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Abstract: Traditional evolution algorithms tend to start the search from scratch. However, real-world
problems seldom exist in isolation and humans effectively manage and execute multiple tasks at
the same time. Inspired by this concept, the paradigm of multi-task evolutionary computation
(MTEC) has recently emerged as an effective means of facilitating implicit or explicit knowledge
transfer across optimization tasks, thereby potentially accelerating convergence and improving the
quality of solutions for multi-task optimization problems. An increasing number of works have
thus been proposed since 2016. The authors collect the abundant specialized literature related
to this novel optimization paradigm that was published in the past five years. The quantity of
papers, the nationality of authors, and the important professional publications are analyzed by
a statistical method. As a survey on state-of-the-art of research on this topic, this review article
covers basic concepts, theoretical foundation, basic implementation approaches of MTEC, related
extension issues of MTEC, and typical application fields in science and engineering. In particular,
several approaches of chromosome encoding and decoding, intro-population reproduction, inter-
population reproduction, and evaluation and selection are reviewed when developing an effective
MTEC algorithm. A number of open challenges to date, along with promising directions that can
be undertaken to help move it forward in the future, are also discussed according to the current
state. The principal purpose is to provide a comprehensive review and examination of MTEC for
researchers in this community, as well as promote more practitioners working in the related fields to
be involved in this fascinating territory.

Keywords: multi-task optimization; multi-task evolutionary computation; knowledge transfer;
evolutionary algorithm; assortative mating; unified search space

1. Introduction

Due to its extensive application in science and engineering fields, global optimization
is a topic of great interest nowadays. Without a loss of generality, it implies the minimiza-
tion of a specific objective function or fitness function [1]. Effective and common approaches
for optimization problems can be mainly divided into deterministic and heuristic methods.
Deterministic methods (such as linear programming and nonlinear programming) can find
a global or an approximately global optimum using mathematical formulas. Generally
speaking, they take advantage of the analytical properties of the optimization problem
to generate a sequence of solutions that converge to a global optimum [2]. On the other
hand, heuristic methods use random processes, and thus cannot guarantee the quality of
the obtained solutions. Comparatively speaking, to find an acceptable solution, the deter-
ministic approach needs fewer objective function evaluations than the stochastic approach.
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However, stochastic approaches have been found to be more flexible and efficient than
deterministic approaches, especially for complex “black box” problems [3].

Evolutionary algorithms (EAs) are a kind of population-based stochastic optimization
methods involving the Darwinian principles of “Natural selection and survival of the
fittest” [4-8]. The algorithm starts with a population of randomly generated individuals.
Then, new offspring are produced iteratively by undergoing evolutionary operators such
as crossover and mutation, and fitter offspring will survive to the next generation. The
production and selection procedure terminates when a predefined condition is satisfied.
Due to their simple implementation and strong search capability, in the last few decades,
EAs have been successfully applied to solve a wide range of real-world optimization
problems in areas such as defense and cybersecurity, biometrics and bioinformatics, finance
and economics, sport, and games [9,10].

Despite their great successes in science and engineering, existing EAs still contain
some drawbacks. One major point is that traditional EAs typically start to solve a problem
from scratch, assuming a zero prior knowledge state, and focus on solving one problem at
a time [11,12]. However, it is well known that real-world problems seldom exist in isolation
and are usually mixed with each other. The knowledge extracted from past learning
experiences can be constructively applied to solve more complex or new encountered tasks.

Traditional machine learning algorithms only work well under a common assumption
that the distributions of the training and test data are the same [13]. Nevertheless, the
domains, tasks, and distributions may be very different in many real-world applications.
In such cases, transfer learning or multitask learning between multiple source tasks and
a target task would be desirable. In contrast to tabula rasa learning, transfer learning in
the field of machine learning can leverage on a pool of available data from various source
tasks to improve the learning efficacy of a related target task. The fundamental motivation
for transfer learning in machine learning community was discussed in a NIPS (Conference
and Workshop on Neural Information Processing Systems) 1995 post-conference workshop
on “Learning to Learn: Knowledge Consolidation and Transfer in Inductive Systems” [14].
Since 1995, it has attracted substantial scholar attention, and achieved significant suc-
cess [13,15-17]. Although the notion of knowledge transfer or transfer learning has been
prominent in machine learning, it is relatively scarce, and has received far less attention
in the evolutionary computation community. Frankly speaking, a detailed description of
transfer learning in machine learning is beyond the scope of this review article, which is
limited in transfer learning or multi-task learning in evolutionary computation.

As a novel paradigm, transfer optimization can facilitate the automatic knowledge
transfer across optimization problems [11,12]. Following from the formalization, the con-
ceptual realizations of this paradigm are classified into three distinct categories, namely
sequential transfer optimization, multi-task optimization (MTO), the main focus of this
article, and multiform optimization. Note that the concept of multi-task optimization is
also described using other terms such as multifactorial optimization (MFO) [18], multi-
tasking optimization (MTO) [19], multi-task learning (MTL) [20], multitask optimization
(MTO) [11], multitasking [12], evolutionary multitasking (EMT) [21], evolutionary multi-
tasking (EMT) [22], and multifactorial operation optimization (MFOO) [23].

The basic concept of multi-task optimization was originally introduced by Prof.
Ong [24]. In contrast to the traditional EAs which optimize only one task in a single
run, the main idea of MTO is to solve multiple self-contained optimization tasks simulta-
neously. Due to its strong search capability and parallelism nature, it has attracted great
research attention since it was proposed in 2015. Nevertheless, to the best of our knowledge,
there is no effort being conducted on the comprehensive survey, especially in future trends
and challenges, about MTO. Thus, the intention of this article is to present an attempt to fill
this gap.

Up to now, no research monograph on this topic has been published, except a book
chapter written by Gupta et al. [25]. The review of the literature in this paper consists
of 140 articles from refereed journals and conference proceedings. These papers listed in
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the bibliography are drawn from the past five years. Note that dissertations [26-29] have
generally not been included, although the tendency is to be inclusive when dealing with
borderline cases. One of the major concerns here is that these results and key contribu-
tions with rarely novel ideas in dissertations are usually the collection of previous results
published in journals or conferences.

The remaining of this review is organized as follows. The basic definition and some
confusing concepts of MTO are introduced in Section 2. In this section, we also conduct a
statistical analysis of the literature. In Section 3, the mathematical analysis of conventional
multi-task evolutionary computation (MTEC) is provided which theoretically explains why
some existing MTECs perform better than traditional methods. Then, Section 4 describes
some basic implementation approaches for MTEC, such as chromosome encoding and
decoding scheme, intro-population reproduction, inter-population reproduction, balance
between intra-population reproduction and inter-population reproduction, and evaluation
and selection strategy. Further, related extension issues of MTEC are summarized in
Section 5. In Section 6, a review of the applications of MTEC in science and engineering is
conducted. Finally, the trends and challenges for further research of this exciting field are
discussed in Section 7. Finally, Section 8 is devoted to main conclusions.

2. Basic Concept of Multi-Task Optimization and Multi-Task Evolutionary Computation
2.1. Definition of Multi-Task Optimization

Generally, the goal of multi-task optimization is to find the optimal solutions for
multiple tasks in a single run. Without a loss of generality, suppose there are K minimization
tasks to be optimized simultaneously. Specifically, denote T; as the ith minimization task to
be solved. Then, the definition of a MTO problem can be mathematically represented as
follows [18]:

x; = argmin, T;(x), i=1,2,---,K 1)

where x] is a feasible solution of the ith task T;. Note that T; itself could be single-objective
optimization or multi-objective optimization problem. A general schematic of multi-task
optimization is depicted in Figure 1.

Drp Orf Sra

/

\

Base

Knowl \
K/ & owledge

NG

Multi-task EAs

Figure 1. An illustration of a multi-task optimization problem [30].
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To evaluate the individuals in MTO, several properties associated with every individ-
ual are defined as follows [18]:

Definition 1 (Factorial Cost): The factorial cost of individual p; on task T; is the objective value
f; of potential solution p;, which is denoted as l[J;

Definition 2 (Factorial Rank): The factorial rank of p; on Tj is the rank index of p; in the sorted
objective value list in an ascending order, which is denoted as r;
Definition 3 (Skill Factor): The skill factor is defined by the index of the task assigned to an
individual. The skill factor of p; is given by T; = argmin, {1,2,___,K}r}.

Definition 4 (Scalar Fitness): The scalar fitness of p; is the inverse of r;, which is given by

@i =1/minje1o Ky1j

Herein, the skill factor is regarded as the cultural trait which can be inherited from
its parents in MTO. The scalar fitness is used as the unified performance criterion in a
multi-task framework.

2.2. Confusing Concepts of MTO

As an emerging paradigm in evolutionary computation community, multi-task opti-
mization is easy to confuse with other optimization concepts outlined and distinguished in
this section.

2.2.1. Multi-Objective Optimization (MOO)

In a real-world scenario, a decision maker in the general case has to simultaneously
account for multiple disparate or even contradictory criteria while selecting a particular
plan of action. Mathematically, a multi-objective optimization problem can be formulated
as follows:

minF(x) = (fi(x), fo(x), -, fu(x)) T )

where x is the decision variable vector. Typically, no single optimal solution can minimize
all the objectives simultaneously due to the confliction between each pair of objectives.
Thus, the main purpose of an MOO problem is to obtain an optimal solution set, called a
Pareto solution set, with splendid convergence and diversity.

In the literature, multi-objective evolutionary algorithms (MOEAs) that are commonly
used today can be classified into three categories [31]: (a) dominance-based MOEAs, such as
NSGA-II [32], (b) indicator-based MOEAs, such as HypE [33], and (c) decomposition-based
MOEAs, such as MOEA /D [34].

Although MOO and MTO problems both involve the optimization of multiple objec-
tive functions, they are two distinct optimization paradigms. MOO focuses on efficiently
resolving conflicts among competing objective functions in one task. As a result, solving
a MOO problem typically yields a Pareto solution set that provides the best trade-offs
among all objective functions. Differently, MTO aims to leverage the implicit parallelism of
a population-based search to seek out the optimal solutions for two or more tasks simulta-
neously. Therefore, the output of a MTO problem contains two or more optimal solutions
corresponding to each task.

In order to further exhibit the distinction between MOO and MTO, we refer to their
population distributions in Figure 2. In real life, you can imagine a scenario where you
plan to buy a cheap and fine table in a furniture store. Actually, this problem that you
face is a multi-objective optimization problem. Based on the definition of Pareto optimal
solution, individuals {py, p3, pa, p5} are incomparable to each other and are better than the
individuals {p1, ps} in Figure 2a. As a result, the output of this MOO problem is the Pareto
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optimal solution set {py, p3, p4, p5}, and then you can buy any table from this set based on
personal preference.

Price A . . . . . Price of A . ‘ ‘ A .
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Figure 2. Population distribution for multi-objective optimization (MOO) and multi-task optimiza-
tion (MTO) problems. (a) Multi-objective optimization problem finding a cheap and fine table.
(b) Multi-task optimization problem finding a cheap table and a cheap chair concurrently.

In contrast, you may possibly plan to buy a cheapest table and a cheapest chair at once,
which is a typical multi-task optimization problem. In Figure 2b, individuals {p;, p»} are the
cheapest chairs, and individuals {ps, ps} are the cheapest tables in this furniture store. Thus,
the output of this MTO problem is two optimal solution sets: {p, p»} and {ps, ps}, and then
you can buy randomly ONE table from the set {ps, ps} and ONE chair from the set {p;, p2}.

2.2.2. Sequential Transfer Optimization

The search process of many existing EAs typically begins from scratch, assuming a zero
prior knowledge state. However, there is a great deal of knowledge from past exercises that
can be exploited the similar search spaces in order to improve the algorithm performance.
For instance, an engineering team designing a turbine for an aircraft engine would use, as
a reference, past designs that have been successful and modify them accordingly to suit the
current application [20].

Mathematically, we make the strict assumption that while tackling task Tk, the tasks
Ty, Ty, ..., Tk—1 have already been addressed previously with the extracted information
available in the knowledge base M [12]. Herein, Tk is said to act as the target optimization
task, while Ty, T, ..., Tx_1 are said to be source tasks. As illustrated in Figure 3, the
objective of sequential transfer optimization is to improve the learning of the predictive
function of a target task using knowledge from any source task.

Source Tasks

@ S?)/\?E : Target Optimization Task

Knowledge “
Base (M)

Figure 3. An illustration of a sequential transfer optimization problem [12].
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2.2.3. Multi-Form Optimization

Different from multi-task optimization dealing with distinct self-contained tasks
simultaneously, multi-form optimization is a novel concept for exploiting multiple alternate
formulations of a single target task [12]. As illustrated in Figure 4, instead of treating each
formulation independently, the basic idea of multi-form optimization is to combine different
formulations into a single multi-task optimization algorithm [20].

o

Original Problem

FoRr ) org || .. Ko

Formulation 2 .
Formulation &

Formulation 1

Knowledge

Base

Figure 4. An illustration of multi-form optimization problem [30].

The challenge of multi-form optimization lies in the fact that it may often be difficult
to ascertain which formulation is most suited for a particular problem at hand, given the
known limits on computational resources. Alternate formulations induce different search
behaviors, some of which may be more effective than others for a particular problem
instance [30].

2.3. Multifactorial Evolutionary Algorithm

As a pioneering implementation of multi-task optimization, the multifactorial evolu-
tionary algorithm (MFEA), inspired by the multifactorial inheritance [35,36], has gained
increasing research interests due to its effectivity [18]. Algorithm 1 gives a description of
the entire process of the canonical MFEA.

At the initialization phase, MFEA randomly generates a single population with N-K
individuals in a unified search space (line 1). The individuals in the population then have
a skill factor (see Definition 3 in Section 2.1), indicating the most suitable task in terms
of ranking values on different tasks, and a scalar fitness (see Definition 4 in Section 2.1),
determining by the reciprocal of the ranking value with respect to the most suitable task
(lines 2-8).

There are two key features of MFEA, called assortative mating and selective imitation,
which distinguish it from traditional EAs. The assortative mating mechanism allows not
only the standard intra-task crossover between parents from the same task (lines 13-15)
but also the inter-task crossover between distinct optimization instances (lines 16-18).
The intensity of knowledge transfer is controlled by a user-defined parameter labeled as
random mating probability (rmp). Since mutation is essential in genetic algorithms, MFEA
with mutation applied on all newly generated candidates may achieve better performance
(lines 20-23). As each newly generated individual has been assigned skill factor, the
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evaluation for the individual is taken only on the task corresponded to such skill factor
(line 24). After evaluation, the whole population obtain new ranking values and thus new
skill factor and scalar fitness (lines 26-27), which is then used to select survivors for the
next generation (line 28). Selective imitation is derived from the memetic concept of vertical
cultural transmission, which aims to reduce the computational burden by evaluating an
individual for their assigned task only.

Algorithm 1 Basic Structure of the Canonical MFEA

1 Randomly sample N-K individuals to form initial population P(0);
2 for each task T} do

3 for every individual p; in P(0) do

4 Evaluate p; for task Ty;

5 end for

6 end for

7 Calculate skill factor r over population P(0);

8 Calculate scalar fitness ¢ according to skill factor 7;

9 t=1;

10 while stopping conditions are not satisfied do

11 while offspring generated for each task < N do

12 Sample two individuals (x; and X)) randomly from P(t);
13 if ; = 7; then

14 [xa, xp] < intra-task crossover between x; and Xj;

15 Assign offspring x, and x;, with skill factor 7;(1;);

16 else if rand < rmp then

17 [xa, xp] + inter-task crossover between x; and Xj;

18 Assign each offspring with skill factor 7; or 7; randomly;
19 end if

20 [x;] - mutation of x;;

21 Assign offspring x, with skill factor T;

22 [xp] < mutation of Xj;

23 Assign offspring x;, with skill factor 7;

24 Evaluate [x;, xp] for their assigned task only;

25 end while

26 Calculate skill factor r over population P(t);

27 Calculate scalar fitness ¢ according to skill factor r;

28 Select survivors to next generation;

29 t=t+1;

30 end while

2.4. Literature Review and Analysis

After retrieving several important full-text databases, abstract databases, and Google
Scholar, 69 articles published in peer-review journals and 71 papers published in conference
proceedings were collected and reviewed for this paper. The quantity of papers published
each year is contained in Table 1.

Table 1. The quantity of papers published each year in the past five years. The number in parentheses
represents the quantity of papers published first online.

Year 2016 2017 2018 2019 2020 Subtotal
Journal 4 4 3 20(3) 38(10) 69
Conference 12 9 12 19 19 71
Total 16 13 15 39(3) 57(10) 140

As the first paper in this field, [24] is a keynote presentation abstract published in
2016 by Springer, while the International Conference on Computational Intelligence, Cyber
Security and Computational Models was held in Coimbatore, India in December 2015.
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Interestingly, the first journal paper [37] was received on 1 December, 2015, and published
online on 26 February, 2016, while it was published in the first volume of Complex &
Intelligent Systems in 2015. For simplicity, two papers both count towards 2016, as shown
in Table 1.

From Table 1, we noticed that the quantity increased for the past five years and
exploded in the past two years. It had already reached 39 and 57 in 2019 and 2020,
respectively, more than two thirds of the total. The results demonstrate the high research
intensity and productivity in MTO, becoming a hot research topic in the evolutionary
computation community.

These articles involve 277 co-authors from 12 countries, including China (184), Vietnam
(19), Singapore (18), New Zealand (11), and the UK (10), as shown in Figure 5. The most
prolific contributing authors in this field are summarized in Table 2. From here we see
clearly that China and Singapore have demonstrated great research power in this field, and
some famous research teams have emerged from China and Singapore. It is worth noting
that these prominent scholars have some kind of academic connection (research scientist,
Ph.D candidate, co-investigator, etc.) with the pioneer of MTO, Prof. Ong. In addition,
each paper was written by 4.21 co-authors on average.

These articles were published in 34 journals and 24 international conferences. The
preferential journals involve IEEE Transactions on Cybernetics (12), IEEE Transactions on
Evolutionary Computation (12), IEEE Access (4), and Information Sciences (3), while the
preferential conferences involve IEEE Congress on Evolutionary Computation (IEEE CEC)
(33), Genetic and Evolutionary Computation Conference (GECCO) (8), and IEEE Sympo-
sium Series on Computational Intelligence (IEEE SSCI) (6). It is evident that the publication
distribution shows a high concentration. The authors tend to publish these research results
in the top journals and conferences in the evolution computation community, in order to
promote their academic reputations. Open Access journals (like IEEE Access), meanwhile,
are new options for scholars trying to seize the initiative first and achieve high visibility.

Number of co-authors from different countries

184

Figure 5. Number of co-authors from different countries.
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Table 2. The most prolific contributing authors devoted to MTO and MTEC.

Rank Name Affiliations Address E-mail Total Number
(Journal + Conference)

Nanyang Technological .

1 Yew-Soon Ong University Singapore asysong@ntu.edu.sg 27 (17 + 10)
Singapore Institute of . .

2 Abhishek Gupta Manufacturing Singapore abhlsheks ;g;léa;i@smmtech.a— 25 (17 + 8)
Technology (SIMTech) edu-sg

3 Liang Feng Chonggqing University Chonggqing, China liangf@cqu.edu.cn 24 (13 +11)

4 Zexuan Zhu Shenzhen University Shenzhen, China zhuzx@szu.edu.cn 156 +9)

5 Jinghui Zhong SOUt}; fCT}:Cr}l;IOJlr;g;rslty Guangzhou, China jinghuizhong@gmail.com 13 (7 +6)

6 Maoguo Gong Xidian University Xi’an, China gong@ieee.org 11 (5 +6)

7 Huynh Thi Thanh Binh Sciirgzla[rigl}]ees}sllrfglgfgy Hanoi, Vietham binhht@soict.hust.edu.vn 11(4+7)

8 Kay Chen Tan Clt%gﬁ;;gig of Hong Kong, China kaytan@cityu.edu.hk 10 (7 +3)

As of January 31, 2021, the most cited papers are [11,12,18,21,38,39], in descending
order, and the other papers were cited less 70 times. Although [18] by Gupta et al. is
not the first paper published in a journal or submitted to a journal, it has been widely
recognized by the evolution computation community. The possible reason for this is that
it provided the algorithmic background, biological foundation, basic concepts, algorithm
framework, simulation experiments, and excessive experimental results of MFEA. As a
result, this paper has been cited 233 times so far and considered the most classic paper in
MTO and MTEC.

3. Theoretical Analyses of Multi-Task Evolutionary Computation

Experimentally, many success stories have surfaced in multi-task optimization scenar-
ios in recent years, and demonstrated the superiority of multi-task evolutionary compu-
tation over traditional methods. A natural question is whether MTEC always improves
convergence performance.

Follows directly from Holland’s schema [40], under fitness proportionate selection,
single-point crossover, and no mutation, the expected number of individuals in a popula-
tion containing given a schema at generation is deduced in [30]. This demonstrates that,
compared to conventional methods, the potential ability for MTEC to utilize knowledge
transferred from other tasks in the multi-task environment to accelerate convergence to-
wards high quality schema. Further, it was proved that the MFEA with parent-centric
evolutionary operators and (¢, A) selection can asymptotically converge to the global
optimum of each constitutive task, regardless of the choice of rmp [41]. On the other hand,
the reduction in the convergence rate of MFEA depends on the chosen rmp and single-task
optimization may lead to faster convergence feature in the worst case.

Referring to [41], Tang et al. further proved that, by aligning two subspaces, the
inter-task knowledge transfer method proposed in [42] can implicitly minimize the KL-
divergence between two different subpopulations. In this way, we can implement the
low-drift inter-task knowledge transfer.

In [43], adaptive model-based transfer (AMT) was proposed and analyzed theoretically.
The theoretical result indicates that, by combining all available (source + target) probabilistic
models, the gap between the underlying distributions of parent population and offspring
population is reduced. In fact, with increasing number of source models, we can in principle
make the gap arbitrarily small. Therefore, the proposed AMT framework facilitates the
global convergence characteristic.

Yi et al. [44] discovered mathematically that the proposed interval dominance method
has a strict transitive relation to the original method when v = 0.5 and can be applied
when comparing the dominance relationship between interval values.

The principal finding of [45] is that, for vehicle routing problems (VRPs), the positive
knowledge transfer across tasks is strictly related to the intersection degree among the best
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solutions. More concretely, Osaba et al. have shown that intersection degrees greater than
11% are enough for ensuring a minimum positive activity.

Recently, Lian et al. [46] provided a novel theoretical analysis and evidence of the
effectiveness of MTEC. It was proved that the upper bound of expected running time for
the proposed simple (4 + 2) MFEA algorithm on the Jumpy function can be improved to
O (n? + 2) while the best upper bound for single-task optimization on the same problem is
O (n*~1). This theoretical result indicates that MTEC is probably a promising approach to
deal with some distinct problems in the field of evolutionary computation. The proposed
MFEA algorithm is further analyzed on several benchmark pseudo-Boolean functions [47].
Theoretical analysis results show that, by properly setting the parameter rmp for the group
of problems with similar tasks, the upper bound of expected runtime of (4 + 2) MFEA on
the harder task can be improved to be the same as on the easier one, while for the group of
problems with dissimilar tasks, the expected upper bound of (4 + 2) MFEA on each task
are the same as that of solving them independently. This study theoretically explains why
some existing MFEAs perform better than traditional EAs.

4. Basic Implementation Approaches of Multi-Task Evolutionary Computation

Gupta and Ong [48] provided a clearer picture of the relationship between implicit
genetic transfer and population diversification. The experimental results highlighted
that genetic transfer is a more appropriate metaphor for explaining the success of MTEC.
Da et al. [49] further considered the incorporation of gene-culture interaction to be a pivotal
aspect of effective MTEC algorithms. In [50], the inheritance probability (IP) of the selective
imitation was firstly defined and then the influence on MTEC algorithm was studied
experimentally. To alleviate the influence of IP on the algorithm performance, an adaptive
inheritance mechanism (AIM) was thus introduced to automatically adjust the IP value for
different tasks at different evolutionary stages.

Solving the multi-task optimization problem in a natural way is the multipopulation
evolution strategy, in which each subpopulation evolves and exploits separate search
spaces independently in order to solve the corresponding task. As an example, in Figure 6,
a multi-population evolution model is depicted to solve two tasks [51]. According to the
multi-population evolution model of MTEC, various implementation approaches of each
element proposed so far are described in detail in the following subsection.

/

. . 1 . 1/
Population Intro-population | R, Evaluation and P { Output 1 |
initialization pt‘ reproduction selection P

Inter-population
- reproduction

~ . H . P 2 “//
Intro popul?tlon y____» Evaluathn and s Output 2 |
reproduction R} selection \

: 2
Population L_D 3
initialization

v

Figure 6. Multi-population evolution model for a simple case comprising two tasks [51].

4.1. Chromosome Encoding and Decoding Scheme

For effective EAs including MTEC, the unified individual representation scheme
coupled with the decoding process is perhaps the most important ingredient, which
directly affects the problem-solving process.
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Canonical MFEA employed the unified representation scheme in a unified search
space [18]. In particular, every variable of individual is simply encoded by a random key
between 0 and 1 [52]. For the case of continuous optimization, decoding can be achieved in
a straightforward manner by linearly mapping each random key from the genotype space
to the design space of the appropriate optimization task [18,38]. For instance, consider a
task T; in which the ith variable is bounded in the range [L;, U;]. If the ith random-key of a
chromosome y takes value y; € [0, 1], then the decoding procedure is given by

xj =L+ (U; — L) - y;. 3)

In contrast, for the case of discrete optimization (such as knapsack problem (KP),
quadratic assignment problem (QAP), and capacitated vehicle routing problem (CVRP)),
the chromosome decoding scheme is usually problem dependent.

However, there are two obvious limitations of using a random key representation
when dealing with permutation-based combinatorial optimization problems (PCOPs) [53].
Firstly, the decoding can be inefficient, since the transformation from the random key
representation to the permutation is required for each fitness evaluation of EAs. Secondly,
the decoding process can be highly prone to losses, since only information on relative
order is derived. Therefore, Yuan et al. [53] introduced an exquisite and effective variant,
called permutation based unified representation, to better adapt to PCOPs. To encode
multiple VRPs, the permutation-based representation [54,55] was also adopted [56,57].
With it, a chromosome is encoded as a giant tour represented by a sequence in which each
dimension is a customer id. In addition, the extended split approach [54,55] was introduced
to translate a permutation-based chromosome into a feasible routing solution.

Chandra et al. [58] employed direct encoding strategy for weight representation,
where all the weights are encoded in a consecutive order. Therefore, different tasks results
in varied length real-parameter chromosomes in the MTEC algorithm.

The solutions offered by genetic programming (GP) are typically represented by an ex-
pression tree [59]. In the multifactorial GP (MFGP) paradigm, a novel scalable chromosome
encoding scheme, gene expression representation with automatically defined functions [60],
was utilized to effectively represent multiple solutions simultaneously [61]. In particular,
this encoding scheme using a fixed length of strings contains one main function and mul-
tiple automatically defined functions (ADFs). The main function gives the final output,
while the ADFs represent subfunctions of the main function. The corresponding decoding
scheme was also proposed in [61].

Binh et al. [62] proposed an individual encoding and decoding method in unified
search space for solving clustered shortest-path tree (CluSPT) problem. The number of
clusters of individuals is equal to the maximum number of clusters of all tasks and the
number of vertices of cluster i is the maximum number of vertexes of cluster i of all
tasks. Note that such individual encoding and decoding approaches can also apply to the
minimum routing cost clustered tree (CluMRCT) problem [63].

Thanh et al. [64,65] introduced the Cayley Code encoding mechanism to solve clus-
tered tree problems. Cayley Code was chosen to be the solution representation for two
reasons. The first advantage is that it can encode a solution into spanning tree easier than
other methods. The other one is that it takes full advantage of existing evolutionary oper-
ators such as one-point crossover and swap-change mutation. In addition, three typical
coding types in the Cayley Code families were also analyzed when performed on both
single-task and multi-task optimization problems.

The Edge-sets structure has been proved to be efficient in finding spanning trees in
graphs [66]. In [67], it was used to construct optimal data aggregation trees in wireless
sensor networks. Each gene represents an edge, each taking a value of 0 or 1, correspond-
ing to whether the edge is present in the spanning tree. In [68], solution presented by
edge-sets representation was also built for the CluSPT problem. An individual has three
properties: an ES property (edges connecting all clusters), IE property (vertices in each
cluster connecting it to other vertices of different clusters), and LR property (roots of all
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clusters). In order to transform a chromosome in unified search space into solutions for
each task, the decoding scheme contains two separate parts. For the first task, a solution
for the CluSPT problem is constructed from an individual in a unified search space by
using its key properties, while the decoding method for the second task is the HBRGA
algorithm proposed in [69]. However, this method cannot guarantee that the sub-graphs
in clusters are also spanning trees, leading to create invalid solutions. Recently, Binh and
Thanh [70] introduced another method for generating random solutions which can only
produce valid solutions.

Nowadays, connectivity among communication devices in networks has been playing
a significant role and multi-domain networks have been designed to help resolving scala-
bility issues. Recently, Binh et al. [71] introduced MFEA with a new solution representation.
With it, a chromosome consists of two parts in a unified search space: the first part encodes
the priority of the corresponding nodes while the second part encodes the index of edges
in the solution. In addition, the corresponding decoding scheme was also proposed in [71].

Constructing optimal data aggregation trees in wireless sensor networks is an NP-hard
problem for larger instances. A new MFEA was proposed to solve multiple minimum
energy cost aggregation tree (MECAT) problems simultaneously [67]. The authors also
presented am encoding and decoding strategy, a crossover operator, and a mutation
operator enabling multifactorial evolution between instances.

For solving multiple optimization tasks of fuzzy system, the encoding and decoding
scheme was proposed in [72]. Each individual comprises multiple chromosomes corre-
sponding to every fuzzy variables of the fuzzy system. Each chromosome is a series of
gene sequences, and per gene has one-to-one correspondence with a membership function
parameter of the fuzzy variable. When a decoding procedure is carrying out, according to
the task space to be decoded, in the order that the output variable is decoded first and the
input variables are decoded later, taking first few parameters of the required length from
each chromosome and arranging them in ascending order, then splicing them to obtain the
decoded individual.

For solving the community detection problem and active module identification prob-
lem simultaneously, a unified genetic representation and problem-specific decoding scheme
was proposed [73]. An individual is encoded as an integer vector, to which each integer
representing the label of community to which corresponding node is assigned.

For semantic Web service composition, a permutation-based representation was pro-
posed [74]. A permutation is a sequence of all the services in the repository, and each service
appears exactly once in the sequence. Using a forward graph building technique [75], a
DAG-based solution can easily be decoded from the above permutation-based solution.

Membership function plays an important role in mining fuzzy associations. Wang and
Liaw [76] proposed a structure-based representation MFEA for mining fuzzy associations.
The optimization of each membership function is treated as a single task, and the proposed
method can optimize all tasks in one run. More importantly, the structure based represen-
tation [77] can avoid the illegality by the transformation procedure and also reduce the
number of arrangements of membership functions.

Very recently, in an evolutionary multitasking graph-based hyper-heuristic (EMHH),
the chromosome of an individual is represented as a sequence of heuristics, with each bit
representing a low-level heuristic [78].

4.2. Intro-Population Reproduction

As a core search operator, intro-population reproduction can significantly affect the
performance of MTEC, as shown in Figure 6. The most widely utilized one is probably
genetic mechanisms, namely crossover and mutation. Specifically, several typical genetic
strategies include simulated binary crossover [18,79], ordered crossover (OX) [57,80], one-
point crossover [59,61], DE crossover [61], guided differential evolutionary crossover [81],
partially mapped crossover (PMX) and two-point crossover (TPX) [71], Gaussian muta-
tion [18], uniform mutation [61], swap mutation (SW) [57,80], polynomial mutation [53,79],
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DE mutation [61], mutation using the Powell search method [81], swap-change muta-
tion [64], and one-point mutation [71]. The other EAs, differential evolution (DE) [82-87],
particle swarm optimization (PSO) [85-94], artificial bee colony (ABC) [95], fireworks
algorithm (FWA) [96], self-organized migrating algorithm (SOMA) [97], brain storm opti-
mization (BSO) [98,99], Bat Algorithm (BA) [100], and genetic programming (GP) [61], are
also utilized as fundamental algorithm for MTEC paradigms.

In addition, inspired by cooperative co-evolution genetic algorithm (CCGA), an evo-
lutionary multi-task algorithm was proposed for the high-dimensional global optimization
problem [101]. In this, a MTO problem is decomposed into multiple lower-dimensional
sub-problems. In [22], the novel hyper-rectangle search strategy was designed based on
the main idea of opposition-based learning. It contains two modes, which enhance the
exploration ability in the unified search space and improve the exploitation ability in the
sub-space of each task, respectively.

4.3. Inter-Population Reproduction

The major function of inter-population reproduction is knowledge transfer between
different subpopulations, which may help to accelerate the search process and find global
solutions [51]. Therefore, when, what, and how to transfer are the key issues in MTEC. An
excellent MTEC algorithm should be able to deal with the three problems properly [102].

4.3.1. When to Transfer

As depicted in Figure 6, inter-population reproduction can happen at any stage of the
optimization process in a multi-task scenario. Generally, the offspring are generated via
genetic transfer (crossover and mutation) across tasks for each generation in [18].

In fact, knowledge transfer across tasks can also occur with a fixed generation interval
along the evolution search. The interval of inter-population reproduction was set to
10 generations in EMT (evolutionary multitasking) [21], and the generation interval was
fixed at 20 generations in SGDE [102]. Experimental results based on the island model
revealed that better results are observed from small transfer intervals than from large
transfer intervals [103].

Due to the essential differences among the landscapes of the optimization tasks,
Wen and Ting [104] suggested stopping the information transfer when the parting way
is detected. In MT-CPSOQ, if a particle within a particular population did not improve its
personal best position over prescribed consecutive generations, knowledge acquired from
the other task was transferred across to assist the search in more promising regions [53].
Obviously, the greater the value of the prescribed iterations is, the smaller the probability
of inter-population reproduction is. Similarly, in SOMAMIEF, the current optimal fitness of
each population was firstly judged, and the knowledge transfer demand across tasks was
triggered when the evolution process of a task stagnated for successive generations [97].

4.3.2. What to Transfer

In MFEA and its variants, each solution in every task will be selected as a transferred
solution based on the same probability. The light-weight knowledge transfer strategy was
proposed by Zheng et al. [105]. To be more specific, the best solutions found so far on
transfer other tasks to the given task and randomly replace some individuals during the
optimization process.

However, some transferred solutions, even the best solutions found so far, do not help
to optimize the other tasks, thereby leading to the low efficiency of achieving the positive
transfer. In evolutionary multi-task via explicit autoencoding, transferred solutions are
selected from the nondominated solutions in each task [21], while the performance of this
method may primarily rely on the high degree of underlying intertask similarities [41].
Recently, Lin et al. [19] proposed a new strategy for selecting valuable solutions for positive
transfer. In the proposed approach, a transferred solution achieves positive transfer if it is
nondominated in its target task. Then, in the original search space of this positive-transfer
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solution, its several closest (based on the Euclidean distance) solutions will turn into the
transferred solutions, since these solutions are more likely to achieve positive transfer.

In the existing DE-based on MTEC, the knowledge is transferred only by randomly
selecting the solutions from different tasks to generate offspring without regarding the
search property of DE. In fact, the successful difference vectors from the past generations
can not only retain the important landscape information of the optimization problem, but
also preserve the population diversity during the evolutionary process. Motivated by
this consideration, Cai et al. [87] proposed a difference vector sharing mechanism for DE-
based MTEC, aiming at capturing, sharing, and utilizing the knowledge of the promising
difference vectors found in the evolutionary process.

More recently, Lin et al. [106] have utilized incremental Naive Bayes classifiers to
select valuable solutions to be transferred during multi-task search, thus leading to the
promising convergence of tasks. Furthermore, under the existing mapping strategies, tasks
may be trapped in local Pareto Fronts with the guide of knowledge transfer. Thus, with the
aim of improving overall convergence behavior, a randomized mapping among tasks is
added that enhances the exploration capacity of transferred solutions.

Zhou et al. [107] investigated what information, except to the selective individuals,
should be transferred in an MFEA framework. In particular, the difference between the
individual solution and the estimated optimal solution, called the individual gradient (IG),
was introduced as the additional knowledge to be transferred. The proposed approach
was applied to mobile agent path planning (MAPP) [107] and the autonomous underwater
vehicles (AUV) 3D path planning problem [108].

Based on a novel idea of multiproblem surrogates (MPS), an adaptive knowledge
reuse framework was proposed for surrogate-assisted multi-objective optimization of
computationally expensive problems [109]. The MPS provides the capability of acquiring
and spontaneously transferring learned models gained from distinct but possibly related
problem-solving experiences. The proposed framework consists of four primary steps:
initialization, aggregation, multi-problem surrogate, and evolutionary optimization. The
authors further present one possible instantiation, which utilizes a Tchebycheff aggregation
approach, Gaussian process surrogate models with linear meta-regression, and an expected
improvement measure to quantify the merit of evaluating a new point.

4.3.3. How to Knowledge Transfer Implicitly

As the most natural way, knowledge transfer across tasks is realized implicitly when
two individuals possessing different skill factors are selected for generating the offspring
via crossover. The implicit MTEC usually employs a single population with unified solution
representation to solve multiple optimization tasks.

Compared with single-population SBX crossover, two parents come from two different
subpopulations (P and P;). Take MFEA as an example, knowledge transfer is done by
inter-population SBX crossover as below [18]:

& or oy — 0.5( (1+7)xf + (1 - v)x;), rand <05 W
05((1+7)x + (1 —7)xf), rand >05

For MT-CPSO (multitasking coevolutionary particle swarm optimization), the inter-
population reproduction is provided as follows [88,92,93]:

xk = 0.5((1 + rand)x¥ 4 (1 - mnd)x;b) (5)

where xi.‘ and xf»‘* are the position of the i-th particle and its corresponding updated particle
in subpopulation Py, respectively, x;b is the current global best position in subpopulation
P,, and rand is a random number between 0 and 1.

To explore the generality of MFEA with different search mechanisms, Feng et al. [85]
investigated two MTEC approaches by using PSO and DE as the search engine, respectively.
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While the other genetic operators are kept the same as the original MFEA, the velocity
is updated for MFPSO (multifactorial particle swarm optimization) using the following
equation [85]:
ok = w-of oy rand - (xfy, — 2) + ¢y - rand - (x’éb —xF) 4¢3 rand - (xgp — x5, (6)
For MFDE (multifactorial differential evolution), the mutation operator with genetic
materials transfer is defined as following [85]:

X, =X+ Fi(x)y — x03). )

For AMFPSO (adaptive multifactorial particle swarm optimization), the velocity is
updated using the following equation [94]:

K =w- o8 ey rand - (&, —x5) 4y - rand - (xgb —x) 4 c3-rand - (x; —x)  (8)

v
where v;‘ and v;‘* are the velocity of the i-th particle and its corresponding updated particle
in subpopulation Py, respectively, x and xf, are the position of the i-th particle and its
best found-so-far particle in subpopulation Py, respectively, xgb is the current global best
position in subpopulation Py, r1 and r2 are random and mutually exclusive integers, c1, c3,
3, and w are four parameters to adapt to problems, and rand is a random number within
Oand 1.

Recently, Song et al. [90] proposed a multitasking multi-swarm optimization (MTMSO)
algorithm, in which knowledge transfer across tasks was realized via arithmetic crossover
on the personal best xbest* of each particle among different tasks for every generation.

xbestt, = (1 — rand) - xbests + rand - xbest; )

For MPEF-SHADE (multi-population evolution framework—success-history based
adaptive DE), the mutation operator with genetic materials transfer is defined as
following [82,83]:

k= b F (v — o) + (e — ) (10)

where xf? and xf* are the i-th individual and the corresponding updated individual in
subpopulation Py, respectively, x;b is the current best individual in subpopulation P,, F; is
the scaling factor, and 1 and r2 are random and mutually exclusive integers.

The transfer spark was proposed to exchange information between different tasks in
MTO-FWA [96]. The core idea is to bind a firework and its generated explosion sparks and
guiding sparks into a task module to solve a specific problem. Based on this, assume the
ith firework for the optimization task k is denoted as F Wi{ and the transfer spark generated

by FM under the guiding of Tij is represented as TSfj . Therefore, Tij and TSfj can be
obtained by Equations (11) and (12), respectively

i 2 oM; i M r®
v = — = (Y - YR 11
! oM + (TMj (lel i 21:1 Xi ) Zi\]:kl r— (1)
TSV = FWf + TV (12)

where My and M; denote the total number of the individuals that the skill factor is k and
j, respectively.

In order to enhance knowledge transfer among different tasks, Yin et al. [110] inte-
grated a new cross-task knowledge transfer as following, which used a search direction
from another task

x;{* = xle(lite + (x; - leite) (13)
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where x]efl ite and x7,., . are the elite individuals of task k and r, respectively. The elite
individual of the task is used to speed up the population convergence and the difference
vector from another task can enhance the search diversity.

In EMT-RE framework for large-scale optimization, the knowledge transfer across
tasks was conducted implicitly through the chromosomal crossover with two solutions
possessing different skill factors [111]. If the current task is exactly the original task, the

mutant chromosome vf is simply generated from intermediate vector u; by:

vf = vfl + Fu; (14)
where vfl is a randomly chosen individual from the current task, and F; is the differen-
tial weight for controlling the amplitude of difference. If not, u; will be mapped into
the embedded space of the current task by the pseudo inverse of random embedding
matrix pinv(Ap):

of =0, + F(pinv(Ap)u;) (15)

where pinv(A) is approximated by (ATA) AT,

Under the existing mapping strategies, tasks may be trapped in local Pareto Fronts
with the guide of the knowledge transfer. Thus, with the aim of improving overall conver-
gence behavior, a randomized mapping among tasks was added as follows, that enhances
the exploration capacity of transferred solutions [106].

l)“rLk, r>p

U= L) (x—L;)
Y 0 16
{ (Uklikw + A(Ug — L), otherwise (10

AP‘A

where A ~ Ula, b], r
the search space.

Uu[o,1], and p € [0,1], which controls the probability of exploring

4.3.4. How to Knowledge Transfer Explicitly

In contrast to the existing implicit MTEC, the explicit MTEC algorithm employs an
independent population for each optimization task and conducts knowledge transfer across
tasks in an explicit manner. There are several advantages of explicit MTEC [112]. First, since
each task has separate population for evolution, task-specific solution encoding schemes
are employed for different tasks. Next, by only designing an explicit knowledge transfer
operator, the explicit MTEC paradigm can be easily developed by employing different
existing evolutionary solvers with various search capabilities for each optimization task.
As different search mechanisms possess various search biases, the employment of problem-
specific search operators in explicit MTEC could lead to a significantly improved algorithm
performance. Further, rather than probabilistically selecting solutions for mating across
tasks in the implicit MTEC, more flexible solution selection schemes, such as elite selection,
can be performed before transfer in the explicit EMT for reducing negative knowledge
transfer effects. However, compared with the accomplishments made in the implicit
MTEC algorithms, only a few attempts have been conducted for developing the explicit
MTEC approaches.

As a pioneering work, Bali et al. [113] put forward an MFEA variant with a linearized
domain adaptation strategy, named LDA-MFEA, for transforming the search space of a sim-
ple task into its constitutive complex task which possesses a similar search space. The goal
is to alleviate the negative transfer and to improve the quality of the generated offspring.

Feng et al. [21,114] developed an explicit MTEC algorithm to learn optimal linear
mappings between different multiobjective tasks using a denoising autoencoder. In this
method, different evolutionary mechanisms with different biases are cooperatively applied
to solve various tasks simultaneously and the learned mappings serve as a bridge between
tasks so that adaptive knowledge transfers can be conducted. By configuring the input
and output layers to represent two task domains, the hidden representation provides a
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possibility for conducting knowledge transfer across task domains. In particular, let P and
Q represent the set of solutions uniformly and independently sampled from the search
space of two different tasks T and T, respectively. Then the mapping M from T to T is
given by

M= (QPT) (PPT) - 17)

Therefore, the optimized solutions found for different tasks along the evolutionary
search can be explicitly transferred across tasks via a simple matrix multiplication opera-
tion with the learned M. The authors further improved the explicit knowledge transfer to
address combinatorial optimization problems, such as VRPs [112]. In particular, they devel-
oped two mechanisms: the weighted /;-norm-regularized learning process for capturing
the transfer mapping and the solution-based knowledge transfer process across VRPs.

Aiming to strengthen the knowledge transfer efficiency, a novel genetic transform
strategy was proposed and applied in individual reproduction [22]. Given two tasks T
and T, two mapping vectors M1, (from T, to T;) and My (from T to T4) are calculated
as follows:

My, = (meany, +¢)./ (meant, + €) (18)

My = (meant, + €)./ (meant, + ¢) (19)

where meant, and meant, are mean vectors of some selected individuals specific to the
two tasks, respectively, and ¢ represents a small positive number. The operator performs
element-wise division of two vectors. Based on two vectors, the parent individuals can be
mapped to the vicinity of the other solutions.

It was very recently determined that a novel search space mapping mechanism,
namely, subspace alignment (SA) could enable efficient and high-quality knowledge trans-
fer among different tasks [115]. In particular, the SA strategy establishes the connection
between two tasks using two transforming matrices, which can reduce the probability of
negative transfer. This involves assuming there are two subpopulations P and Q, with
each associated with a task. They denote the source data and target data, respectively.
Wp = %PTP and Wg = %QTQ denote the covariance matrices of P and Q, respectively.
Then Ep and Eg consist of the set of all eigenvectors of Wp and Wy, respectively, with one
eigenvector per column. From Ep and Eg, the eigenvectors corresponding to the largest
h eigenvalues that can retain 95% of the information are selected to construct the subspaces
of P and Q, thatis, Sp and Sg. Afterward, the transformation matrix M* of mapping Sp
and S is obtained according to Equation (20).

M* =Sp’Sq (20)

The transferability between two distinct tasks is effectively enhanced with a proper
domain adaptation technique. However, the improper pairwise learning fashion may incur
a chaotic matching problem, which dramatically degrades the inter-task mapping [110].
Keeping this in mind, a novel rank loss function for acquiring a superior inter-task mapping
between the source-target instances was formulated [116]. Then, an evolutionary-path-
based probabilistic representation model was proposed to represent the optimization
instances. With the proposed representation model, the threat of chaotic matching between
the source-target domains is effectively avoided. Finally, with a progressional Gaussian
representation model, a closed-form solution of affine transformation for bridging the gap
between the source-target instances was mathematically derived from the proposed rank
loss function.

Recently, Chen et al. [117] proposed an evolutionary multi-task algorithm with learn-
ing task relationships (LTR) for the MOO problem. The decision space of each task is
treated as a manifold, and all decision spaces of different tasks are jointly modeled as a
joint manifold. The joint mapping matrix composed of multiple mapping functions is then
constructed to map the decision spaces of different tasks to the latent space. Finally, the
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relationships among distinct tasks can be jointly learned so as to promote the optimizing of
all the tasks in a MOO problem.

Similarly, Tang et al. [42] also introduced an inter-task knowledge transfer strategy.
Specifically, the low-dimension subspaces of task-specific decision spaces are first estab-
lished via the principal component analysis (PCA) method. Then, the alignment matrix
between two subspaces is learned and solved. After that, the corresponding solutions
belonging to different tasks are projected into the subspaces. With this, two inter-task
reproduction strategies are then designed in the aligned subspaces.

4.4. Balance between Intra-Population Reproduction and Inter-Population Reproduction

As illustrated in Figure 6, the offspring of individuals are generated in two ways: intra-
population reproduction and inter-population reproduction. On one hand, the inductive
biases transferred from another task are helpful to effectively accelerate convergence. On
the other hand, excessive inter-population reproduction may lead to negative genetic
transfer across tasks and bad algorithm performance [11,118]. Thus, a natural question in
multi-task optimization community is finding a proper balance between intra-population
reproduction and inter-population reproduction [51]. Up to now, the proposed approaches
have been divided into three groups (fixed parameter, parameter adaptation, and resource
reallocating) explained in the following subsections.

4.4.1. Fixed Parameter Strategy

In the original MFEA, the extent of inter-task knowledge transfer is mandated by a
scalar parameter defined as the random mating probability (rmp), which is set as a constant
of 0.3 [18]. A larger value of rmp induces more exploration of the entire search space,
thereby facilitating population diversity. In contrast, a smaller value would encourage
the exploitation of current solutions and speed up the population convergence. In TMO-
MFEA, a larger rmp is used for diversity-related variables (DV) to enhance its diversity,
while a smaller rmp is designed for convergence-related variables (CV) to achieve a better
convergence [119,120]. Particularly, rmp for CV equals to 0.3, and rmp for DV equals to 1,
which means a random assortative mating.

An appropriate parameter is essential to the efficiency and effectiveness of MTEC
algorithm, and vice-versa. However, the user-defined and fixed parameter in MFEA and its
variants is likely to have some distinct disadvantages. Firstly, the rmp parameter is manually
specified based on the intuition of a decision maker. It is indeed patently clear that such an
offline rmp assignment scheme is heavily dependent on the existence of prior knowledge
about the different optimization tasks. Given the lack of prior knowledge, particularly
in general black-box optimization, inappropriate (blind) rmp values risks the possibility
of harmful inter-task knowledge transfers, thereby leading to significant performance
slowdowns [41,79,121]. Secondly, the rmp parameter is immutably fixed for all tasks during
the optimization process. Similar to biomes symbiosis [122], there are three relationships
between source tasks and a target task in an MTO scenario: mutualism, parasitism, and
competition. More importantly, the relationship may vary as the population distributions
in their corresponding landscapes change. Although this fixed mechanism can make use
of the positive knowledge transfer in some very special cases, it may intuitively bring
negative effects in general cases [83].

4.4.2. Parameter Adaptation Strategy

If an optimization task is improved more times by the offspring from other tasks, the
probability of knowledge transfer should be increased; otherwise, we will decrease this
rate [122,123]. Thus, the probability is defined by

R
RS +RY

rimpy = 1)
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where R; and R} are the proportions of times that the current best solution in subpopulation
Py is improved by the offspring of the same task and other tasks, respectively. In addition
to the transfer rate, the size of the selected candidate solutions also influences the effect of
information transfer. An adaptive control mechanism for the size for each task was also
devised in [123].

|Ck| = rmpy(|Ofsp| — |Ofspk|) + |Ofspx| (22)

In MPEF (multi-population evolution framework), this parameter was adaptively
determined based on evolution status [82,83]:

(23)

. — min(rmpy +c - tsry, 1), tsrg > sry
Pk = max(rmpy —c- (1 —tsry), 0), tsry < srg

where sry is the success rate of subpopulation Py, fsry, is the success rate of that offspring
generated with the genetic material transfer, and c is a constant parameter.

A simple random searching method was introduced to adjust this parameter [94]. The
current rmp is stored in the candidate list when at least one of K best solutions is updated
by a better solution. Otherwise, the parameter is adapted as follows:

rmpy = rmpx+0-N(0, 1) (24)

where J is a constant parameter, and N (0,1) is a Gaussian noise with zero mean and
unit variance.

Based on the saturation point of the knowledge transfer (SPKT), the knowledge
transfer control scheme was proposed to control the generation of hybrid-offspring and
alleviate the harmful transferred knowledge [99]. Based on the efficiencies of the global
search and local search component, Liu et al. [86] proposed an adaptive control strategy,
which can determine whether to perform the global search (DE) or the local search (CMA-
ES) during the evolution.

Further, Binh et al. [124] proposed a new method for automatically adjusting rmp
parameter. Specifically, the separate rmp value for each task is updated by

Sz, NF=0

rmpli] = >
1

(25)
where NP; is number of individuals in the current task, S;, Nyr—o is the set of individuals
with skill factor 7; and belong to the first nondominated front. The idea behind this
definition is that, when most of the individuals are in the first nondominated front, the
search process may get stuck in a local nondominated front and then we should increase
RMP parameter for the cross-task crossover.

Besides, Zheng et al. [125] defined a novel notion of ability vector to capture the
correlations between different tasks and automatically changed the intensity of knowledge
transfer across tasks to enhance the performance of MTEC algorithm.

It was very recently reported that an enhanced MFEA called MFEA-II was presented,
which enables an online parameter rmp estimation scheme in order to theoretically mini-
mize the negative interactions between distinct optimization tasks [41]. Specifically, the
extent of transfer parameter matrix is learned and adapted online based on the optimal
blending of probabilistic models in a purely data-driven manner. Bali et al. [79] further
presented a realization of a cognizant evolutionary multi-task engine. This framework
learns inter-task relationships based on overlaps in the probabilistic search distributions
derived from data generated during the search course. Recently, it was also used to solve
the operation optimization of integrated energy systems [121].

Some concepts and operators of the parameter adaptation strategy utilized in MFEA-
IT cannot be directly applied to permutation-based discrete optimization environments,
such as parent-centric interactions. Osaba et al. [126] entirely reformulated such concepts,
making them suitable to deal with discrete optimization problem without losing the
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inherent benefits of MFEA-II. Furthermore, AMFEA-II implements a novel and simple
strategy for dynamically updating the RMP matrix to the search performance.

4.4.3. Resource Reallocating Strategy

Recently, resource reallocating strategies in MFEA were integrated, which allocate
the computational resources according to the complexities of tasks. For example, Wen
and Ting [104] proposed an MFEA with resource allocation, named MFEARR. It can
determine the occurrence of parting ways during evolution, at which time the effective
cross-task knowledge transfer begins to fail. Then, an adaption strategy was proposed,
where the transformation frequency is proportional to the probability of positive knowledge
transfer. Gong et al. [127] put forward a MTO-DRA algorithm to enable dynamic resources
allocation according to task requirements, such that more computing resources are assigned
to complex tasks. Motivated by the similar idea that the limited computing resources
should be adaptively allocated to different tasks, Yao et al. [128] also proposed dynamic
resource allocation strategy. During the evolution of the population, individuals with high
scalar fitness will get more investments or rewards, that is, more computing resources are
allocated to them, and the scalar fitness of each individual is measured by a utility and
updated periodically.

4.5. Evaluation and Selection Strategy

General speaking, the complete definition of a universal selection operator is com-
posed of evaluation, comparison, and selection methods. The individual’s performance
can be evaluated directly or indirectly [51]. As an indirect method, the scalar fitness was
originally proposed in MFEA and its variants [18,57]. On the other hand, the fitness value
of objective function is a nature and typical direct method [82,83,86,88,122]. Note that
scalar fitness and function fitness are equivalence relations in a multi-task scenario [51].

After evaluating all individuals” performances (function fitness or scalar fitness), the
next question is the scope or level of comparison objects. In MFEA, the offspring-pop (R;)
and current-pop (P;) were concatenated and then a sufficient number of individuals were
selected to yield a new population [18]. This approach can be called population-based (or
all-to-all) comparison. As a contrast, individual-based (or one-to-one) comparison was also
utilized [61,82-84,88]. Once the offspring individual is generated by intra-population or
inter-population reproduction, it is compared with its parent directly and then the better
one can remain in the next generation.

For the case of population-based comparison, some alternative strategies were pro-
posed to select the fittest individuals from the joint population. For example, MFEA and its
variation follow elitist selection [18], level-based selection [53], and self-adaptive parent
selection [129]. Furthermore, it may remove the worse or redundant individuals so as to
create more population diversity [61].

The existing MTEC algorithms adopt a fitness-based selection criterion for effectively
transferring elite genes across tasks. However, population diversity is necessary when it
becomes a bottleneck against the genetic transfer. In [130], Tang et al. proposed a new
selection criterion keeping a balance between individual fitness and population diversity
as follows:

min;{« - p;.FS+ (1 —«) - p;.CD} (26)

where « is the balance factor, FS is fitness scalar which can adjust factorial cost of individuals
evaluated for different tasks to a common scale, and CD is crowding distance which can
approximately estimate individual diversity.

5. Related Extension Issues of Multi-Task Evolutionary Computation
5.1. Algorithm Framework

Hashimoto et al. [103] firstly explained that MFEA can be viewed as a special island
model and then implemented a simple MTEC framework under the standard island model,
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as illustrated in Figure 7. Note that, it is essentially an explicit multi-population structure,
in which the knowledge transfer across tasks is achieved through migration periodically.

Island 1

Island 2
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[ ]

[ ]

[ ]
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@ Individual for Task 1
O Individual for Task 2

Figure 7. An illustration of the MTEC framework under the standard island model [103].

Another multi-population evolution framework (MPEF) was first established for MTO,
as shown in Figure 8, wherein each population addressed its own optimization task and
genetic material transfer with the other populations can be implemented and controlled
in an effective manner [82,83]. Moreover, by adaptively adjusting random mating proba-
bility, it is effective for encouraging positive knowledge transfer, while avoiding negative
knowledge transfer.

Figure 8. An illustration of the multi-population evolution framework (MPEF) [83].

Liu et al. [86] proposed an efficient surrogate-assisted multi-task memetic algorithm
(SaM-MA) for solving MTO problems. In the proposed method, the population is di-
vided into multiple sub-populations, with each sub-population focusing on solving a
task. In addition, a surrogate model with the Gaussian process model is used to predict
the best solution, so as to reduce the number of fitness evaluations and to improve the
search efficiency.

In order to isolate the information of each task, a light-weight multi-population
framework was developed, in which each population corresponds to a single task [131]. In
the proposed framework depicted in Figure 9, the inter-task knowledge transfer (individual
immigration) is employed to generate the offspring, and then the successful individuals
(generated from the inter-task crossover and surviving in the next generation) can replace
the inferior individuals of the aforementioned task.
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Figure 9. An illustration of the multipopulation technique for multitask optimization [131].

Besides this, research articles [84,90,100] also proposed the MTEC algorithm based
on the multi-population framework, in which the number of populations is equal to the
number of tasks to be optimized and each population concentrates on solving a specific task.

In order to clearly understand the focuses and differences of existing and potential
works on MTEC, Jin et al. [132] proposed a general multitasking DE (MTDE) framework,
which contains three major components, i.e., DE solver, knowledge transfer, and knowledge
reuse. As illustrated in Figure 10, knowledge transfer is defined as both the processes
of transferring knowledge out and in, and knowledge reuse as the process of utilizing
the knowledge selected from the archive. In addition, two DE-specific knowledge reuse
strategies were also studied in [132]: the base vector based strategy and the differential
vector based strategy.

Figure 10. An illustration of multitasking DE (MTDE) framework [132].

Inspired by the cluster-based search feature of brain storm optimization (BSO), a
brain storm multi-task problems solver (BSMTPS) framework was proposed by dividing
individuals into several groups [99]. As illustrated in Figure 11, the offspring are generated
by the internal brain storm (IBS) and the cross-task brain storm (CBS), achieving knowledge
transfer within a special task and across different tasks, respectively. Zheng et al. [98] also
employed the clustering technique to cluster similar solutions into one group. In this
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way, it can avoid the knowledge transfer between dissimilar tasks and speed up the
solving process.

Task 1 (Group 1)

IBS gz

Task 2 (Group 2) Task k (Group k)

IBS IBS

Figure 11. An illustration of the brain storm multi-task problems solver (BSMTPS) framework [99].

MFEA adopts a simple inter-task knowledge transfer with randomness and tends to
suffer from excessive diversity, thereby resulting in a slow convergence speed. To deal
with the above issue, a two-level transfer learning framework was proposed for MTO [133].
Particularly, the upper level performs inter-task knowledge transfer via crossover and
exploited the knowledge of the elite individuals to enhance the efficiency and effectiveness
of genetic transfer. The lower level is an intra-task knowledge transfer, which transmits the
beneficial information from one dimension to other dimensions to improve the exploration
ability of the proposed algorithm. As a result, the two levels cooperate with each other in a
mutually beneficial fashion.

In order to accelerate the algorithm convergence and improve the accuracy of solutions,
Xie et al. [134] introduced a hybrid algorithm combining MFEA and PSO, in which the
PSO was added after genetic operation of MFEA and applied to the intermediate-pop
in each generation. Furthermore, an adaptive variation adjustment factor was proposed
to dynamically adjust the velocity of each particle and guarantee that the convergence
velocity was not too fast.

5.2. Similarity Measure between Tasks

Some researchers have focused on analyzing and measuring task relatedness [135]. As
a pioneering work in [136], the similarity between tasks for MFEA was measured from three
different perspectives, i.e., the distance between best solutions, the fitness rank correlation,
and the fitness landscape analysis.

Based on a correlation analysis of the objective function landscapes of distinct tasks,
Gupta et al. [137] presented a synergy metric (¢) for capturing and quantifying a promising
mode of complementarity between distinct optimization tasks. The metric can explain
when and why the notion of implicit genetic transfer of MTEC algorithms may lead to
performance enhancements.

For classification tasks, the relatedness between tasks is estimated by comparing their
most appropriate patterns [138]. Nguyen et al. [138] proposed a multiple-XOF system,
which can dynamically guide the feature transfer among learning classifier systems. The
proposed method improves the learning performance of individual tasks when they are
related, and reduces harmful signals from other tasks when they are not supportive to a
target task.
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5.3. Many-Task Optimization Problem

Until now, the existing MTEC approaches mainly focused on solving two optimization
tasks simultaneously and few works have been developed solving many-task optimization
(MaTO) problems. The work [139] in 2016 is the first attempt to demonstrate its feasibility
for solving real-world problems with more than two tasks. In an MaTO environment, a
natural idea of knowledge exchange is to select the most matching individuals from all
tasks [122,123]. When the number of tasks to be optimized is more than two, in order to
avoid this time-consuming approach, it is important to choose the most suitable task (or
assisted task) to be paired with the present task (or target task) for effective knowledge
transfer. The problem of recommending an internal source task has been considered as an
open challenge in a MaTO context [140].

In [102], the roulette method based on the measured similarity of each task pair was
used to select the source task. In this way, one task that has high similarity with the target
task has a high chance to be selected. This can reduce the harm of negative transfer because
only useful knowledge is transferred.

An adaptive mechanism of choosing suitable tasks was also proposed by simultane-
ously considering the similarity between tasks and the accumulated rewards of knowledge
transfer during evolution [141]. Based on the reliable archives storing more sufficient
individuals, the similarity between different tasks is measured by the Kullback-Leibler
divergence. Inspired by the idea of reinforcement learning, a reward system was further
developed in the proposed framework. Finally, the most likely beneficial task is identified
and transfers knowledge via a new crossover method.

As task similarity may not capture the useful knowledge between tasks, instead of
using similarity measures for task selection, Shang et al. [142] proposed a task selection ap-
proach based on credit assignment to conduct positive knowledge transfer. This approach
selects the appropriate task according to how good the solutions transferred from different
tasks performed along the evolutionary search process. The probability of selecting task T;
to task T; is defined by:

Wi,
Sp = —1 (27)

/ K
Y. Wi
j=1

where an element Wj; gives how useful is task T; for helping task T;. In addition, the task
assigned to individual x; is selected by task selective probability pi.‘ defined by [95]:

) = S0

(28)
K k
L exp(a-q;)
k=1
where q{-‘ is the degree of how individual x; can handle task T}, which is defined by
N—rk+1
gf = ———— (29)
Y (N=rk+1)
k=1

where rf-‘ is the rank of individual x; in task Tj.

Moreover, Tang et al. [130] proposed a group-based MFEA by clustering the similar
tasks (tasks with near global optima) and dispersing the dissimilar tasks. More importantly,
the genetic materials can only be transferred within the same groups so that negative
genetic transfers are eliminated.

Recently, Bali et al. [79] further utilized an RMP matrix in place of a scalar parameter
rmp to effectively many-task genetic transfers online. It offers the distinct advantage of
adapting the extent of knowledge transmissions between diverse task pairs with possibly
nonuniform inter-task similarities.
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5.4. Decision Variable Translation Strategy

For MTO problems, the optimal solutions of all constituent tasks tend to be in different
locations of the unified search space. Within the range between those optimal solutions of
different tasks, the trend of those objective functions may be in different directions. As a
result, the effectiveness of knowledge transfer and sharing in MTEC may degrade or even
be negative in this case. The main purpose of the decision variable translation strategy is
to map the optimal solution of all tasks to the center point of the unified search space so
that the growth trends of all tasks are similar and facilitate knowledge transfer during the
optimization process [39,143,144].

In generalized MFEA (G-MFEA), each individual in the population was translated to
a new location according to Equations (30) and (31):

op; =p; +dx (30)

di = sf o (cp—my) (31)

where p; and op; (i=1, 2, ..., Np) are the ith solution and the corresponding transformed
solution, respectively in the unified search space, N, is the population size and the trans-
lated value dy is estimated based on the promising solutions of the kth task. Furthermore,
my, is the estimated optimum determined by calculating the mean value of the y percent
best solutions of the kth task.

Note that the translated direction and distance are both fixed for all individuals.
Unfortunately, it is easy for individuals to go beyond the legal range, and then manual
efforts are required to ensure their legality. As a result, the original population distribution
is destroyed inevitably. Keeping this in mind, a novel variable transformation strategy
and the corresponding inverse transformation were defined as Equations (32) and (33),
respectively [143,144]

op;

B %'Pi]‘r pij < mj o
op;; = cp;—1 mj—cp; , J=12,---,D (32)
m;—1 'pij+ mi—1"’ pij > m

m;
] C
CT?] 'Opij/ Opij <— P]

Pij =y m-1 cpj—m; ’
o1 OPij T =1 OPij > Pj

j=1,2,---,D (33)

where cp =(0.5,0.5, ..., 0.5) is the center point of the unified search space, p; = {pi1, pi2, - - - ,
pip} is the ith solution in the original unified search space and op; = {op;1, opi2, ... , opip}
is the corresponding ith solution in the transformed unified search space. Furthermore, m
is the estimated optimal solution, which can be calculated as the mean value of the top
#*Np best solutions in the current generation.

5.5. Decision Variable Shuffling Strategy

In case the dimensions of decision space of different tasks in the MTO problem are
different, a fine solution with small dimension may be poor and nonintegrated for task
with large dimension, and some decision variables in the latter dimension of solution is
always not used for tasks with small dimensions. Thus, the canonical MFEA is inefficient
for MTO problems in this particular case.

To address this issue, a decision variable shuffling strategy was introduced [39]. To
be specific, this strategy first randomly changes the order of the decision variables of
individuals with small dimensions to give each variable an opportunity for knowledge
transfer between two tasks. Then, the decision variables of individuals for the small
dimensional task that are not in use are replaced with those of individuals for the large
dimensional task to ensure the quality of the transferred knowledge.

Zhang and Jiang [145] systematically analyzed the defects of MFEA in dealing with
heterogeneous MTO problems, and proposed the concepts of harmful transfer and defective
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parents. Then hetero-dimensional assortative mating and self-adaption elite replacements
were proposed to overcome these issues. On six hetero-dimensional MTO problems, the
proposed algorithm performed better than other algorithms.

Generally speaking, the order of decision variables has no significant influence on
the single-task EAs. In contrast, the situation is significantly different for MTEC, in which
the optimization process of one task more or less influences the optimization process
of other tasks. Wang et al. analyzed the influence of the order of decision variables on
single-task optimization (STO) and MTO problems, respectively. In addition, three orders
of decision variables were proposed in [146,147]: full reverse order, bisection reverse order,
and trisection reverse order. An important feature of these orders of decision variables
is that an individual can recover as himself after two times of changing the order of
decision variables.

5.6. Adaptive Operator Selection Strategy

It has been found that different crossover operators have various capabilities for
solving optimization problems. Therefore, the appropriate configuration of crossover is
necessary for robust search performance in MFEA. Zhou et al. [148] first investigated how
the different types of crossover operator used affect the knowledge transfer in MFEA
on both single-objective optimization (SOO) and MOO problems. As an efficient and
robust MTEC, a new MFEA with adaptive knowledge transfer (MFEA-AKT) was further
proposed, in which the crossover operator employed for knowledge transfer across tasks is
self-adapted based on the information collected along the evolutionary search process.

In DE, a mutant vector is obtained by perturbing a base vector with several weighted
difference vectors via a certain mutation strategy. Applying different mutation operators on
current population can generate different search directions and offspring populations. Mul-
tiple commonly-used mutation strategies (DE/rand/1, DE/best/1, DE/current-to-rand/1,
DE/ current-to-best/1, DE/rand /2, DE/best/2, and DE/best/1 + p) were investigated to
accelerate the convergence speed in [23,115,149], where DE /best/1 + p is defined as follows:

gen

k _ Lk “
xf, = dfeq + B =) + B () (x5 — ). (34)
In the proposed mutation strategy, the value of p varies from O to 1. Its rationale is
that the current-found best solution is utilized adequately to guide the search to promising
areas in the early phase, while an increased perturbation is also integrated subsequently for
a diverse exploration [149]. Note that we selected the suitable mutation strategy randomly

in [115] or adaptively according to their success rates in previous generations in [23].

5.7. Multi-Task Optimization under Uncertainties

Optimization problems often have different kinds of uncertainties in practice due to
the influence of subjective and objective factors [150,151]. Specifically, the objective and
constraint functions across tasks usually contain uncertain variables [152].

The MFEA algorithm was extended to solve the interval MTO problem under uncer-
tainty conditions [44]. In the proposed method, an interval crowding distance based on
shape evaluation is calculated to evaluate the interval solutions more comprehensively. In
addition, an interval dominance relationship based on the evolutionary state is designed to
obtain the interval confidence level, which considers the difference of average convergence
levels and the relative size of the potential possibility between individuals.

5.8. Hyper-Heuristic Multi-Task Evolutionary Computation

Instead of searching directly in the solution space like conventional meta-heuristics,
hyper-heuristics work at the higher-level search space of a set of low-level heuristics [153,154].
The goal of hyper-heuristics is to solve the problem at hand by selecting existing low-level
heuristics or generating new low-level heuristics.
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Although hyper-heuristics search in heuristics space, their current paradigms still
focus on solving isolated optimization problems independently. To integrate the advantages
of MTEC and hyper-heuristics effectively, Hao et al. [78] proposed a unified framework of
the evolutionary multi-task graph-based hyper-heuristic (EMHH). Note that, in EMHH,
the concept of MTEC and graph heuristics are used as the high-level search methodology
and low-level heuristics, respectively. It has been evaluated on examination timetabling
and graph coloring problems and the experimental results demonstrate the effectiveness
and efficiency of the proposed framework.

5.9. Auxiliary Task Construction

The distinctive performance of MTEC algorithms greatly depends on the similarity
of tasks in MTO problem. These methods may fail in cases where no prior knowledge on
the task correlations or even no related tasks are existed. Therefore, it is worth noting that
constructing the auxiliary and related task for the main task is essential to the improved
performance of evolutionary search [155,156].

As the first attempt in this direction, Da et al. [80] solved a complex travel salesman
problem (TSP) problem in conjunction with a closely related (but artificially generated)
multi-objective optimization task in a multi-task setting. The motivation behind the pro-
posal is that the associated MOO task can often act as a helper task which aids the search
process of the original problem by leveraging upon the implicit genetic transfer. Specif-
ically, the MOO task is formulated by decomposing the original TSP problem into two
distinct sub-tours.

Similarly, vehicle routing problem with time window (VRPTW) was modeled as a
two-task problem in [157], i.e., a MOO version (main task) and a single-objective version
(auxiliary task). The auxiliary task provides inspiration for the creation of bone routes
and semi-finished product solutions, which work together to speed up the algorithm
convergence by using these illegal solutions in the search process.

Feng et al. [111] proposed an evolutionary multitasking assisted random embedding
method (EMT-RE) for solving the large-scale optimization problem. Besides the original
problem, several low-dimensional auxiliary tasks are constructed by random embedding
to assist target optimization in a multi-task scenario.

For a given MOO problem, each single objective problem naturally shares great
similarity with it [158]. Therefore, the optimization processes on these single objective
functions could generate useful knowledge to enhance the problem solving process on the
target MOO problem. Huang et al. [158] treated each single objective problem as a separate
task domain and then discussed the detailed designs of building the dynamic domain
mapping and conducting knowledge transfer from multiple single objective problems to
the multi-objective problem.

In industrial production, excessive process data are generated and collected, even
leading to information overload. They are predicted by models with different precision.
In [119], the operational indices optimization was first established based on an accurate
model (multilayer perception) and two assistant models (the first-order polynomial regres-
sion model and the second-order polynomial regression model). Note that the assistant
models are alternatively used in the multi-task environment with the accurate model to
realize good knowledge transfer from the assistant models to the accurate model.

Inspired by the idea of the weight function, Zheng et al. [159] introduced a new
additional helper-task to accelerate the convergence of the main task in multi-task scenario.
As expected, the proposed method is beneficial to positive inter-task knowledge transfer
by adding possible similar tasks.

6. Applications of Multi-Task Evolutionary Computation

Since the first establishment of MFEA, a number of MTEC algorithms have been
proposed and successfully applied in many benchmark problems and real-world problems
over the past few years, as summarized in Table 3.
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Table 3. Application domains of MTEC algorithms in the past five years.

Category Domain Problem Algorithms
MFEA [11], MFEA [18], None [21], MFEA-GHS [22],
G-MFEA [39], MFEA-II [41], ASCMFDE [42],
PGEA [49], MFDE with AIM [50], MPEF-SHADE [82],
MEMP [83], MFDE [85], MFPSO [85], SaM-MA [86],
MT-CPSO [86], MDE-DVSM [87], MTMSO [90],
CPSOM [92], AMFPSO [94], MTO-FWA [96],
MFBSO [98], BSMTO [99], BSMTO-II [99],
Single-objective EMTSO-CCMA [101], MFEARR [104], DEMTO [105],
optimization problem MFEA-DV [110], EMT-RE [111], LDA-MFEA [113],
(SOOP) None [114], AT-MFEA [116], EBS-CMAES [122],
EBSFA-CMAES [123], SREMTO [125],
MTO-DRA [127], AMA [129], GMFEA [130],
mMTDE [131], MTDE [132], TLTLA [133],
MFEA [137], MaTDE [141], None [142],
Continuous MFEA-VT [143,144], HD-MFEA [145],
optimization MFEA-FuR [146,147], MFEA-AKT [148], MFDE [149],
problem MFEA /DE-OBL [160]
EMT/ET [19], None [21], MFEA-GHS [22],
AdaMOMEFDE [23], MO-MFEA [38], AMTEA [43],
IMFEA [44], MO-MFEA-II [79], GDE-MO-MFEA [81],
Multiobjective MM-DE [84], MTO-FWA [96], EMTIL [106],
S TEMO-MPS [109], MOMFEA-SADE [115],
Op“mlzﬁg&ﬁ’ roblem EMT-LTR [117], TMO-MFEA [120],
( ) RPB-MO-MFEA [124], MFEA /D-DRA [128],
MaTDE [141], MFEA-AKT [148], NSGAII+M [158],
MO-MFEA /HELP TASK [159], MFEA /D [161],
MFEA /D-M2M-SVM [162]
Benchmark problem Bi-level optimization M-BLEA [37]
problem g
Expensive optimization MCEEA [39], MS-MTO [163]
problem
Deceptive trap function
(DTF) MF-LTGA [164]
Clustered traveling
salesman problem ME-LTGA [165]
(CluTSP)
Vehicle routing problem MEFEA [18], MFCGA [45], P-MFEA [56], EMA [57],
(VRP) EEMTA [112], dMFEA-II [126], MTO-DRA [127],
MOMFMA [157]
) Quadratic assignment MFEA [11], MFEA [18], MFEA-Perm-LBS [53],
Discrete problem (QAP) MTO-DRA [127]
optimization
problem Knapsack problem (KP) MFEA [18], AMTEA [43]

Sudoku puzzles

MFEA [48], GMFEA [130]

Travel salesman problem

MFEA-Perm-LBS [53], S&M-MFEA [80], COEBA [100],

(TSP) dMFEA-II [126]
Linear ordering problem
(LOP) MFEA-Perm-LBS [53]
Job-shop scheduling i E
problem (JSP) MFEA [11], MFEA-Perm-LBS [53], NGP [165]
9 LOGIC suite None [140]
N-bit parity problem EMTL [58]
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Table 3. Cont.

Category

Domain Problem Algorithms
Minimum routing cost
clustered tree problem MFEA [63]
(CluMRCT)
Pollution-routing
problem (PRP) None [166]
Package delivery
problem (PDP) EEMTA [112]

Team orienteering
problem with time

Island-EMT [167]

Real-world problem

windows (TOPTW)
Examination timetabling EMHH [78]
problem
Graph coloring problem EMHH [78]
Minimum inter-cluster
routing cost clustered CC-MFEA [65]
tree problem
(InterCluMRCT)
Clustered shortest path None [62], None [64], CC-MFEA [65], N-MFEA [68],
tree problem (CluSTP) N-MFEA [70]
Time series prediction MFGP [61]
problem
Performance prediction None [168]
problem
Gene regulatory
network (GRN) MMMA-FCM [169]
reconstruction

Community detection

MUMI [73]

Chaotic time series
prediction problem

HD-MFEA neuroevolution [145]

Training deep neural
networks (DNN)
problem

AMTO [170], None [171]

Fuzzy cognitive map

Machine learning (FCM) learning

MMMA-FCM [169]

Symbolic regression
problem (SRP)

MFGP [61]

Multi-classification

problem mXOF [138], EMC-GEP [172]
Binary classification MEGP [59]
problem
Automatic

hyperparameter tuning
of machine learning

TEMO-MPS [109]

models
Fuzzy system MTGFS [72]
optimization problem
Association mining MFEA [76]
problem

Classification problem

DMSPSO [89], PSO-EMT [173], MMT-ELM [174]
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Table 3. Cont.

Category Domain Problem Algorithms
Con}potslt?s M-BLEA [37], MO-MFEA [38], MT-CPSO [88],
mant actng CPSOM [92], TEMO-MPS [109]
technique
Pressure vessel design
problem (PVDP) MT-CPSO [88]
Parameter extraction of
. SGDE [102]
Manufucturing photovoltaic model
industry Minimum energy cost
aggregation tree ESMFA [67]
(MECAT) problem
Hyperspectral unmixing MTSR [175], MTES [176]
Spread spectrum radar
polyphase code design MEFMP [83]
(SSRPCD) problem
Operational indices
optimization of ATMO-MFEA [119]
beneficiation (OIOB)
Continuous annealing
production process AdaMOMFDE [23], MFEA /D-DRA [128]
(CAPL)
Inter-domain path
computation under
domain uniqueness MFEA [71]
constraint (IDPC-DU)
Ind'lustri'al Optimal power flow MFEA [177]
engineering (OPF) problem
Electric power dispatch
problem MO-MFO [178]
Well location
optimization problem AT-MFEA [116]
Operation optimization
of integrated energy MO-MFEA-II [121]
system
Car structure design Multifactorial PSO-FA hybrid algorithm [91],
optimization problem TS+FM [95]
Mobile robot path IMFEA [44], MFEA-IG [107,108]
planning
Robotic

Unmanned aerial
vehicle (UAV) path
planning problem

MFEA [11], MO-MFEA-II [79]

Software engineering

Search-based software
test data generation

MT-EC [139]
(SBSTDG)
Cloud computing
service composition PMFEA [74], CCSC-EMA [179]
(CCSC) problem

Medicine

HIV-1 protease cleavage
site prediction

None [180]

Cybernetics

Double-pole balancing
problem

MFEA-II [41], ASCMFDE [42], AMTEA [43]
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6.1. Benchmark Problems
6.1.1. Continuous Optimization Problem

Evolutionary algorithms often lose their effectiveness and efficiency when applied to
large-scale optimization problems. Feng et al. [111] presented a primary trial of solving
large-scale optimization (up to 2000 dimensions) via the evolutionary multi-task assisted
random embedding method.

EAs are not well suited for solving computationally expensive optimization problems,
where the evaluation of candidate solutions needs to perform time-consuming numerical
simulations or expensive physical experiments. Ding et al. [39] extended the basic MFEA
to handle expensive optimization problems by transferring knowledge from multiple com-
putationally cheap tasks to computationally expensive tasks. Similarly, a multi-surrogate
based approach was adopted regarding the two surrogates as two related tasks [163].
The global surrogate model (expensive) is trained using all available data, and the local
surrogate model (cheap) is trained using only part of the data subsequently selected from
the data sorted.

A bi-level optimization problem (BLOP) is defined in the sense that one optimization
task (the lower level problem) is nested within another (the upper level problem), which
together comprise a pair of objective functions [181]. A multi-task bi-level evolutionary
algorithm (M-BLEA) was provided as a promising paradigm to promote solving the
upper level problem [37]. In M-BLEA, multiple lower level optimization tasks were to
be appropriately solved during every generation of the upper level optimization, thereby
facilitating the exploitation of underlying commonalities among them.

Although the original MFEA was designed for SOO problem [18], the idea of knowl-
edge transfer or sharing across constitutive tasks also holds for the MOO problem. As a
pioneer in multi-objective MTO, Gupta et al. [38] firstly extended the MFEA framework to
the MOO domain. As a key element, a meaningful order of preference among candidate
solutions in different tasks was proposed. Notice that for ordering individuals in a popula-
tion, the binary preference relationship between two individuals satisfies the properties of
irreflexivity, asymmetry, and transitivity [38].

Inspired by the division approach, Mo et al. [162] proposed a decomposition-based
multi-objective multi-factorial evolutionary algorithm (MFEA /D-M2M). It adopts the M2M
approach to decompose the MOO problem into multiple constrained sub-problems in order
to enhance the population diversity. Note that a matting pool is also constructed to ensure
genetic transfer across different sub-problems.

Yang et al. [120] presented the TMO-MFEA algorithm, in which decision variables
were divided into two types, namely, diversity variables and convergence variables. The
knowledge transfer on diversity variables is intensified to obtain evenly distributed solu-
tions over the Pareto front (PF), whereas the knowledge transfer on convergence variables
is restrained to maintain the convergence of the solution population toward the PF.

In MFEA based on decomposition strategy (MFEA /D), through multiple sets of weight
vectors, each multi-objective task was decomposed into a series of SOO subtasks optimized
with an independent population [161].

Recently, Ruan et al. [182] investigated when and how knowledge transfer works
or fails in dynamic multi-objective optimization. Computationally knowledge transfer
works poorly on problems with a fixed Pareto optimal set and under small environmental
changes. In addition, the Gaussian kernel function used is not always adequate for the
knowledge transfer.

6.1.2. Discrete Optimization Problem

As a preliminary attempt, several NP-hard combinatorial problems were efficiently
solved within the MTEC framework, such as the traveling knapsack problem (KP) [18],
Sudoku puzzles [48], travel salesman problem (TSP) [56], quadratic assignment problem
(QAP) [56], linear ordering problem (LOP) [56], job-scheduling problem (JSP) [56], vehicle
routing problems (VRPs) [53], and deceptive trap function (DTF) [164].
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Recently, Feng et al. [57] presented a generalized variant of VRPOD, namely, the
vehicle routing problem with heterogeneous capacity, time window, and occasional driver
(VRPHTO), by taking the capacity heterogeneity and time window of vehicles into con-
sideration. To illustrate its benefit, 56 new VRPHTO instances were further generated
based on the existing common vehicle routing benchmarks. In addition, the stochastic team
orienteering problem with time windows (TOPTW) models the trip design problem under
more realistic settings by incorporating uncertainties. In [167], a new MTEC approach
based on island model was developed to effectively enable knowledge sharing and transfer
across search spaces.

The CIuSTP problem has been solved by MFEA with new genetic operators [62,64].
In [62], the major ideas of the novel genetic operators were first constructing a spanning
tree for smallest sub-graph then the spanning tree for larger sub-graph based on the
spanning tree for the smaller sub-graph. Thanh et al. [64] also proposed genetic operators
based on the Cayley code. Tran et al. [63] proposed a MTEC algorithm to solve multiple
instances of minimum routing cost clustered tree problem (CluMRCT) together. Crossover
and mutation operators were studied to create a valid solution, and a new method of
calculating the CluMRCT solution was also introduced to reduce the consuming resources.
More recently, Thanh et al. [68,70] further presented a novel MFEA algorithm for the
CluSPT problem. Its notable feature is that the proposed MFEA has two tasks. The goal of
the first task is finding the fittest solution as possible for the original problem while the goal
of the second one is determining the best tree which enveloped all vertices of the problem.

Rauniyar et al. [166] put forward an MFEA based on NSGA-II to solve the pollution-
routing problem (PRP). The authors considered a PRP formulation with two conflicting
objectives: minimization of fuel consumption, and minimization of total travel distance.

In the literature, the n-bit parity problem is used to demonstrate the effectiveness and
superiority of particular neural network architecture, training algorithms or neuroevolution
methods. Chandra et al. [58] presented an evolutionary multi-task learning (EMTL) for
feedforward neural networks that evolved modular network topologies for the n-bit
parity problem.

6.2. Real-World Problems
6.2.1. Machine Learning

Tang et al. [174] introduced an MTEC algorithm for training multiple extreme learn-
ing machines with different number of hidden neurons for classification problem. The
proposed method had achieved better quality of solutions even if some hidden neurons
and connections were removed. Feature selection is an important data preprocessing tech-
nique to reduce the dimensionality in data mining and machine learning. Zhang et al. [89]
proposed an ensemble classification framework based on evolutionary feature subspaces
generation, which formulated the tasks of searching for the most suitable feature subspace
into a MTO problem and solved it via a MTEC optimizer. Recently, MFPSO was also used
to solve high-dimensional classification [173]. To be specific, two related tasks with the
promising feature subset and the entire features set were developed, respectively. The MTO
paradigm naturally fits the multi-classification problem by treating each binary classifica-
tion problem as an optimization task within certain function evaluations. In the proposed
framework, several knowledge transfer strategies (segment-based transfer, DE-based trans-
fer, and feature transfer) were implemented to enable the interaction among the population
of each separate binary task [172].

Training a deep neural network (DNN) with sophisticated architectures and a massive
amount of parameters is equivalent to solving a highly complex non-convex optimization
task. Zhang et al. [170] proposed a novel DNN training framework which formulated
multiple related training tasks via a certain sampling method and solved them simultane-
ously via a MTEC algorithm. During the training process, the intermediate knowledge is
identified and shared across all tasks to help their training. Recently, Martinez et al. [171]
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also presented a MTEC framework to simultaneously optimize multiple deep Q learning
(DQL) models.

By identifying the overlaps between communities and active modules, Chen et al. [73]
revealed the complex and dynamic mechanisms of high-level biological phenomena that
cannot be achieved through identifying them separately. This MTO problem contains two
tasks: identification of active modules and division of network into structural communities.

The optimization problem of fuzzy systems is used to optimize the parameters or
(and) structure of the fuzzy system. Zhang et al. [72] presented a general framework of the
multi-task genetic fuzzy system (MTGEFS) to effectively solve this problem. For the sake of
better searches in multiple optimization tasks, an efficient assortative mating method (a
chromosome-based shuffling strategy and a cross-task bias estimation based on shuffling)
was designed according to the specialty of the membership functions.

Shen et al. [169] proposed a novel multi-objective MTEC for learning multiple large-
scale fuzzy cognitive maps (FCMs) simultaneously. Each task is treated as a bi-objective
problem involving both the differences between the real and learned time series and the
sparsity of the whole structure.

6.2.2. Manufacturing Industry

Li et al. [175] established a multi-task sparse reconstruction (MTSR) framework to
optimize multiple sparse reconstruction tasks using a single population. The proposed
method aims to search the locations of nonzero components or rows instead of searching
sparse vectors or matrices directly, and the intra-task and inter-task genetic transfer are
employed implicitly. Besides, Zhao et al. [176] successfully handled the endmember
selection of hyperspectral images.

Constructing optimal data aggregation trees in wireless sensor networks is an NP-hard
problem for larger instances. A new MTEC algorithm was proposed to solve multiple min-
imum energy cost aggregation tree (MECAT) problems simultaneously [67]. The authors
presented crossover and mutation operators, enabling multi-task evolution between instances.

6.2.3. Industrial Engineering

The operational indices optimization is crucial and difficult for the global optimization
in beneficiation processes. Yang et al. [17] presented a multi-objective MFEA to solve this
problem. Sampath et al. [177] also handled the optimal power flow problems with different
load demands on power systems via MTEC framework. The process of continuous anneal-
ing production line is very complex in the iron and steel industry. Some environmental
parameters and control variables have coupling relationships, which makes it difficult
to achieve global optimization with traditional EAs. Wang and Wang [23] proposed an
AdaMOMFDE algorithm based on the search mechanism of differential evolution. The
optimal operation of integrated energy systems (IES) is of great significance to facilitate the
penetration of distributed generators and then improve its overall efficiency. Wu et al. [121]
developed a novel grid-connected IES framework by considering the biogas-solar-wind
energy complementarities and solved it by MO-MFEA-II. In the Mazda multiple car design
benchmark problem, three kinds of cars (SUV, CDW, and C5H) with different sizes and
body shapes need to be optimized simultaneously [183]. This MTO problem was solved by
two distinct MTEC algorithms [91,95].

6.2.4. Others

Thanks to the effectiveness of MTEC algorithms, they have been successfully ap-
plied to tackle other real-world problems in the literature, such as mobile robot path
planning [44,107,108], search-based software test data generation [139], the cloud comput-
ing service composition problem [74,179], HIV-1 protease cleavage sites prediction [180],
and the double-pole balancing problem [61-63].
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7. Future Works

Although multi-task optimization methodology in the evolutionary community has
been a tremendous success, compared with other well-known evolutionary and swarm
intelligent methods, it is just at the stage of discipline creation and preliminary exploration
in a so far unexplored research direction. Many challenges are yet to be discovered
and overcome in the future in theoretical models, efficient algorithms, and engineering
applications of this promising paradigm. Based on the literature analysis in the past
five years, some opportunities and challenges of MTO and MTEC are summarized as
follows [11,184].

7.1. Explore Mechanism of Knowledge Transfer

One of the main features of MTEC algorithms is knowledge transfer from one task
to help solve other tasks, which greatly affects the optimization process and algorithm
performance. Considering the general process of transfer learning, there are three key
issues to be solved serially: (1) when to transfer; (2) what to transfer; (3) how to transfer.

As the original, the first question is to answer when the knowledge transfer is triggered.
Theoretically, it is initiated at any stage of optimization process. Thus, the straightforward
answer is executing it periodically in a fixed generation interval [21,102]. However, this
trial-and-error approach does not properly explain or define the true transfer demands,
leading to resource waste. Therefore, we should carefully strike a good balance between
transfer cost and transfer effect. One possible and reasonable attempt in the literature is
the knowledge transfer across tasks being triggered when the best solutions found so far
stagnate for successive generations [88,97].

The second question might seem simple, but it is deceptively difficult. Intuitively,
the best solutions found so far are good choices to be transferred. However, it might be
counter-productive due to distinctly different search spaces of constitutive tasks. Inspired
by biomes symbiosis, three relationships between source tasks and target tasks (mutualism,
parasitism, and competition) were summarized in [83] by Li et al. Xu et al. [144] also
provided a negative case when the optimal solutions were located in different positions
in the unified search space. A potential approach is using the distribution characteristics
of population or fitness landscape characteristics of task, instead of a special solution.
These characteristics represent a full view of population or task, guiding to the global
optimal solutions of each task. More importantly, the MTEC algorithm can learn these
characteristics online and then adjust knowledge transfer strategy in a timely manner
and properly. As a result, an important research topic is the formulation of approximate
online models that can make use of the data generated during the optimization process to
somehow quantify the relatedness between tasks.

The research findings of the third question are the most fruitful among three issues. In
general, there are two knowledge transfer schemes in multi-task scenario in the literature:
implicit transfer and explicit transfer, which are systematically discussed in Section 4.3.
Although the experimental results of these schemes are encouraging, it must be kept in
mind that the transfer of genetic material across tasks may be pessimistic or negative in
some cases. Therefore, the mechanism of knowledge transfer across tasks should be further
explored. Only by fully understanding internal mechanisms and external connections of
knowledge transfer can we construct novel and positive knowledge transfer strategies.

7.2. Balance Theoretical Analysis and Practical Application

At present, most scholars concentrated mainly on algorithmic advancement and
practical application. The superiority of MTEC algorithms is, in most cases, illustrated
by simulation results, not by mathematical analysis with some pertinent mathematical
concepts and tools. On the other hand, the researchers and practitioners ignore further
study on the theoretic analysis of MTO and MTEC, either consciously or unconsciously.
The most representative results focused on convergence performance [37,41] and time
complexity [46,47] of simplified MFEA, which theoretically explains the superiority of the
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MTEC algorithm compared with traditional single-task EAs. Comparatively speaking,
other theoretical analysis (stability, diversity, etc.) of the MTEC algorithm is very limited
and the distinct theoretical framework has not been assessed so far.

As a novel evolution computation paradigm, MTEC has distinct characteristics, such
as a unified search space, assortative mating, and selective evaluation, to distinguish it
from the single-task EAs. The intensive research of the theoretical models and functioning
mechanisms of these key stone characteristics is infrequent. For this reason, the essential
and fundamental development of MTO and MTEC has been hard to obtain until now.

7.3. Enhance Effectiveness and Efficiency of MTEC Algorithms

To optimize multiple tasks simultaneously, the effectiveness and adaptation of MTEC
algorithm is especially important for a practitioner. In addition to canonical genetic op-
erators (crossover, mutation, and selection), individuals encoding schemes in the unified
genotype space and the implicit genetic transfer (via assortative mating and vertical cul-
tural transmission) are the most critical ingredients of the original MFEA [18]. To improve
the effectiveness and efficiency, more existing encoding schemes and genetic operators
available in the literature need to be tested in a multi-task setting.

On the other hand, the performance of MTEC algorithm mainly depends on the tasks
to be optimized. If the adopted methodology does not appropriately suit the behavior
or feature of optimization tasks, the optimization process may be counterproductive.
Therefore, we should accurately depict and deeply understand the optimization problem
we face. As a critical problem to be solved urgently, based on the key feature of each task,
a variety of novel encoding schemes and genetic operators can be designed to achieve
the active controlling of population diversity and adaptive adjustment over the search
direction of the population.

More fundamentally, we can try to modify the basic structure of the MTEC algo-
rithm [185,186]. For instance, Chen et al. [129] introduced a local search strategy based on
quasi-Newton, a re-initialization technique of worse individuals, and a self-adapt parent
selection strategy to obtain better solutions. Due to the great success of memetic algorithms,
incorporating local search to MTEC can also be another possible orientation. The new
algorithm framework discussed in Section 5.1 can be seen as a certain positive attempt for
this research topic.

7.4. Extend MTEC Algorithmic Advancements

In addition to the core demands of having suitable individuals encoding and the
knowledge transfer, the advancements of peripheral elements will certainly play a crucial
role in the future progress of MTO and MTEC. In this regard, some potential research
prospects are in (a) the many-task optimization problem, (b) uncorrelated optimization
tasks, (c) heterogeneous optimization tasks, (d) adaptively selecting the most appropriate
genetic operators, (e) the multi-task optimization problem under uncertainties, (f) develop-
ing hyper-heuristic MTEC algorithms, and (g) exploring an effective approach to construct
auxiliary tasks, as discussed in Section 5.

Without a doubt, these examples studied so far are just the tip of the iceberg. They
are simply divided into two groups: issues similar to single-task EAs, such as (e), (f), and
(g), and distinct issues in a multi-task scenario, such as (a), (b), (c), (d), and (h). Further,
inspired by the single-task EAs, a good deal of similar algorithmic advancements will be
explored in a multi-task scenario. For instances, adaptive MTEC is capable of adapting
core mechanisms such as genetic operators, population size, and a choice of local search
steps. On the other hand, several distinct forms of research in a multi-task scenario should
be also conducted in the near future. For example, a natural extension of canonical MTO is
effective handling of many tasks or heterogeneous tasks at a time.
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7.5. Develop New Science and Engineering Applications

Finally, we believe that the notion of MTO provides a fresh perspective in terms of
available knowledge transfer for improved problem solving. Several complex problems in
science, engineering, operations research, etc. benefit immensely from the proposed ideas.
At present, most applications focus on traditional continuous or discrete optimization
fields. Thus, there is still a big gap between MTEC and the practical applications in
the real world. As a preliminary attempt in the community of multi-task optimization,
Prof. Ong et al. [135,187] have designed two MTO test suites for single-objective and multi-
objective continuous optimization tasks, respectively. The test suite for single-objective
and multi-objective MTO both contains 10 MTO complex problems, and 10 50-task MTO
benchmark problems. Note that the MTO benchmark problems feature different degrees of
latent synergy between their involved two component tasks.

Up to now, MTEC has not gained international recognition in community of evolu-
tionary computation, and the reason for this might be just a lack of inspiring results in
fundamental, subversive, and pioneering fields. What is more to the point, nobody has
carefully and deeply considered why no breakthrough has occurred in such fields, or even
summarized the basic features of MTO and MTEC.

7.6. Compare Disparate Algorithms under Different Scenarios

The No Free Lunch (NFL) theory proposed by Wolpert and Macready states that all
algorithms are equivalent when their performance is evaluated over all possible prob-
lems [188]. Accordingly, each MTEC algorithm with its unique structure and operation
strategy always shows different algorithm performance under different scenarios. Al-
though some similar results have been repeatedly confirmed experimentally, it is not
enough to draw a conclusion. In order to investigate the sense of the relative strengths and
weaknesses of MTEC approaches, disparate strong algorithms based on a novel strategy
should be compared directly and thoroughly [189].

As we all know, the overall performance of EAs more or less depends on the tested
benchmark problems. Therefore, it is necessary for design diverse benchmark problems to
receive a thorough investigation or evaluation. Similarly to the classical EAs, the benchmark
problems for MTEC algorithms can be continuous and discrete, unimodal and multimodal,
low and high dimension, static and dynamic, non-adaptive and adaptive, and with and
without noise instances [152,190]. More importantly, the deviation and complementarity
between any two problems should be taken into consideration. Ideally, the benchmark
problems should contain various features mentioned above.

8. Conclusions

As a novel optimization paradigm proposed five years ago, with the increasing
complexity and volume of data collected in the data-driven world of today, multi-task
optimization appears to be an indispensable and competitive tool for the future. Since it
has been proposed by Ong in 2015 [24], it has gradually attracted the attention of scholars
in the community of evolutionary computation and many good results have been obtained.

To the best of our knowledge, this paper is the first literature review devoted to multi-
task optimization and multi-task evolutionary computation. This overview introduced the
basic definition of MTO and several confusing concepts of MTO, such as multi-objective
optimization, sequential transfer optimization, and multi-form optimization. Some bold
theoretical conclusions are also provided, mainly in terms of convergence performance and
time complexity of some simplified forms of MFEA. Its goal is theoretically explaining the
superiority of the existing MTEC algorithm compared with traditional single-task EAs.

As the core of this review article, a variety of implementation approaches of key
components of MTEC are described in Section 4, including a chromosome encoding and
decoding scheme, intro-population reproduction, inter-population reproduction, balance
between intra-population reproduction and inter-population reproduction, and evaluation
and selection strategy. In particular, we provided a clear description of inter-population
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reproduction, dealing with the when, what, and how of achieving positive knowledge
transfer. Further, other related extension issues of MTEC were summarized in Section 5,
but they are just preliminary, fragmentary attempts and lack systematization. Next, the ap-
plications of MTEC in science and engineering were reviewed, highlighting the theoretical
meaning and practical value of each problem.

Finally, a number of trends for further research and challenges that can be undertaken
to help move the field forward are discussed. In a word, the future work in MTO and
MTEC includes but is not limited to (1) exploring a novel mechanism of positive knowledge
transfer, (2) strengthening the theoretical research to set a solid foundation, (3) enhancing
the effectiveness and efficiency of MTEC algorithms by various advanced technologies,
(4) extend MTEC algorithms in more complex scenarios, such as many-task or uncorrelated
optimization problems under uncertainties, (5) developing real-world applications of
MTEC, e.g., in machine learning, smart manufacturing [191], and smart logistics [192], and
(6) comparing disparate MTEC algorithms under different scenarios.

In short, the purpose of this review article is twofold. For researchers in the evolution
computation community, it provides a comprehensive review and examination of MTEC.
Further, we hope to encourage more practitioners working in the related fields to become
involved in this fascinating territory.
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