropical ball in the tropical projective torus;
2. we show some properties of a tropical ball in a space of equidistant trees with a given

set of leaves [n];
3. we compare tropical balls with balls defined with L2 norm and L∞ norm;
4. we define a tropical KNN algorithm; and
5. we applied tropical KNN algorithm to simulated data generated by a multispecies

coalescent model.

2. Preliminaries

In this section, we set up some notation and definitions from phylogenetics and
tropical geometry. For interested readers, see [15] for more details.

First we discuss some definitions from phylogenetics. A dissimilarity map w is a
function [n]× [n]→ R≥0 such that

w(i, j) =

{
w(j, i) ≥ 0 if i 6= j
0 if i = j.

If a dissimilarity map w satisfies a triangle inequality then w is called a metric. If there exists
a phylogenetic tree T with the leaf labels [n] such that the total branch length from a leaf
i ∈ [n] to a leaf j ∈ [n] coincides with w(i, j) for all i, j ∈ [n], then we call w a tree metric. In
fact if w is a tree metric of a phylogenetic tree T, then T has a unique tree metric w and T is
unique for a tree metric w.

Definition 1. If a metric w satisfies the following condition, such that

max{w(i, j), w(i, k), w(j, k)}

is achieved twice for every distinct i, j, k ∈ [n], then we call a metric w an ultrametric.

To vectorize an equidistant tree, we can use an ultrametric w since there is a one-to-one
mapping from a set of all possible equidistant trees with a leaf set [n] to the space of all
possible ultrametrics:

Theorem 1 ([10]). A tree metric w of a phylogenetic tree T with a set of leaf labels [n] is an
ultrametric if and only if T is an equidistant tree with a set of leaf labels [n].

Therefore, in this paper, we define a space of equidistant trees with a leaf set [n] as the
space of ultrametrics notated as Un.

Now we shift our attentions to basics from tropical geometry. Throughout this paper
we consider the max-plus tropical semiring (R∪ {−∞},⊕,�) .

Over this semiring, the tropical arithmetic operations of addition and multiplication
are defined as the following:

x⊕ y := max{x, y}, x� y := x + y for any x, y ∈ R∪ {−∞}.

Any semiring has to have the identity for addition and identity for multiplication. In
this semiring, −∞ is the identity for addition and 0 is the identity for multiplication.

Let e := (n
2) and let Re/R1, where 1 := (1, 1, . . . , 1), be the tropical projective torus. Note

that Un ⊂ Re/R1. Scalar multiplication and vector addition can be defined as:

x� u = (x + u1, x + u2, . . . , x + ue)

x� u⊕ y� v = (max{x + u1, y + v1}, . . . , max{x + ue, y + ve}),

where x, y ∈ R∪ {−∞} and u = (u1, . . . , ue), v = (v1, . . . , ve) ∈ (R∪−{∞})e.
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Through the paper, we use the tropical metric:

Definition 2. For u = (u1, . . . , ue), v = (v1, . . . , ve) ∈ Re/R1, the tropical distance dtr
between u and v is defined as:

dtr(u, v) = max
{

ui − vi : 1 ≤ i ≤ e
}
−min

{
ui − vi : 1 ≤ i ≤ e

}
. (1)

Recall that from Theorem 1 we consider the space of ultrametrics with labels [n] as a
space of all equidistant trees with the label set [n]. Let Un be the space of ultrametrics for
equidistant trees with the leaf labels [n]. In fact we can write Un as the tropicalization of the
linear space generated by linear equations over the tropical projective torus Re/R1 where
e = (n

2).
Let Ln ⊆ Re be the linear subspace of Re defined by the linear equations:

wij − wik + wjk = 0, (2)

for 1 ≤ i < j < k ≤ n. For the linear equations (2) spanning the linear space Ln, the
max-plus tropicalization Trop(Ln) of the linear space Ln is the tropical linear space with
w ∈ Re such that

max
{

wij, wik, wjk

}
achieves at least twice for all i, j, k ∈ [n]. Note that this is exactly the three point condition
defined in Definition 1.

Theorem 2 ([7], [Theorem 2.18]). Un ⊂ Re/R1 is equal to Trop(Ln).

Therefore, by Theorem 2, Un is a tropical linear space in Re/R1 where e = (n
2). For

example, if n = 4, the space of ultrametrics U4 is a union of 15 two-dimensional polyhedral
cones over the tropical projective torus R6/R1.

3. Results
3.1. Properties of Tropical Balls over the Space of Ultrametrics

In this section we investigate the tropical ball in terms of the tropical metric in the
space of ultrametrics Un. Here we fix the height of the equidistant trees associate with their
ultrametrics in Un as 1. All proofs for Lemmas and Theorems in this section are in Section 6.
Recall e := (n

2).

Lemma 1. If u := (u1, . . . , ue) ∈ Un is from an ultrametric realizing an equidistant tree of height
1, then there is i ∈ {1, . . . , e} such that ui = 2. In addition,

max(u) = max
1≤i≤e

(ui) = 2.

We will investigate a tropical ball centered at a point in Un with a radius r > 0 defined
via the tropical metric dtr. We define a ball Bx(r) at a point x ∈ Un with a radius r > 0
under the tropical metric dtr as the following:

Bx(r) = {y ∈ Un : dtr(x, y) ≤ r}.

In the rest of this section, we show some properties on tropical balls in Un:

Proposition 1. Suppose x ∈ Un is the origin, that is, the ultrametric x = (0, 0, . . . , 0) =
(2, 2, . . . , 2) ∈ Un. In terms of equidistant trees, x represents a star tree with its height 1. Then for
0 < r ≤ 2,

Bx(r) = {u ∈ Um : 2− r ≤ min(u)}.
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Now we show that a tropical ball is convex in terms of the tropical metric. For
Lemmas 2 and 3, and Theorem 3, let us consider the tropical projective torus Re/R1.

Lemma 2. Suppose x, z ∈ Re/R1 and a ∈ R. Then

dtr(a� x, z) = dtr(x, z).

Lemma 3. Suppose x, y, z ∈ Re/R1 and a ∈ R. Then

dtr(x⊕ y, z) ≤ max{dtr(x, z), dtr(x, z)}.

Theorem 3. A tropical ball Bx(r) in the tropical projective torus Re/R1 is convex under the
tropical metric dtr.

Since Um is a tropical linear space over the tropical projective torusRe/R1 by Theorem 2
and since Bx(r) is convex, now we have the following theorem by Theorem 3.

Theorem 4. A tropical ball Bx(r) in Um is convex in terms of the tropical metric dtr.

Until this moment in this section, we consider ultrametrics in Un ⊂ Re/R1. Even with
a natural bijection between ultrametrics in Un and the space of equidistant trees described
in Theorem 1, one might want to describe a tropical balls in terms of equidistant trees.
In general we can describe a tropical ball in Un in terms of equidistant trees using the
following theorem:

Theorem 5. Let Tn(h) be the set of all equidistant trees with their height h > 0 and with the leaf
set [m] = {1, . . . , n}. Also let dT(i, j) be a pairwise distance between leaves i, j ∈ {1, . . . , n} in
an equidistant tree T ∈ Tn(h). Suppose T1, T2 ∈ Tn(h). Then let M(T1, T2) = max{dT1(i, j)−
dT2(i, j) : i, j ∈ [n]}. For an equidistant tree Tx ∈ Tn(h) and for 0 < r ≤ 4h,

BTx (r) = {Tu ∈ Tn(h) : M(Tx, Tu) + M(Tu, Tx) ≤ r}.

3.2. Examples in U4

In this section, we visualize tropical balls in the space of ultrametrics and in order to
visualize, we consider n = 4. To visualize tropical balls in U4, we map all coordinates in
U4 to the Billera-Holmes-Vogtmann (BHV) treespace [16] using the one-to-one mapping
described in [17].

Example 1. First, we consider the tree shown in the left side of Figure 2. This is an example so
that the center of a tropical ball and entire tropical ball are inside of an orthant for a tree topology in
Figure 2.

Here we have the height h = 1, so

0 ≤ a, b, a + b ≤ 1.

The corresponding ultrametric is

u = (2(1− a− b), 2(1− b), 2, 2(1− b), 2, 2).

The center of this tropical ball in this example is a = b = 1/4. The corresponding ultrametric is

x0 = (1, 3/2, 2, 3/2, 2, 2).

Therefore, we have

u− x0 = (1− 2a− 2b, 1/2− 2b, 0, 1/2− 2b, 0, 0).
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The tropical ball in U4 mapped in the BHV tree space is shown in the right side of Figure 2.

a

b

1                              2                    3                   4

a

b

1

1

1/2

1/2

3/4

3/4

1/4

1/4

Figure 2. The first example for visualizing a tropical ball. LEFT: The tree corresponding to the center
of the tropical ball. RIGHT: The tropical ball centered around the ultrametric corresponding to the
equidistant tree in U4.

Example 2. For the second example, we consider the tree shown in the left side of Figure 3. This is
also a tropical ball contained inside of an orthant for the tree topology shown in Figure 3.

Here we have the height h = 1, so

0 ≤ a, b ≤ 1.

The corresponding ultrametric is

u = (2(1− a), 2, 2, 2, 2, 2(1− b)).

The center of this tropical ball in this example is a = b = 1/2. The corresponding ultrametric is

x0 = (1, 2, 2, 2, 2, 1).

Therefore, we have

u− x0 = (2(1− a)− 1, 0, 0, 0, 0, 2(1− b)− 1).

The tropical ball around the ultrametric corresponding the equidistant tree is shown in the
right side of Figure 3.
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1                         2                3                         4

a b

a

b

1

1

1/2

1/2

Figure 3. The second example for visualizing a tropical ball. LEFT: The tree corresponding to the
center of the tropical ball. RIGHT: The tropical ball centered round the ultrametric corresponding to
the equidistant tree in U4.

Example 3. The third example we consider is given in the left side of Figure 4. This example shows
a case that the tropical ball crosses between two orthants for two tree topologies shown in Figure 4.

The center tree of the tropical ball in this example is the tree where b = 0, c = 0. This is the
tree on the boundary of two orthants in the space of phylogenetic trees in this case. Here we have the
height h = 1, so

0 ≤ a1, a2, b, c, a2 + c ≤ 1.

The corresponding ultrametrics are

u = (2(1− a1), 2, 2, 2, 2, 2(1− b))
v = (2(1− a− b), 2(1− b), 2, 2(1− b), 2, 2).

The center of the tropical ball in this example is a1 = a2 = 1/2, b = c = 0. The corresponding
ultrametric is

x0 = (1, 2, 2, 2, 2, 2).

Therefore, we have

u− x0 = (2(1− a1)− 1, 0, 0, 0, 0,−2b)
v− x0 = (1− 2a2 − 2c,−2c, 0,−2c, 0, 0).

The tropical ball centered around the ultrametric corresponding to the equidistant tree where
b = 0 and c = 0 is shown in the right side of Figure 4.
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a2

c

1                              2                    3                   4 1                         2                3                         4

a1 b

a

b

1

1/2

1/2 1/20c

Figure 4. The third example for visualizing a tropical ball. LEFT: The tree corresponding to the center
of the tropical ball is the tree where b = 0 and c = 0 in the picture. In this case the center of the
tropical ball is on the boundary between two orthants in the tree space. RIGHT: The tropical ball
centered around the ultrametric corresponding to the equidistant tree in U4.

3.3. Approximation of a Tropical Ball

In this subsection we discuss how a tropical ball with the radius r > 0 relates with
a ball under the l2 and l∞ metrics. Suppose we have u, v ∈ Re/R1. Let d2(u, v) be the l2
norm metric and d∞(u, v) be the l∞ norm between x and y.

Suppose we can assume that

(u− v) > 0 and min(u− v) = 0

for u, v ∈ Re/R1. Then we have the following proposition:

Proposition 2. We assume that (u− v) ≥ 0 over Re/R1 and min(u− v) = 0. Then we have

dtr(u, v) = d∞(u, v).

Proof.
d∞(u, v) = max(|u− v|)

= {max(u− v), max(v− u)}
= max(u− v) since (u− v) ≥ 0
= max(u− v)−min(u− v) since min(u− v) = 0
= dtr(u, v).

In this case the tropical ball coincides with the ball defined with the l∞ norm. However,
if we are working on the space of ultrametrics, we have the constraints that all points have
to be ultrametrics and no longer we can assume that (u− v) > 0 and min(u− v) = 0 in
Un. Therefore for more general cases, we have the following bounds:

Proposition 3. Suppose we have u, v ∈ Re/R1. Then we have

dtr(u, v) ≤ 2 · d∞(u, v) ≤ 2 · d2(u, v).
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Proof. The second inequality is trivial. Thus we want to prove that

dtr(u, v) ≤ 2 · d∞(u, v).

We can define dtr(u, v) as

d∞(u, v) = max(|u− v|)
= max{max(u− v), max(v− u)}
= max{max(u− v),−min(u− v)}.

and
dtr(u, v) = max(u− v)−min(u− v).

Therefore

dtr(u, v) = max(u− v)−min(u− v)
≤ max{max(u− v),−min(u− v)}+ max{max(u− v),−min(u− v)}
= 2 · d∞(u, v).

Using Proposition 3 we have the following theorem:

Theorem 6. Let B2
r (x) be a ball around a point x ∈ Re/R1 with the radius r > 0 with the l2

metric d2 and let B∞
r (x) be a ball around a point x ∈ Re with the radius r > 0 with the l2 metric

d∞. Then we have
Br(x) ⊂ B∞

2r(x) ⊂ B2
2r(x).

Using Theorem 6 we can approximate a tropical KNN algorithm using the classical
KNN algorithm with d2 metric. We show some computational experiments using the
multi-species coalescent model in the following section.

3.4. Computational Results

By Theorem 6 we can approximate a tropical ball using d2 metric. Since the KNN
algorithm uses the notion of balls to classify each data point in a test set, we can approximate
a tropical KNN algorithm using the classical KNN algorithm. In this section we compare
the tropical KNN algorithm and the classical KNN algorithm using d2 with simulated data
sets generated under the multi-species coalescent model via the software Mesquite [18]. All
computations are conducted in Apple Notebook MacBook Pro 2019 with 2.4 GHz 8-Core
Intel Core i9 and 64 GB 2667 MHz DDR4. The R code used for this simulation study can be
found at polytopes.net/tropical_KNN.tar.

First we review the KNN algorithm. The KNN algorithm is a classification model
for a data set where the response variable is categorical with finite levels and explanatory
variables are all numerical. Suppose we have a data set {(c1, x1), . . . (cm, xm)} where
ci ∈ {1, . . . , C} with C > 0 positive integer and xi ∈ Re. The outline of the Algorithm 1
is following:

polytopes.net/tropical_KNN.tar
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Algorithm 1: KNN Algorithm.

• Input: A data point y ∈ Re from a test set, a training set {x1, . . . xm}, and a metric d.
Positive integer k > 1.

• Output: A class for y.
• Algorithm:

for i = 1, . . . , m do
Compute d(y, xi)

end for

Order d(y, x1), . . . , d(y, xm) from the smallest to the largest. Suppose
d(y, xi1), . . . , d(y, xik ) be the first k smallest distances.

Consider categories of xi1 , . . . xik , that is, ci1 , . . . , cik and assign the class, which
is the biggest frequency among ci1 , . . . , cik , to y.

In terms of balls, basically we can think of the KNN algorithm as a method to find
a ball around y, which contains k many points from the training set. From this view we
can think that the KNN algorithm with the tropical metric dtr can be approximated using
the KNN algorithm with the l2 metric d2. For this simulation we implemented the tropical
KNN, the KNN algorithm with the tropical metric in R and we use the KNN algorithm
implemented in the “class” package in R [19].

For simulated data sets, we use the software Mesquite, available at http://mesquiteproj
ect.org [18], to generate gene trees under the multispecies coalescent model. In this model,
we have two parameters, the effective population size Ne and species depth SD. In this
simulation study, we set Ne = 100, 000 and varied

c =
SD
Ne

.

For this simulation, we generated species trees under the Yule model and gene trees
given the species tree are generated by the multispecies coalescent model via Mesquite.

In computational experiments, we have varied c = 0.25, 0.5, 1, 2, 5, 10. In addition,
we set n = 10.

With the knn() function from the “class” package, it took 12.7 s to finish the com-
putations while the tropical metric took several hours since we can speed up the KNN
algorithm for the l2 metric. The results are shown in Figure 5.

Figure 5. Accuracy Rates for the classical KNN, tropical KNN, and weighted tropical KNN on
simulated coalescent models.

http://mesquiteproject.org
http://mesquiteproject.org
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For the weighted tropical KNN, we assigned weight when we compute the majority
votes such that

1
(dtr(y, xi))2 .

4. Conclusions

In this paper, we discussed a tropical ball over the tropical projective torus and the
space of ultrametrics. Then we discussed approximation of tropical balls using the l2 and
l∞ metrics.

Then we discussed applications of the KNN algorithm and we showed by simulations,
using the multi-species coalescent model, that approximation of tropical balls with the
l2 metric works well. In addition, we can consider the ensemble model, that is, taking
the average of all three methods we used in the simulation study. This will increase the
accuracy of the simulation study.

Since the tropical metric considers maximum and minimum of elements in a vector,
this metric might be very sensitive to outliers. Therefore, we recommend to conduct
analysis on outliers before applying a statistical method with the tropical metric.

5. Discussion

We focused on tropical balls with the tropical metric under the max-plus algebra in this
paper. However, we still have many problems to solve. For example, we do not know how
to compute a tropical ball over the tropical projective torus and the space of ultrametrics in
general even though we can compute some small examples by hand. Explicitly,

Problem 1. Develop an algorithm to compute a tropical ball around a point x ∈ Re/R with the
radius r > 0, Br(x) ∈ Re/R.

Problem 2. Develop an algorithm to compute a tropical ball around a point x ∈ Un with the radius
r > 0, Br(x) ∈ Un.

In addition, we might want to consider a distribution-based clustering method, such
as Density-based spatial clustering of applications with noise (DBSCAN) with the tropical
metric for clustering gene trees. Similarly to the results on the KNN, with initial experi-
ments, DBSCAN works fairly well on the data sets generated under the coalescent model
shown in Figure 6.
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Figure 6. DBSCAN results for c = 5 (Top) and c = 10 (Bottom). The minpt = 5 for both cases, and
esp = 1 for c = 5 and eps = 0.5 for c = 10.

6. Materials and Methods

In this section, we show proofs for propositions and theorems in Section 3.

Proof for Lemma 1. Since the root in the equidistant tree has degree of at least two, at least
one pairwise distance in u is realized by a path through the root. In addition since the
height of an equidistant tree is 1, therefor, the maximum of the pairwise distance from any
leaf i to any leaf j is 2.

Proof for Theorem 5. Let x ∈ Um be an ultrametric associated with the equidistant tree
Tx ∈ Tm(h) and let u ∈ Um be an ultrametric associate with the equidistant tree Tu ∈ Tm(h).
Then we have

dtr(x, u) = max(x− u)−min(x− u) ≤ r.

Thus,
M(Tx, Tu) + M(Tu, Tx) ≤ r.

Proof for Lemma 2. Let x = (x1, . . . , xe), z = (z1, . . . , ze). Then we have

a� x = (a + x1, a + x2, . . . , a + xe).

Also we have
max(a� x− z) = a + maxi(xi − zi),
min(a� x− z) = a + mini(xi − zi).
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Thus we have

dtr(a� x, z) = max(a� x− z)−min(a� x− z)
= a + maxi(xi − zi)− (a + mini(xi − zi))
= maxi(xi − zi)−mini(xi − zi)
= dtr(x, z).

Proof for Lemma 3. Let x = (x1, . . . , xe), y = (y1, . . . , ye), z = (z1, . . . , ze). We have

dtr(x⊕ y, z) = maxi{max(xi, yi)− zi} −mini{max(xi, yi)− zi}
= maxi{max(xi − zi, yi − zi)} −mini{max(xi − zi, yi − zi)},

and

max{dtr(x, z), dtr(x, z)} = max{maxi(xi, zi)−mini(xi − zi), maxi(yi, zi)−mini(yi − zi)}.

Also,
mini(xi − zi) ≤ mini{max(xi − zi, yi − zi)}
mini(yi − zi) ≤ mini{max(xi − zi, yi − zi)},

and
max{maxi(xi − zi), maxi(yi − zi)} = maxi{max(xi − zi, yi − zi)}.

Therefore,

maxi{max(xi − zi, yi − zi)} −mini{max(xi − zi, yi − zi)}
≤ max{maxi(xi, zi)−mini(xi − zi), maxi(yi, zi)−mini(yi − zi)}.

Thus,
dtr(x⊕ y, z) ≤ max{dtr(x, z), dtr(x, z)}.

Proof for Theorem 3. Let u, v ∈ Bx(r). Then, we have dtr(x, u) ≤ r and dtr(x, v) ≤ r. We
want to show any points in the tropical line segment Γu,v between u, v is in Bx(r). Let
z ∈ Γu,v. Then there exist a, b ∈ R such that

z = a� u⊕ b� v.

Thus we have

dtr(z, x) = dtr(a� u⊕ b� v, x)
≤ max{dtr(a� u, x), dtr(b� v, x)}by Lemma 3
= max{dtr(u, x), dtr(v, x)}by Lemma 2
≤ r.

Thus, z ∈ Bx(r).
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