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Abstract: Herein, we considered the Schrödinger operator with a potential q on a disk and the map
that associates to q the corresponding Dirichlet-to-Neumann (DtN) map. We provide some numerical
and analytical results on the range of this map and its stability for the particular class of one-step
radial potentials.
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1. Introduction

Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω. For each q ∈ L∞(Ω),
consider the so called Dirichlet-to-Neumann map (DtN) given by:

Λq : H1/2(∂Ω) → H−1/2(∂Ω)

f → ∂u
∂n |∂Ω.

(1)

where u is the solution of the following problem:{
∆u + q(x)u = 0, x ∈ Ω,
u = f , ∂Ω,

(2)

and ∂u
∂n |∂Ω denotes the normal derivative of u on the boundary ∂Ω.
Note that the uniqueness of u as solution of (2) requires that 0 is not a Dirichlet

eigenvalue of ∆ + q. A sufficient condition to guarantee that Λq is well defined is to
assume q(x) < λ1, the first Dirichlet eigenvalue of the Laplace operator in Ω, since, in this
case, the solution in (2) is unique. We assume that this condition holds and lets us define
the space

L∞
<λ1

(Ω) = {q ∈ L∞(Ω), s. t. q(x) < λ1, a. e. }.

In this work, we were interested in the following map:

Λ : L∞
<λ1

(Ω) → L(H1/2(∂Ω); H−1/2(∂Ω))

q → Λq.
(3)

This has an important role in inverse problems, where the aim is to recover the
potential q from boundary measurements. In practice, these boundary measurements
correspond to the associated DtN map, and therefore, the mathematical statement of the
classical inverse problem consists of the inversion of Λ.

It is known that Λ is one-to-one as long as q ∈ Lp with p > 2 (see [1]). Therefore,
the inverse map Λ−1 can be defined in the range of Λ. There are, however, two related
important and difficult questions that are not well understood: A characterization of the
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range of Λ and its stability, i.e., a quantification of the difference of two potentials, in the L∞

topology in terms of the distance of their associated DtN maps. Obviously, this stability will
affect the efficiency of any inversion or reconstruction algorithm to recover the potential
from the DtN map (see [2] and [3].

The first question, i.e., the characterization of the range of Λ is widely open. Tothe
best of our knowledge, the further result is due to [4], where a characterization is obtained
for the adherence, with respect to the weak topology in `2

−1, of the sequence of eigenvalues
associated with the orthogonal basis of eigenvectors {eink}k∈Z. Here, `2

α is the space of
sequences {cn}n∈Z, such that ∑n∈Z |n|2α|cn|2 < ∞. This topology is not the usual one in
L(H1/2(∂Ω); H−1/2(∂Ω)) and it is not easy to interpret how the adherence enlarges this set.
Furthermore, the characterization does not give much practical information on the range,
as, for instance, the convexity or accurate bounds on the eigenvalues. In fact, characterizing
such properties is one of the main motivations of this work, since we could establish
easily a priori if a desired linear map in L(H1/2(∂Ω); H−1/2(∂Ω)) can be associated with a
DtN map. On the contrary, we have to take into account that in practice, the DtN map is
estimated from physical measurements, which are subject to errors and may provide only
partial information. A precise knowledge of the range of Λ is useful to find the best DtN
map that fits the measurements and to design an inversion algorithm in such situations.

Concerning the stability, it is well known that the problem is ill posed and that the most
we can expect is logarithmic stability in general (see [5]). There are more explicit results
when we assume that the potential q has some smoothness. In particular, if q ∈ Hs(Ω)
with s > 0, the following log−stability condition is known (see [1]):

‖q1 − q2‖L∞ ≤ V(‖Λq1 −Λq2‖L(H1/2;H−1/2)), (4)

where V(t) = C log(1/t)−α for some constants C, α > 0. Stronger stability conditions are
known in some particular cases. For example, in [6], it was shown that when q is piecewise
constant and the components where it takes a constant value are fixed and satisfy some
technical conditions, the stability is Lipschitz, i.e., there exists a constant C > 0, such that:

‖q1 − q2‖L∞ ≤ C‖Λq1 −Λq2‖L(H1/2;H−1/2). (5)

In this work, we tried to understand better the situation by considering the simplest
case of a disk with one-step radial potentials q. More precisely, we provide some results
on the range of Λ and its stability when we restrict to the particular case Ω = B(0, 1) ={

x ∈ R2 : r = |x| < 1
}

and q ∈ F ⊂ L∞(Ω) given by:

F = {q ∈ L∞(Ω) : q(r) = γχ(0,b)(r), r = |x|, b ∈ (0, 1), γ ∈ [0, 1]}, (6)

where χ(0,b)(r) is the characteristic function of the interval (0, b). Note that F is a two-
parametric family depending on γ and b.

It is worth mentioning that, as we show below, the solution of (2) is unique for all
b ∈ (0, 1) and γ ≥ 0, and therefore, the DtN map is well defined for all of these one-step
potentials. In other words, 0 is not an eigenvalue of the operator ∆ + q and, in particular,
we do not need to restrict ourselves to the constraint q(x) < λ1. However, we still restrict
ourselves to the bounded set F to simplify.

Even in this simple case, a complete analytic answer to the previous questions (range
of the DtN map and sharp stability conditions) is unknown. Therefore, we also considered
a numerical approach based on a discrete sampling of the set F. Given an integer N > 0,
we define h = 1/N and:

Fh = {q ∈ L∞(Ω) : q(r) = γχ(0,b)(r), b = hi, γ = hj,

i = 1, . . . , N − 1, j = 0, . . . , N}. (7)
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Note that Fh has N(N − 1) + 1 functions from F. As h → 0, we can obtain a better
description of F and, in particular, we should recover the properties for q ∈ F.

The main contributions of this paper are given below:

1. Concerning the stability of Λ, we show that it fails in the sense that inequality (4) does
not hold for any continuous function V(t) with V(0) = 0. The proof is an adaptation
of the analogous result for the conductivity problem obtained in [7]. In fact, we
consider—as potential—the same piecewise constant radial conductivity used in [7].
The stability constant blows up when the support of the inner disk where the value of
the potential is constant becomes zero.

2. We obtain estimates for the Lipschitz stability constant in (5), in terms of b, γ ∈ (0, 1).
However, the stability constant in (5) depends on b−4 and therefore blows up as b→ 0.

3. We now consider γ ∈ [0, 1] fixed and we define the set Gγ ⊂ F as:

Gγ = {q ∈ L∞(Ω) : q(r) = γχ(0,b)(r), b ∈ (0, 1)}. (8)

We prove that if b ≥ b0 > 0, there is stability of the DtN map with respect to the
position of the discontinuity b for potentials in Gγ. More precisely, we obtain a
stability constant depending on γ−1b−3, which is uniformly bounded for b > b0 and
fixed γ (see Theorem 3 below). Note, however, that this constant blows up as γ→ 0.
This stability result does not give information about the stability with respect to the
L∞ norm of the potentials, but it provides stability with respect to the L1 norm, which
is sensitive to the position of the discontinuities, when b > b0 > 0 and γ > γ0 > 0.
In fact, we show numerical evidence of such stability when considering potentials
in F.

4. For the range of Λ, we give a characterization in terms of the first two eigenvalues of
the DtN map. We also analyze the region where the stability constant is larger, and,
therefore, the potentials for which any recovering algorithm for q from the DtN map
will have more difficulties.

We mention that a similar analysis can be conducted for the closely related—and more
classical—conductivity problem, where (2) is replaced by:{

− div a(x)∇v = 0, x ∈ Ω,
v = f , ∂Ω,

(9)

and the Dirichlet-to-Neumann map, or voltage-to-current map, is given by:

Λa : H1/2(∂Ω) → H−1/2(∂Ω)

f → a ∂v
∂n |∂Ω.

(10)

In this case, the relationship between piecewise constant radial conductivities and the
eigenvalues of the DtN map is known [8] through a suitable recurrence formula. However,
there is not a direct transformation that relates both problems, and the analysis must be
done specifically for this case.

We refer to the review paper [9] and the references therein for theoretical results on
the DtN map in this case.

The rest of this paper is divided as follows: In Section 2 below, we characterize the
DtN map in terms of its eigenvalues using polar coordinates. In Sections 3 and 4, we
analyze the stability and range results, respectively. In Section 5, we briefly describe the
main conclusions, and finally, Section 5 contains the proofs of the theorems stated in the
previous sections.
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2. The Dirichlet-to-Neumann Map

In this section, we characterize the Dirichlet-to-Neumann map in the case of a disk.
System (2) in polar coordinates reads:

r2 ∂2v
∂r2 + r ∂v

∂r +
∂2v
∂θ2 + r2q(r)v = 0, (r, θ) ∈ (0, 1)× [0, 2π),

limr−→0,r>0 v(r, θ) < ∞,
v(1, θ) = g(θ), θ ∈ [0, 2π),

(11)

where v(r, θ) = u(r cos θ, r sin θ) and g(θ) = f (cos θ, sin θ) is a periodic function.
An orthonormal basis in L2(0, 2π) is given by {einθ}n∈Z. Here, we use this complex

basis to simplify the notation, but in the analysis below, we only consider the subspace of
real valued functions. Therefore, any function g ∈ L2(0, 2π) can be written as:

g(θ) = ∑
n∈Z

gneinθ , gn =
1

2π

∫ 2π

0
g(t)e−intdt, (12)

and ‖g‖2
L2(0,2π)

= ∑n∈Z |gn|2. Associated with this basis, we define the usual Hilbert
spaces: Hα

# , for α > 0, as

Hα
# = {g : ‖g‖2

α = ∑
n∈Z

(1 + n2)α|gn|2 < ∞}.

The Dirichlet-to-Neumann map in this case is defined as:

Λq : H1/2
# (0, 2π) → H−1/2

# (0, 2π)

g → ∂v
∂r (1, ·),

(13)

where v is the unique solution of (11).
In the above basis, the Dirichlet-to-Neumann map turns out to be diagonal. In fact,

we have the following result:

Theorem 1. Let Ω be the unit disk and q ∈ F. Then:

Λq

(
einθ
)

= cneinθ , n ∈ Z, (14)

where:

c0 =
−b
√

γJ1(
√

γb)
b log b

√
γJ1(
√

γb) + J0(
√

γb)
, (15)

cn = c−n = n
Jn−1(

√
γb)− b2n Jn+1(

√
γb)

Jn−1(
√

γb) + b2n Jn+1(
√

γb)
, n ∈ N, (16)

and Jn(r) are the Bessel functions of the first kind.

Note that the range of Λ, when restricted to F, is characterized by the set of sequences
{cn}n≥0 of the form (15) and (16) for all possible b, γ. In particular, when q = 0, we have:

cn = n, n = 0, 1, 2, . . . , (17)

and this sequence must be in the range of Λ.
The norm of Λq, when restricted to F, is given by:

‖Λq‖L(H1/2
# ;H−1/2

# )
= sup

n≥0

|cn|
1 + n2 . (18)
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Proof of Theorem 1. We first compute c0 in (14). As the boundary data at r = 1 in (11)
is the constant g(θ) = 1, we assume that v(r, θ) is radial, i.e., v(r, θ) = a0(r). Then, a0
should satisfy: {

r2a′′0 + ra′0 + r2q(r)a0 = 0, 0 < r < 1,
a0(1) = 1, limr−→0,r>0 a0(r) < ∞.

(19)

For r ∈ (0, b), we solve the ODE with the boundary data at r = 0, while for r ∈ (b, 1),
we use the boundary data at r = 1. In the first case, the ODE is the Bessel ODE of order 0,
and therefore, we have:

a0(r) =
{

A0 J0(
√

γr), r ∈ (0, b),
1 + C0 log r, r ∈ (b, 1),

where J0 is the Bessel function of the first kind and A0 and C0 are constants. These are
computed by imposing continuity of a0 and a′0 at r = b. In this way, we obtain:{

A0 J0(
√

γb) = 1 + C0 log b
A0
√

γJ′0(
√

γb) = C0
1
b .

Solving the system for A0 and C0 and taking into account that Λq(1) = ∂v
∂r (1, θ) =

a′0(1) = C0, we easily obtain (14).
Similarly, to compute cn in (14), we have to consider g(θ) = einθ in (11), and therefore,

we assume that the solution v(r, θ) can be written in separate variables, i.e., v(r, θ) =
an(r)einθ . Then, an must satisfy:{

r2a′′n + ra′n +
(
r2q(r)− n2)an = 0, 0 < r < 1,

an(1) = 1, limr−→0,r>0 an(r) < ∞, n ≥ 1.
(20)

As in the case of c0, for r ∈ (0, b), we solve the ODE with the boundary data at r = 0,
while for r ∈ (b, 1), we use the boundary data at r = 1. We have:

an(r) =
{

An Jn(
√

γr), r ∈ (0, b),
Cn(rn − r−n) + rn, r ∈ (b, 1),

where An and Cn are constants. These are computed by imposing continuity of an and a′n
at r = b. In this way, we obtain:{

An Jn(
√

γb) = Cn(bn − b−n) + bn

An
√

γJ′n(
√

γb) = nCn(bn−1 + b−n−1) + nbn−1.

Solving the system for An and Cn, we obtain, in particular:

Cn =
−bn J′n(

√
γb) + n bn−1

√
γ Jn(

√
γb)

−(b−n−1 + bn−1) n√
γ Jn(
√

γb)− (b−n − bn)J′n(
√

γb)
.

We simplify this expression using the well-known identity:

2J′n(r) = Jn−1(r)− Jn+1(r),

and we obtain:

Cn =
−Jn+1(

√
γb)

b−2n Jn−1(
√

γb) + Jn+1(
√

γb)
.

Now, taking into account that Λq(einθ) = ∂v
∂r (1, θ) = a′n(1)einθ = (2nCn + n)einθ , we

easily obtain (14).
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Remark 1. In this proof of Theorem 1, we do not use the restriction γ ≤ 1 that satisfies the
potentials in F. In fact, the statement of the theorem still holds for any step potential, as in F,
but with any arbitrary large γ ≥ 0.

3. Stability

In this section, we focus on the stability results for the map Λ. Some results are
analytical and they are stated as theorems. The proofs are given in Appendix A. We
divided this section in three subsections, where we consider the negative stability result for
q ∈ F norm, and some partial results when we consider the subsets Fb defined by:

Fb =
{

q ∈ L∞(Ω) : q(r) = ξ(0,b)(r), γ ∈ [0, 1]
}

,

and Gγ defined in (8).

3.1. Stability for q ∈ F

The first result in this section is the lack of any stability property when q ∈ F. In par-
ticular, we prove that inequality (4) fails for any continuous function V(t) with V(0) = 0.

Theorem 2. Given q0 ∈ F, there exists a sequence {qk}k≥1 ⊂ F, such that ‖q0− qk‖L∞ = γ > 0
for all k ≥ 1, while:

‖Λq0 −Λqk‖L(H1/2
# ;H−1/2

# )
→ 0, as k→ ∞. (21)

This result contradicts any possible stability result of the DtN map at q0 ∈ F. Roughly
speaking, the idea is that the eigenvalues of Λ, given in Theorem 1 above, depend contin-
uously on b, unlike the L∞ norm of the potentials. A detailed proof of the Theorem 2 is
given in the Appendix A below.

3.2. Partial Stability

We now give two partial stability results when we fix b and γ, respectively.

Theorem 3. Given b ∈ (0, 1) and q1, q2 ∈ Fb, we have:

‖q1 − q2‖L∞ ≤ 15.0756
b4 ‖Λq1 −Λq2‖L(H1/2

# ;H−1/2
# )

. (22)

On the contrary, given γ ∈ (0, 1] and q1, q2 ∈ Gγ, we have:

|b1 − b2| ≤
3.7489

γb3 ‖Λq1 −Λq2‖L(H1/2
# ;H−1/2

# )
, (23)

where b = min{b1, b2}.

The proof of this theorem is in the Appendix A below.
Inequality (22) provides a Lipschitz stability result for Λ when b is fixed. This result

is not new, since this situation enters in the framework in [6], as q takes constant values
in fixed regions. The contribution here is in the dependence of the Lipschitz constant on
the parameter b, which is associated with the size of the region, where q takes a different
constant value. An estimate (22) shows also that the lack of Lipschitz stability is related to
variations in the position of the discontinuity, which is the main idea in the negative result
given in Theorem 2.

A numerical quantification of this Lipschitz stability for b fixed is easily obtained. We
fix b = b0 and consider:

Fh,b0 = {q ∈ L∞(Ω) : q(r) = γχ(0,b)(r), b = b0, γ = hj, j = 1, ..., 1/h− 1}.
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and for q0 ∈ Fh,b0 :

C2(h, q0, b0) = max
q∈Fh,b0

q 6=q0

‖q0 − q‖L∞

‖Λq0 −Λq‖L(H1/2
# ;H−1/2

# )

, (24)

then, C2(h, q0, b0) remains bounded as h → 0 for all q0 ∈ Fh. In Figure 1, we show the
behavior of C2(h, q0, b0) when h = 10−4 for different values of b0. To illustrate the behavior
with respect to b0 → 0, we plot on the left-hand side of Figure 1 the graphs of the functions:

C2,min(b0) = min
q∈Fh,b0

C2(10−4, q, b0), and C2,max(b0) = max
q∈Fb0

C2(10−4, q, b0). (25)

We see that both constants become larger for small values of b. We also see that both graphs
are close in this logarithmic scale. However, the range of the interval [C2,min(b), C2,max(b)] is
not small, as shown on the right-hand side of Figure 1.

Figure 1. Numerical estimate of the stability constant C2 in (24) for h = 10−4. To illustrate the
behavior on b, we plotted the maximum and minimum value when q ∈ Fh,b with respect to b in
logarithmic scale (left), and its range in normal scale (right).

Concerning inequality (23) in Theorem 3, it provides a stability result for Λ with
respect to the position of the discontinuity. In particular, this provides Lipschitz stability if
we consider a norm for the potentials that is sensitive to the position of the discontinuity.
This is not the case for the L∞ norm, but it is true for the Lp-norm for some 1 ≤ p < ∞.
For example, when p = 1:

‖q1 − q2‖L1 = γπ|b2
1 − b2

2| ≤ 2πγ|b1 − b2| ≤
7.4978π

b3 ‖Λq0 −Λq‖L(H1/2
# ;H−1/2

# )
.

We can also check this numerically:

C2(h, γ0, b) = max
q∈Gh,γ0

‖q0 − q‖L1

‖Λq0 −Λq‖L(H1/2
# ;H−1/2

# )

, (26)

is bounded as h→ 0 and b ≥ b0 > 0, where:

Gh,γ0 = {q ∈ L∞(Ω) : q(r) = γχ(0,b)(r), γ = γ0, b = hj, j = 1, ..., 1/h− 1}.

In Figure 2, we show the values when h = 10−4. We can observe that the constant
blows up as b→ 0.
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Figure 2. C2(h, q) for b > b0 when h = 10−4.

4. Range of the DtN Map

In this section, we are interested in the range of Λ when q ∈ F, i.e., the set of sequences
{cn}n≥0 of the form (15) and (16) for all possible b, γ ∈ [0, 1]× [0, 1].

As F is a bi-parametric family of potentials, it is natural to check if we can characterize
the family {cn}n≥0 with only the first two coefficients c0 and c1. In this section, we give
numerical evidence of the following facts:

1. The first two coefficients, c0 and c1, in (15) and (16) are the most sensitive with respect
to (b, γ) and, therefore, are the more relevant ones to identify b and γ from the DtN
map.

2. The function:

Λh : Fh → R2 (27)

q → (c0, c1),

is injective. This means, in particular, that the DtN map can be characterized by the
coefficients c0 and c1, when restricted to functions in Fh. We also illustrate the set of
possible coefficients c0, c1.

3. The lack of stability for Λ is associated with a higher density of points in the range of
Λh. This occurs when either b or γ is close to zero.

4.1. Sensitivity of cn

To analyze the relevance and sensitivity of the coefficients cn = cn(b, γ) to identify the
parameters (b, γ), we computed their range when (b, γ) ∈ [0, 1]× [0, 1], and the norm of
their gradients. As we can see in Table 1, the range decreases for large n. This means that,
for larger values of n, the variability of cn is smaller and they are likely to be less relevant
to identify q.

However, even if the range of cn becomes smaller for large n, they could be more
sensitive to small perturbations in (b, γ) and this would make them useful to distinguish
different potentials. However, this is not the case. In Figure 3, we show that for the given
values of γ = 0.1, 0.34, 0.67, 0.99 and b ∈ (0, 1], the gradients of the first two coefficients,
with respect to (b, γ), are larger than the others. Therefore, we conclude that the two first
coefficients, c0 and c1, are the most sensitive and, therefore relevant to identify the potential
q.



Mathematics 2021, 9, 794 9 of 17

We also see in Figure 3 that these gradients are very small for b << 1. This means,
in particular, that identifying potentials with small b from the DtN map should be
more difficult.

Table 1. Range of the coefficients, i.e., for each cn, the range is defined as maxq∈Fh cn −minq∈Fh cn.

Coefficient Range

c0 0.5523
c1 0.2486
c2 0.1588
c3 0.1157
c4 0.0904
c5 0.0736

Figure 3. Norm of the gradient of the coefficients cn(γ, b) in terms of b ∈ (0, 1) for different values of
γ. We can see that the gradients of higher coefficients n ≥ 2 are smaller than those of the first two.
We can also observe that these gradients become small for small values of b.

4.2. Range of the DtN in Terms of c0, c1

Now, we focus on the range of the DtN in terms of the relevant coefficients (c0, c1),
i.e., the range of the map Λh in (27): R(Λh). In Figure 4, we show this range.

Figure 4. Range of the discrete Dirichlet-to-Neumann (DtN) map in (27) (h = 10−2).
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Coordinate lines for fixed γ and b are given in Figure 5. We can observe that R(Λh) is
a convex set between the curves:

rlow : {(c0(γ, 1), c1(γ, 1)), with γ ∈ [0, 1]},
rup : {(c0(1, b), c1(1, b)), with b ∈ [0, 1]}.

Note also that in the c0, c1 plane, the length of the coordinate lines associated with
b constant are segments that become smaller as b → 0. Analogously, the length of those
associated with constant γ become smaller as γ→ 0. Thus, the region where either b or γ

are small produces a higher density of points in the range of Λh. This corresponds to the
upper left part of its range (see Figure 4). On the contrary, this Figure provides numerical
evidence of the injectivity of Λh as well. In fact, any point inside R(Λh) is the intersection
of two coordinate lines associated with some unique b0 and γ0.

Figure 5. Coordinate lines of the map Λh defined in (27) (h = 10−2). The upper figure contains the
coordinate lines associated with b constant, while the lower one corresponds to γ constant.

The higher density of points in the upper left hand-side of the range of Λh should
correspond to potentials q with a large stability constant C2(h, q), defined as:

C2(h, q) = max
q∈F

‖q0 − q‖L1

‖Λq0 −Λq‖L(H1/2
# ;H−1/2

# )

.

In Figure 6, we show the level sets of C2(h, q) for h = 10−4 and different q ∈ Fh.
The region with a larger constant corresponds to small values of b (upper right figure) and
larger values of c1 (upper left and lower figures). On the contrary, the region with a lower
stability constant is for b close to b = 1, which corresponds to the lower part of the range of
Λh when c0 is small.
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Figure 6. Level sets of the C2(b, γ) for q ∈ Fh and h = 10−4 in terms of (b, γ) (upper left) and in
terms of (c0, c1) (upper right), and a close up of the upper left region in this last figure is in the lower
figure. Regions separated by level sets are indicated: Region I corresponds to the potentials with a
stability constant larger that 107, region II corresponds to those with a stability constant lower that
107 but larger than 106, and so on.

It is interesting to analyze the set of potentials with the same coefficient c0 or c1. We
provide, in Figure 7, the coordinate lines of the inverse map (Λh)−1. When increasing
the value of either c0 (light lines) or c1 (dark lines), we obtain lines closer to the left part
of the (b, γ) region. We can see that the angle between coordinate lines becomes very
small for small b. In this region, close points could be the intersection of the coordinate
lines associated with not so close parameters (b, γ). This agrees with the region where the
stability constant is larger.

Figure 7. Coordinate lines of the map (Λh)−1 defined in (27).

5. Conclusions

We considered the relationship between the potential in the Schrödinger equation
and the associated DtN map in one of the simplest situations, i.e., for a subset of radial
one-step potentials in two-dimension. In particular, we focused on two difficult problems:
The stability of the map Λ (defined in (3)) and its range. In this case, the map Λ is easily
characterized in terms of the Bessel functions and this allows us to give some analytical
and numerical results for these problems. We proved the lack of any possible stability
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result by adapting the argument in [7] [Alessandrini, 1988] for the conductivity problem.
We also obtained some partial Lipschitz stability when the position of the discontinuity
is fixed in the potential, as well as numerical evidence of the stability with respect to the
L1 norm. Finally, we characterized numerically the range of Λ in terms of the first two
eigenvalues of the DtN map and provided some insight into the regions where the stability
of Λ is worse. As a future line of work, it could be interesting to consider the problem in a
more complicated stage, for instance, one can study not only one-step radial potentials q in
the problem, but could add more steps into the definition of the potentials.
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Appendix A

To prove Theorems 2 and 3, we need the following technical results regarding the the
Bessel functions.

Lemma A1. Let Jµ(r) be the Bessel functions of the first kind of order µ > − 1
2 . It is well known

(see [10]) that:

Jµ(r) =
rµ

2µΓ(µ + 1)
+ Sµ(r),

where:

Sµ(r) =
rµ

2µΓ
(

µ + 1
2

)
Γ
(

1
2

) ∫ 1

−1
(cos rt− 1)

(
1− t2

)µ− 1
2 dt.

For n = 0, 1, 2, · · · and r ∈ (0, 1), the following holds:

− rn+2

2n+1Γ
(
n + 3

2
)√

π

∫ 1

0

(
1− t2

)n+ 1
2 dt ≤ Sn(r) (A1)

≤ − rn+2 cos r
2n+1Γ

(
n + 3

2
)√

π

∫ 1

0

(
1− t2

)n+ 1
2 dt,

0 <
rn

2n+1n!
≤ Jn(r) ≤

rn

2nn!
, (A2)

and:
0 <

rn

2n+2n!
≤ J′n+1(r) ≤

rn

2n+1n!
. (A3)

More explicit estimates for S0(r) and S2(r) are given by:

− r2

4
≤ S0(r) ≤ −

r2 cos r
4

≤ 0, (A4)
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− r4

15π
0.4909 ≤ S2(r) ≤ −

r4 cos r
15π

0.4909. (A5)

Proof. To prove (A1), we use:

r2t2

2
cos r ≤ 1− cos(rt) ≤ r2t2

2
, r, t ∈ (0, 1), (A6)

and: ∫ 1

0
t2
(

1− t2
)n− 1

2 dt =
1

2
(

n + 1
2

) ∫ 1

0

(
1− t2

)n+ 1
2 dt.

From (A1) and the well-known identities:

Γ
(

1
2

)
=
√

π,

Γ(r + 1) = rΓ(r), r > 0,
2J′n+1(r) = Jn(r)− Jn+2(r), r > 0,

(see [11]), we get (A2), (A3), (A4), and (A5).

The following lemma is used in the proof of Theorem 3.

Lemma A2. For 0 < r ≤ s < 1 and n = 0, 2, we have:∫ 1

0
(1− cos(rt))

(
1− t2

)n− 1
2 dt ≤ πr2

28n + 8
,

and: ∫ 1

0
(cos(rt)− cos(st))

(
1− t2

)n− 1
2 dt ≤ π(s2 − r2)

28n + 8
.

Proof. The previous estimates are a consequence of (A6) and the inequality:

cos r− cos s = 2 sin
s + r

2
sin

s− r
2
≤ s2 − r2

2
.

Proof of Theorem 2. We take γ = 1 without loss of generality. For b0 ∈ (0, 1), we consider
the fixed potential:

q0(r, θ) =

{
1, 0 < r < b0,
0, b0 ≤ r < 1,

and a positive integer k(b0) satisfying b0 +
1

k(b0)
< 1. We define the potentials:

qk(r, θ) =

{
1, 0 < r < bk,
0, bk ≤ r < 1,

k = 1, 2, · · ·, (A7)

with bk = b0 +
1

k(b0)+k .

We have ‖q0 − qk‖L∞ = 1 and to have (21), we have to prove for g ∈ H1/2
# that:

‖
(
Λq0 −Λqk

)
g‖2

H−1/2
#
≤ C|b0 − bk|2‖g‖2

H1/2
#
≤ C

k2 ‖g‖
2
H1/2

#
, (A8)

where C is a constant independent of k and g.
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If g(θ) = ∑n∈Z gneinθ , by (15) and (16), we have:

‖
(
Λq0 −Λqk

)
g‖2

H−1/2
#
≤
∣∣∣∣ bk J1(bk)

bk J1(bk) log bk + J0(bk)
− b0 J1(b0)

b0 J1(b0) log b0 + J0(b0)

∣∣∣∣2|g0|2

+
∞

∑
n=1

∣∣∣∣∣ Jn−1(bk)− b2n
k Jn+1(bk)

Jn−1(bk) + b2n
k Jn+1(bk)

−
Jn−1(b0)− b2n

0 Jn+1(b0)

Jn−1(b0) + b2n
0 Jn+1(b0)

∣∣∣∣∣
2

(1 + n2)1/2
(
|gn|2 + |g−n|2

)
= I2

0 |g0|2 +
∞

∑
n=1

I2
n(1 + n2)1/2

(
|gn|2 + |g−n|2

)
.

We start by estimating I0.
From (A2), (A1), and (A4) J1(r) ≤ r

2 , when r ∈ (0, 1) and:

rJ1(r) log r + J0(r) ≥
r2 log r

2
+ 1− r2

4
, r ∈ (0, 1).

Since r2 log r
2 + 1− r2

4 is a decreasing function in (0, 1), we have:

rJ1(r) log r + J0(r) ≥
3
4

, r ∈ (0, 1). (A9)

A simple calculation and this inequality gives us:

I0 . bkb0 J1(bk)J1(b0)|log bk − log b0|+ J1(bk)J0(b0)|bk − b0|

+b0 J0(bk)|J1(bk)− J1(b0)|+ b0 J1(bk)|J0(bk)− J0(b0)|,

where the symbol . denotes that the left-hand side is bounded by a constant times the
right-hand one. Thus, combining the mean value theorem, the identity J′0(r) = −J1(r), the
fact that bk, b0 ∈ (0, 1) and (A2), we easily get:

I0 .
1
b0
|bk − b0|. (A10)

Now, we deal with Ik, k = 1, 2, · · · . We use the mean value Theorem, bk, b0 ∈ (0, 1),∣∣b2n
k − b2n

0

∣∣ . |bk−b0|
n , (A2), and (A3) to obtain:

In .
Jn+1(bk)Jn−1(b0)

∣∣b2n
k − b2n

0

∣∣+ b2n
0 Jn−1(b0)|Jn+1(bk)− Jn+1(b0)|

Jn−1(bk)Jn−1(b0)

+
b2n

k Jn+1(b0)|Jn−1(bk)− Jn−1(b0)|
Jn−1(bk)Jn−1(b0)

.
bk − b0

n
≤ bk − b0.

From this estimate and (A10), we have (A8).

Remark A1. Theorem 2 can be extended to the case that q0 is null. In this case, we take in (A7)
k(b0) = 0 and from (17):

‖
(
Λq0 −Λqk

)
g‖2

H−1/2
#
≤
∣∣∣∣ bk J1(bk)

bk J1(bk) log bk + J0(bk)

∣∣∣∣2|g0|2

+
∞

∑
n=1

∣∣∣∣∣1− Jn−1(bk)− b2n
k Jn+1(bk)

Jn−1(bk) + b2n
k Jn+1(bk)

∣∣∣∣∣
2

(1 + n2)1/2
(
|gn|2 + |g−n|2

)
,
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by using bk ∈ (0, 1), (A9), and (A2):

. b4
k |g0|2 +

∞

∑
n=1

b4n
k J2

n+1(bk)

J2
n−1(bk)

(1 + n2)1/2
(
|gn|2 + |g−n|2

)
,

. b4
k |g0|2 +

∞

∑
n=1

b2n+4
k

n(n + 1)
(1 + n2)1/2

(
|gn|2 + |g−n|2

)
.

1
k4 ‖g‖

2
H1/2

#
.

Proof of Theorem 3. Let q1(x) = γ1χB(0,b1)
(x), q2(x) = γ2χB(0,b2)

(x) in Fb and g(θ) =
1

21/4 eiθ .

‖Λq1 −Λq2‖2
L(H1/2

# ;H−1/2
# )

≥ ‖
(
Λq1 −Λq2

)
g‖2

H−1/2
#

=

∣∣∣∣∣ J0(b1
√

γ1)− b2
1 J2(b1

√
γ1)

J0(b1
√

γ1) + b2
1 J2(b1

√
γ1)
−

J0(b2
√

γ2)− b2
2 J2(b2

√
γ2)

J0(b2
√

γ2) + b2
2 J2(b2

√
γ)

∣∣∣∣∣
2

(A11)

≥ 4II2(
1 + b4

1γ1
8

)2(
1 + b4

2γ2
8

)2 ,

where:
II =

∣∣∣b2
2 J0(b1

√
γ1)J2(b2

√
γ2)− b2

1 J0(b2
√

γ2)J2(b1
√

γ1)
∣∣∣,

and we used (A2) for n = 0, 2. On the contrary:

II ≥ 1
8

∣∣∣b4
2γ2 − b4

1γ1

∣∣∣− J1 − J2 − J3, (A12)

where:
J1 =

∣∣∣b2
2S2(b2

√
γ2)− b2

1S2(b1
√

γ1)
∣∣∣, (A13)

J2 =
1
8

∣∣∣b4
2γ2S0(b1

√
γ1)− b4

1γ1S0(b2
√

γ2)
∣∣∣, (A14)

and:
J3 =

∣∣∣b2
2S0(b1

√
γ1)S2(b2

√
γ2)− b2

1S0(b2
√

γ2)S2(b1
√

γ1)
∣∣∣. (A15)

To estimate Ji, i = 1, 2, 3, we use (A2), (A4), (A5), and Lemma A2. We get:

J1 ≤
b4

2γ2
2

∣∣b2
1 − b2

2

∣∣
30π

+
b2

1
(
b2

2γ2 + b2
1γ1
)∣∣b2

2γ2 − b2
1γ1
∣∣

96
. (A16)

J2 ≤
b2

1γ1
∣∣b4

2γ2 − b4
1γ1
∣∣

32
+

b4
1γ1
∣∣b2

2γ2 − b2
1γ1
∣∣

32
. (A17)

J3 ≤
b2

1b4
2γ1γ2

2

∣∣b2
2 − b2

1

∣∣
120π

+
b6

1γ2
1

∣∣b2
1γ1 − b2

2γ2
∣∣

36π
3
2

+
b4

1b4
2γ1γ2

∣∣b2
1γ1 − b2

2γ2
∣∣

36π
3
2

(A18)

+
b2

1b4
2γ1γ2

2

∣∣b2
1γ1 − b2

2γ2
∣∣

480π
3
2

.
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Proof of (22). We suppose that b1 = b2 = b > 0. We obtain:

J1 ≤ b6

96 |γ1 − γ2| ≤ 0.01041b4‖q1 − q2‖L∞(B(0,1)),

J2 ≤
(

b6

32 + b6

32

)
|γ1 − γ2| ≤ 0.0625b4‖q1 − q2‖L∞(B(0,1)),

J3 ≤
(

b8

36π
3
2
+ b10

36π
3
2
+ b8

480π
3
2

)
|γ1 − γ2| ≤ 0.01004b4‖q1 − q2‖L∞(B(0,1)),

and from (A11) and the above estimates, we get that:

II ≥ 0.042b4‖q1 − q2‖L∞ .

Since γ1, γ2, and b are less than 1, (5.11) and the above estimate gives us:

‖Λq1 −Λq2‖2
L(H1/2

# ;H−1/2
# )

≥ 4
84

94 (0, 042)2b8‖q1 − q2‖2
L∞ = 0, 0044b8‖q1 − q2‖2

L∞ ,

this implies (22).

Proof of (23). Now γ1 = γ2. Let us define:

M(γ, b1, b2) = γ
(

b3
1 + b2

1b2 + b1b2
2 + b3

2

)
.

It is easy to check that:

1
8

∣∣b4
2γ2 − b4

1γ1
∣∣ = 1

8 M(γ, b1, b2)|b2 − b1|,

J1 ≤
(

1
30π + 1

9π
3
2

)
M(γ, b1, b2)|b2 − b1|,

J2 ≤
(

1
32 + 1

256π
1
2

)
M(γ, b1, b2)|b2 − b1|,

J3 ≤
(

1
120 + 1

18π
3
2
+ 1

420π
3
2

)
M(γ, b1, b2)|b2 − b1|,

therefore:

‖Λq1 −Λq2‖L(H1/2
# ;H−1/2

# )
≥ 2(

1 + 1
8

)2

(γ

8

∣∣∣b4
1 − b4

2

∣∣∣− J1 − J2 − J3

)

≥ 2(
1 + 1

8

)2 0, 04216M(γ, b1, b2)|b2 − b1| ≥ 0, 2665γb3|b2 − b1|,

and we obtain (23).
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