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Abstract: In the present article, we study a new class of sequential boundary value problems
of fractional order differential equations and inclusions involving ψ-Hilfer fractional derivatives,
supplemented with integral multi-point boundary conditions. The main results are obtained by
employing tools from fixed point theory. Thus, in the single-valued case, the existence of a unique
solution is proved by using the classical Banach fixed point theorem while an existence result is
established via Krasnosel’skiĭ’s fixed point theorem. The Leray–Schauder nonlinear alternative for
multi-valued maps is the basic tool to prove an existence result in the multi-valued case. Finally, our
results are well illustrated by numerical examples.

Keywords: fractional differential equations; fractional differential inclusions; Hilfer fractional deriva-
tive; Riemann–Liouville fractional derivative; Caputo fractional derivative; boundary value problems;
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1. Introduction

Fractional-order differentiations and integrations are more accurate tools in expressing
real-world problems as compared to integer-order differentiations and integrations. Thus,
the theory of fractional differential equations has attracted a lot of attention from many
researchers for their wide applications to various fields, such as in physics, bioengineering,
electrochemistry, and so on; see [1–3] and related references therein. The interested reader is
referred to the monographs [4–11] for the basic theory of fractional calculus and fractional
differential equations.

In the literature, there are several definitions of derivatives and integrals of arbitrary
orders. For instance, Kilbas et al. in [5] introduced fractional integrals and fractional
derivatives concerning another function. In a recent paper, Almeida [12] introduced the so-
called ψ-Caputo fractional operator. Numerous interesting results concerning the existence,
uniqueness, and stability of initial value problems and boundary value problems for
fractional differential equations with ψ-Caputo fractional derivatives by applying different
types of fixed-point techniques were obtained in [13–15].

Hilfer in [16] generalized both Riemann–Liouville and Caputo fractional derivatives,
known as the Hilfer fractional derivative. We refer to [17,18], and references cited therein,
for some properties and applications of the Hilfer fractional derivative and to [19–21] for
initial value problems involving Hilfer fractional derivatives.
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Fractional differential equations involving Hilfer derivative have many applications,
and we refer to [22] and the references cited therein. There are actual world occurrences
with uncharacteristic dynamics such as atmospheric diffusion of pollution, signal transmis-
sions through strong magnetic fields, the effect of the theory of the profitability of stocks
in economic markets, the theoretical simulation of dielectric relaxation in glass forming
materials, network traffic, and so on. See [23,24] and references cited therein.

In [25], the authors initiated the study of nonlocal boundary value problems for
the Hilfer fractional derivative, by studying the boundary value problem of Hilfer-type
fractional differential equations with nonlocal integral boundary conditions

HDα,βx(t) = f (t, x(t)), t ∈ [a, b], 1 < α < 2, 0 ≤ β ≤ 1, (1)

x(a) = 0, x(b) =
m

∑
i=1

δiI ϕi x(ξi), ϕi > 0, δi ∈ R, ξi ∈ [a, b], (2)

where HDα,β is the Hilfer fractional derivative of order α, 1 < α < 2 and parameter β,
0 ≤ β ≤ 1, I ϕi is the Riemann–Liouville fractional integral of order ϕi > 0, ξi ∈ [a, b], a ≥ 0
and δi ∈ R. Several existence and uniqueness results were proved by using a variety of
fixed point theorems.

In a series of papers [26–30], nonlocal boundary value problems involving Hilfer
fractional derivatives were studied, with a variety of boundary conditions. Thus, the
authors in [26] studied Hilfer Langevin three-point fractional boundary value problems,
the authors in [27] studied pantograph Hilfer fractional boundary value problems with
nonlocal integral boundary conditions, the authors in [28] studied Hilfer fractional bound-
ary value problems with nonlocal integral integro-multipoint boundary conditions, the
authors in [29] studied Hilfer fractional boundary value problems with nonlocal multipoint,
fractional derivative multi-order, and fractional integral multi-order boundary conditions,
and the authors in [30] studied sequential Hilfer fractional boundary value problems with
nonlocal integro-multipoint boundary conditions.

Systems of Hilfer–Hadamard sequential fractional differential equations were studied
in [31].

In the present paper, motivated by the research going on in this direction, we study
a new class of boundary value problems of sequential Hilfer-type fractional differential
equations involving integral multi-point boundary conditions of the form

(
H Dα,β;ψ + k H Dα−1,β;ψ

)
x(t) = f (t, x(t)), t ∈ [a, b],

x(a) = 0, x(b) =
n

∑
i=1

µi

∫ ηi

a
ψ′(s)x(s)ds +

m

∑
j=1

θjx(ξ j).
(3)

Here, H Dα,β;ψ is the ψ-Hilfer fractional derivative operator of order α, 1 < α < 2 and
parameter β, 0 ≤ β ≤ 1, k ∈ R, f : [a, b]×R→ R is a continuous function, a ≥ 0, µi, θj ∈ R,
ηi, ξ j ∈ (a, b], i = 1, 2, . . . , n, j = 1, 2, . . . m and ψ is a positive increasing function on (a, b],
which has a continuous derivative ψ′(t) on (a, b).

We also cover the multi-valued case of the problem (3) by considering the following
inclusion problem:

(
H Dα,β;ψ + k H Dα−1,β;ψ

)
x(t) ∈ F(t, x(t)), t ∈ [a, b],

x(a) = 0, x(b) =
n

∑
i=1

µi

∫ ηi

a
ψ′(s)x(s)ds +

m

∑
j=1

θjx(ξ j),
(4)

where F : [a, b] × R → P(R) is a multi valued function, and (P(R) is the family of all
nonempty subjects of R).
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At the end of this section, we mention that the remaining part of the paper will be
organized as follows. In Section 2, we recall some basic concepts of fractional calculus.
In Section 3, we prove first a lemma relating a linear variant of the problem in (3) with
an integral equation. Moreover, the existence and uniqueness results are established,
in the single valued case, by using fixed point theorems. We obtain the existence of a
unique solution via Banach’s contraction mapping principle, while Krasnosel’skiĭ’s fixed
point theorem is applied to obtain the existence result for the sequential Hilfer fractional
boundary value problem (3). In Section 4, an existence result is proved for the sequential
Hilfer inclusion boundary value problem (4), via Leray–Schauder nonlinear alternative for
multi-valued maps. Illustrative examples for the main results are provided.

2. Preliminaries

This section is assigned to recall some notation in relation to fractional calculus.
Throughout the paper, C([a, b],R) denotes the Banach space of all continuous func-

tions from [a, b] into R with the norm defined by ‖x‖ = sup{|x(t)| : t ∈ [a, b]}. We denote
by ACn([a, b],R) the n-times absolutely continuous functions given by

ACn([a, b],R) = { f : [a, b]→ R; f (n−1) ∈ AC([a, b],R)}.

We recall here that a function f : [a, b] → R is called absolutely continuous if, for
every ε > 0, there exists δ > 0 such that ∑N

j=1(yj − xj) ≤ δ implies ∑N
j=1 | f (yj)− f (xj)| ≤ ε

for all mutually disjoint intervals (xj, yj), 1 ≤ j ≤ N, in [a, b]. A function f ∈ AC([a, b]) if
and only if f is Lebesgue almost everywhere differentiable with derivative g = f ′ which
belongs to L1([a, b]) such that f (y)− f (x) =

∫ y
x g(t)dt for all a ≤ x < y ≤ b.

Definition 1 ([5]). Let (a, b), (−∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the half-axis
(0, ∞) and α > 0. In addition, let ψ(t) be a positive increasing function on (a, b], which has a
continuous derivative ψ′(t) on (a, b). The ψ-Riemann–Liouville fractional integral of a function f
with respect to another function ψ on [a, b] is defined by

Iα;ψ
a+ f (t) =

1
Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1 f (s)ds, t > a > 0, (5)

where Γ(·) represents the Gamma function.

Definition 2 ([5]). Let ψ′(t) 6= 0 and α > 0, n ∈ N. The Riemann–Liouville derivatives of a
function f with respect to another function ψ of order α correspondent to the Riemann–Liouville is
defined by

Dα;ψ
a+ f (t) =

(
1

ψ′(t)
d
dt

)n
In−α;ψ
a+ f (t) (6)

=
1

Γ(n− α)

(
1

ψ′(t)
d
dt

)n ∫ t

a
ψ′(s)(ψ(t)− ψ(s))n−α−1 f (s)ds, (7)

where n = [α] + 1, [α] represents the integer part of the real number α. This is the greatest integer
n such that n ≤ α.

Definition 3 ([32]). Let n− 1 < α < n with n ∈ N, [a, b] is the interval such that −∞ ≤ a <
b ≤ ∞ and f , ψ ∈ Cn([a, b],R) two functions such that ψ is increasing and ψ′(t) 6= 0, for all
t ∈ [a, b]. The ψ-Hilfer fractional derivative of a function f of order α and type 0 ≤ β ≤ 1 is
defined by

H Dα,β;ψ
a+ f (t) = Iβ(n−α);ψ

a+

(
1

ψ′(t)
d
dt

)n
I(1−β)(n−α);ψ
a+ f (t) = Iγ−α;ψ

a+ Dγ;ψ
a+ f (t), (8)

where n = [α] + 1, [α] represents the integer part of the real number α with γ = α + β(n− α).
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Lemma 1 ([5]). Let α, ρ > 0. Then, we have the following semigroup property given by

Iα;ψ
a+ Iρ;ψ

a+ f (t) = Iα+ρ;ψ
a+ f (t), t > a. (9)

Next, we present the ψ-fractional integral and derivatives of a power function.

Proposition 1 ([5,32]). Let α ≥ 0, υ > 0 and t > a. Then, ψ-fractional integral and derivative of
a power function are given by

(i) Iα;ψ
a+ (ψ(s)− ψ(a))υ−1(t) =

Γ(υ)
Γ(υ + α)

(ψ(t)− ψ(a))υ+α−1.

(ii) H D
α,β;ψ
a+ (ψ(s)− ψ(a))υ−1(t) =

Γ(υ)
Γ(υ− α)

(ψ(t)− ψ(a))υ−α−1, n− 1 < α < n, υ > n.

Lemma 2 ([32]). If f ∈ Cn(J,R), n− 1 < α < n, 0 ≤ β ≤ 1 and γ = α + β(n− α), then

Iα;ψ
a+

(
H Dα,β;ψ

a+ f
)
(t) = f (t)−

n

∑
k=1

(ψ(t)− ψ(a))γ−k

Γ(γ− k + 1)
∇[n−k]

ψ I(1−β)(n−α);ψ
a+ f (a), (10)

for all t ∈ J, where ∇[n]
ψ f (t) :=

(
1

ψ′(t)
d
dt

)n
f (t).

3. Existence and Uniqueness Results for Problem (3)

The following auxiliary lemma concerning a linear variant of the sequential Hilfer
boundary value problem (3) plays a fundamental role in establishing the existence and
uniqueness results for the given nonlinear problem.

Lemma 3. Let a ≥ 0, 1 < α < 2, 0 ≤ β ≤ 1, γ = α + 2β− αβ be given constants and

Λ := (ψ(b)− ψ(a))γ−1 − 1
γ

n

∑
i=1

µi(ψ(ηi)− ψ(a))γ −
m

∑
j=1

θj(ψ(ξ j)− ψ(a))γ−1 6= 0. (11)

For a given h ∈ C([a, b],R), the unique solution of the sequential Hilfer linear fractional boundary
value problem (

H Dα,β;ψ + k H Dα−1,β;ψ
)

x(t) = h(t), t ∈ [a, b], (12)

x(a) = 0, x(b) =
n

∑
i=1

µi

∫ ηi

a
ψ′(s)x(s)ds +

m

∑
j=1

θjx(ξ j), (13)

is given by

x(t) = Iα;ψ
a+ h(t)− k

∫ t

a
ψ′(s)x(s)ds +

(ψ(t)− ψ(a))γ−1

Λ

[ n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ h(s)ds

−k
n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds− k

m

∑
j=1

θj

∫ ξi

a
ψ′(s)x(s)ds

+
m

∑
j=1

θj I
α;ψ
a+ h(ξi) + k

∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ h(b)
]
. (14)

Proof. Applying the operator Iα;ψ
a+ on both sides of Equation (12) and using Lemma 2, there

exist real numbers c0 and c1 such that

x(t) = c0
(ψ(t)− ψ(a))−(2−α)(1−β)

Γ(1− (2− α)(1− β))
+ c1

(ψ(t)− ψ(a))1−(2−α)(1−β)

Γ(2− (2− α)(1− β))
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−k
∫ t

a
ψ′(s)x(s)ds + Iα;ψ

a+ h(t)

= c0
(ψ(t)− ψ(a))γ−2

Γ(γ− 1)
+ c1

(ψ(t)− ψ(a))γ−1

Γ(γ)

−k
∫ t

a
ψ′(s)x(s)ds + Iα;ψ

a+ h(t),

since (1− β)(2− α) = 2− γ.
From the boundary condition x(a) = 0, we see c0 = 0. Then, we get

x(t) = c1
(ψ(t)− ψ(a))γ−1

Γ(γ)
− k

∫ t

a
ψ′(s)x(s)ds + Iα;ψ

a+ h(t), t ∈ [a, b]. (15)

From x(b) =
n

∑
i=1

µi

∫ ηi

a
ψ′(s)x(s)ds +

m

∑
j=1

θjx(ξi), we obtain

c1 =
Γ(γ)

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds +

n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ h(s)ds

−k
m

∑
j=1

θj

∫ ξi

a
ψ′(s)x(s)ds +

m

∑
j=1

θj I
α;ψ
a+ h(ξi) + k

∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ h(b)
]
.

Substituting the values of c1 in (15), we obtain the solution (14). That the function x(t),
as defined in formula (14), solves the boundary value problem in (12), (13) can be proved
by direct computation. This finishes the proof of Lemma 3. �

Remark 1. If ψ(t) = t and β = 0, then (12) reduces to(
RLDα + kRLDα−1

)
x(t) = h(t),

which is the Riemann–Liouville fractional differential equation, where

RLDαx(t) =
1

Γ(2− α)

(
d
dt

)2 ∫ t

a
(t− s)1−αx(s)ds.

If ψ(t) = loge t and β = 0, then (12) is transformed to the Hadamard fractional differential
equation of the form: (

HadDα + kHadDα−1
)

x(t) = h(t),

where
HadDαx(t) =

1
Γ(2− α)

(
t

d
dt

)2 ∫ t

a
(loge t− loge s)1−αx(s)

ds
s

.

Next, in view of Lemma 3, we define an operator A : C([a, b],R)→ C([a, b],R) by

(Ax)(t) = Iα;ψ
a+ f (t, x(t))− k

∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds

+
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ f (s, x(s))ds− k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds

+
m

∑
j=1

θj I
α;ψ
a+ f (ξ j, x(ξ j)) + k

∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ f (b, x(b))

]
. (16)
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The continuity of f shows that A is well defined and fixed points of the operator
equation x = Ax are solutions of the integral Equation (14) in Lemma 3.

In the sequel, we use the following abbreviations:

Ω =
(ψ(b)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[
n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]
, (17)

and

Ω1 = |k|(ψ(b)− ψ(a)) +
(ψ(b)− ψ(a))γ−1

|Λ|

[1
2
|k|

n

∑
i=1
|µi|(ψ(ηi)− ψ(a))2

+|k|
m

∑
j=1
|θj|(ψ(ξ j)− ψ(a)) + |k|(ψ(b)− ψ(a))

]
. (18)

By using classical fixed point theorems, we establish in the following subsections
existence, as well as existence and uniqueness results, for the sequential ψ-Hilfer fractional
boundary value problem (3).

In our first result, we prove the existence of a unique solution of the sequential ψ-Hilfer
fractional boundary value problem (3) based on Banach’s fixed point theorem [33].

Theorem 1. Assume that:

(H1)There exists a finite number L > 0 such that, for all t ∈ [a, b] and for all x, y ∈ R, the
following inequality is valid:

| f (t, x)− f (t, y)| ≤ L|x− y|.

Then, the sequential ψ-Hilfer fractional boundary value problem (3) has a unique solution on [a, b]
provided that

LΩ + Ω1 < 1, (19)

where Ω and Ω1 are defined by (17) and (18), respectively.

Proof. With the help of the operatorA defined in (16), we transform the sequential ψ-Hilfer
fractional boundary value problem (3) into a fixed point problem, x = Ax. By applying the
Banach contraction mapping principle, we shall show that A has a unique fixed point.

We put supt∈[a,b] | f (t, 0, 0)| = M < ∞, and choose r > 0 such that

r ≥ MΩ
1− LΩ−Ω1

. (20)

Let Br = {x ∈ C([a, b],R) : ‖x‖ ≤ r}. We show that ABr ⊂ Br.
For any x ∈ Br, we have

|(Ax)(t)|

≤ Iα;ψ
a+ | f (t, x(t))|+ |k|

∫ t

a
ψ′(s)|x(s)|ds

+
(ψ(b)− ψ(a))γ−1

|Λ|

[
|k|

n

∑
i=1
|µi|

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)|x(u)|duds

+
n

∑
i=1
|µi|

∫ ηi

a
ψ′(s)Iα;ψ

a+ | f (s, x(s))|ds + |k|
m

∑
j=1
|θj|

∫ ξ j

a
ψ′(s)|x(s)|ds
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+
m

∑
j=1
|θj|I

α;ψ
a+ | f (ξ j, x(ξ j))|+ |k|

∫ b

a
ψ′(s)|x(s)|ds + Iα;ψ

a+ | f (b, x(b))|
]

≤ Iα;ψ
a+ (| f (t, x(t))− f (t, 0)|+ | f (t, 0)|) + |k|

∫ t

a
ψ′(s)|x(s)|ds

+
(ψ(b)− ψ(a))γ−1

|Λ|

[
|k|

n

∑
i=1
|µi|

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)|x(u)|duds

+
n

∑
i=1
|µi|

∫ ηi

a
ψ′(s)Iα;ψ

a+ [| f (s, x(s))− f (s, 0)|+ f (s, 0)|]ds

+|k|
m

∑
j=1
|θj|

∫ ξ j

a
ψ′(s)|x(s)|ds +

m

∑
j=1
|θj|I

α;ψ
a+ [| f (ξ j, x(ξ j))− f (ξ j, 0)|+ | f (ξ j, 0)|]

+|k|
∫ b

a
ψ′(s)|x(s)|ds + Iα;ψ

a+ [| f (b, x(b))− f (b, 0)|+ | f (b, 0)]

]

≤
{
(ψ(b)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[
n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]}
(L‖x‖+ M)

+

{
|k|(ψ(b)− ψ(a)) +

(ψ(b)− ψ(a))γ−1

|Λ|

[1
2
|k|

n

∑
i=1
|µi|(ψ(ηi)− ψ(a))2

+|k|
m

∑
j=1
|θj|(ψ(ξ j)− ψ(a)) + |k|(ψ(b)− ψ(a))

]}
‖x‖

≤ (Lr + M)Ω + Ω1r ≤ r,

and consequently ‖Ax‖ ≤ r, which implies that ABr ⊂ Br.
Next, we show that A is a contraction. Let x, y ∈ C([a, b],R). Then, for t ∈ [a, b],

we have

|(Ax)(t)− (Ay)(t)|

≤ Iα;ψ
a+ | f (t, x(t))− f (t, y(t))|+ |k|

∫ t

a
ψ′(s)|x(s)− y(s)|ds

+
(ψ(b)− ψ(a))γ−1

|Λ|

[
|k|

n

∑
i=1
|µi|

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)|x(u)− y(u)|duds

+
n

∑
i=1
|µi|

∫ ηi

a
ψ′(s)Iα;ψ

a+ | f (t, x(s))− f (t, y(s))|ds

+|k|
m

∑
j=1
|θj|

∫ ξ j

a
ψ′(s)|x(s)− y(s)|ds +

m

∑
j=1
|θj|I

α;ψ
a+ | f (ξ j, x(ξ j))− f (ξ j, y(ξ j))|

+|k|
∫ b

a
ψ′(s)|x(s)− y(s)|ds + Iα;ψ

a+ | f (b, x(b))− f (b, y(b))|
]

≤
{
(ψ(b)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[
n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]}
L‖x− y‖+

{
|k|(ψ(b)− ψ(a))

+
(ψ(b)− ψ(a))γ−1

|Λ|

[1
2
|k|

n

∑
i=1
|µi|(ψ(ηi)− ψ(a))2 + |k|

m

∑
j=1
|θj|(ψ(ξ j)− ψ(a))



Mathematics 2021, 9, 1001 8 of 18

+|k|(ψ(b)− ψ(a))
]}
‖x− y‖

= (LΩ + Ω1)‖x− y‖,

which implies that ‖Ax−Ay‖ ≤ (LΩ + Ω1)‖x− y‖. As LΩ + Ω1 < 1, A is a contraction.
Therefore, by the Banach’s contraction mapping principle, we deduce that A has a fixed
point. Obviously, this is the unique solution of the sequential ψ-Hilfer fractional boundary
value problem (3). The proof is complete now. �

The next existence result is based on the a classical fixed point theorem due to Kras-
nosel’skiĭ’s [34].

Theorem 2. Let f : [a, b]×R→ R be a continuous function such that:

(H2) | f (t, x)| ≤ ϕ(t), ∀(t, x) ∈ [a, b]×R, and ϕ ∈ C([a, b],R+).

Then, the sequential ψ-Hilfer fractional boundary value problem (3) has at least one solution on
[a, b] provided that Ω1 < 1, where Ω1 is defined in (18).

Proof. We consider Bρ = {x ∈ C([a, b],R) : ‖x‖ ≤ ρ}, where ρ > 0 such that ρ ≥ ‖ϕ‖Ω
1−Ω1

,

and supt∈[a,b] ϕ(t) = ‖ϕ‖. We define the operators A1, A2 on Bρ by

A1x(t) = Iα;ψ
a+ f (t, x(t)) +

(ψ(t)− ψ(a))γ−1

Λ

[
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ f (s, x(s))ds

+
m

∑
j=1

θj I
α;ψ
a+ f (ξ j, x(ξ j))− Iα;ψ

a+ f (b, x(b))

]
, t ∈ [a, b],

and

A2x(t) = −k
∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds

−k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds + k

∫ b

a
ψ′(s)x(s)ds

]
, t ∈ [a, b].

For any x, y ∈ Bρ, we have

|(A1x)(t) + (A2y)(t)|

≤ Iα;ψ
a+ | f (t, x(t))|+ |k|

∫ t

a
ψ′(s)|y(s)|ds

+
(ψ(b)− ψ(a))γ−1

|Λ|

[
|k|

n

∑
i=1
|µi|

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)|y(u)|duds

+
n

∑
i=1
|µi|

∫ ηi

a
ψ′(s)Iα;ψ

a+ | f (s, x(s))|ds + |k|
m

∑
j=1
|θj|

∫ ξ j

a
ψ′(s)|y(s)|ds

+
m

∑
j=1
|θj|I

α;ψ
a+ | f (ξ j, x(ξ j))|+ |k|

∫ b

a
ψ′(s)|y(s)|ds + Iα;ψ

a+ | f (b, x(b))|
]

≤
{
(ψ(b)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[
n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)



Mathematics 2021, 9, 1001 9 of 18

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]}
‖φ‖

+

{
|k|(ψ(b)− ψ(a)) +

(ψ(b)− ψ(a))γ−1

|Λ|

[1
2
|k|

n

∑
i=1
|µi|(ψ(ηi)− ψ(a))2

+|k|
m

∑
j=1
|θj|(ψ(ξ j)− ψ(a)) + |k|(ψ(b)− ψ(a))

]}
‖x‖

≤ ‖ϕ‖Ω + Ω1ρ ≤ ρ.

Therefore, ‖A1x +A2y‖ ≤ ρ, which shows that A1x +A2y ∈ Bρ. It is easy to see,
using the condition Ω1 < 1, that A2 is a contraction mapping.

The operator A1 is continuous because f is continuous. In addition, A1 is uniformly
bounded on Bρ because we have

‖A1x‖ ≤
{
(ψ(b)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[
n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]}
‖φ‖.

The compactness of the operator A1 is proved now. Let t1, t2 ∈ [a, b] with t1 < t2.
Then, we have

|(A1x)(t2)− (A1x)(t1)|

=
1

Γ(α)

∣∣∣∣∣
∫ t1

a
ψ′(s)[(ψ(t2)− ψ(s))α−1 − (ψ(t1)− ψ(s))α−1] f (s, x(s))ds

+
∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))α−1 f (s, x(s))ds

∣∣∣∣∣
+

∣∣(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1
∣∣

|Λ|

∣∣∣∣∣ n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ f (s, x(s))ds

+
m

∑
j=1

θj I
α;ψ
a+ f (ξ j, x(ξ j))− Iα;ψ

a+ f (b, x(b))

∣∣∣∣∣
≤ ‖φ‖

Γ(α + 1)
[2(ψ(t2)− ψ(t1))

α + |(ψ(t2)− ψ(a))α − (ψ(t1)− ψ(a))α|]

+

∣∣(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1
∣∣

|Λ| ‖φ‖
[

n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]
→ 0,

as t2 − t1 → 0, and is independent of x. Thus, A1(Bρ) is an equicontinuous set. Thus, A1 is
relatively compact on Bρ. By the Arzelá–Ascoli theorem, A1 is compact on Bρ. Applying
the Krasnosel’skiĭ’s fixed point theorem, the sequential ψ-Hilfer fractional boundary value
problem (3) has at least one solution on [a, b]. The proof is completed. �
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Example 1. Considering the boundary value problems for ψ-Hilfer type sequential fractional
differential equation with integral multi-point boundary conditions,

(
H D

3
2 , 4

5 ;t2et
+

1
250

H D
1
2 , 4

5 ;t2et
)

x(t) = f (t, x(t)), t ∈
[

1
4

,
11
4

]
,

x
(

1
4

)
= 0, x

(
11
4

)
=

1
11

∫ 3
4

1
4

g(s)x(s)ds +
3

22

∫ 3
2

1
4

g(s)x(s)ds

+
5

33

∫ 9
4

1
4

g(s)x(s)ds +
7
44

x
(

1
2

)
+

9
55

x
(

5
4

)
+

13
66

x
(

7
4

)
+

15
77

x
(

5
2

)
,

(21)

where g(s) = (s2es)′ = ses(s + 2).

In problem (21), specific constants can be chosen: α = 3/2, β = 4/5, ψ(t) = t2et,
k = 1/250, a = 1/4, b = 11/4, n = 3, µ1 = 1/11, µ2 = 3/22, µ3 = 5/33, η1 = 3/4,
η2 = 3/2, η3 = 9/4, m = 4, θ1 = 7/44, θ2 = 9/55, θ3 = 13/66, θ4 = 15/77, ξ1 = 1/2, ξ2 =
5/4, ξ3 = 7/4, ξ4 = 5/2. Such choices lead to constants as γ = 19/10, Λ ≈ 8528.189896,
Ω ≈ 982.5219141 and Ω1 ≈ 0.4838262092.

(i) Let the function f (t, x) be given by

f (t, x) =
8e1−4t

5(4t + 79)2

(
x2 + 2|x|
1 + |x|

)
+

1
4

. (22)

Then, we can check the Lipchitz condition of f (t, x) as

| f (t, x)− f (t, y)| =

∣∣∣∣ 8e1−4t

5(4t + 79)2

∣∣∣∣∣∣∣∣ x2 + 2|x|
1 + |x| −

y2 + 2|y|
1 + |y|

∣∣∣∣
≤ 1

2000
|x− y|,

for all x, y ∈ R, t ∈ [1/4, 11/4]. By setting a constant L = 1/2000, we obtain

LΩ + Ω1 ≈ 0.9750871662 < 1,

which claims that inequality (19) is fulfilled. Therefore, by an application of Theorem 1,
the boundary value problem for ψ-Hilfer type sequential fractional differential equation
with integral multi-point boundary conditions (21) with (22) has a unique solution on
[1/4, 11/4]. Note that the Theorem 2 can not be applied to this problem because the given
function in (22) is unbounded because limx→∞ | f (t, x)| = ∞.

(ii) Let the function f (t, x) be defined, for M ∈ R, by

f (t, x) = M cos2
(

t2 − 3t + 1
x2 + 3

)
+

4
4t + 119

sin
(
|x|

1 + |x|

)
+

1
2

. (23)

It is obvious that the function f (t, x) is bounded by

| f (t, x)| ≤ |M|+ 4
4t + 119

+
1
2

:= ϕ(t),

which satisfy condition (H2) in Theorem 2. Since Ω1 < 1, the conclusion of Theorem 2
yields that the problem (21) with (22) has at least one solution on [1/4, 11/4]. If M = 0,
then (23) is reduced to

f (t, x) =
4

4t + 119
sin
(
|x|

1 + |x|

)
+

1
2

,
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which satisfies the Lipchitz condition | f (t, x) − f (t, y)| ≤ (1/30)|x − y|, L = 1/30, for
all t ∈ [1/4, 11/4], x, y ∈ R. Theorem 1 cannot be used in this case because LΩ + Ω1 ≈
33.23455668 > 1.

4. Existence Results for Problem (4)

For details in multi-valued theory, we refer to [35–37].

Definition 4. A function x ∈ C2([a, b],R) is a solution of the problem (4) if x(a) = 0, x(b) =
∑n

i=1 µi
∫ ηi

a ψ′(s)x(s)ds + ∑m
j=1 θjx(ξ j), and there exists a function v ∈ L1([a, b],R) such that

v(t) ∈ F(t, x(t)) a.e. on [a, b] and

x(t) = Iα;ψ
a+ v(t)− k

∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds

+
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ v(s)ds− k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds +

m

∑
j=1

θj I
α;ψ
a+ v(ξ j)

+k
∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ v(b)

]
. (24)

In the next theorem, we prove the existence of solutions of the sequential Hilfer
inclusion fractional boundary value problem (4) when the multi-valued map F has convex
values assuming that it is L1-Carathéodory, that is, (i) t 7−→ F(t, x) is measurable for each
x ∈ R; (ii) x 7−→ F(t, x) is upper semicontinuous for almost all t ∈ [a, b]; (iii) for each
α > 0, there exists ϕα ∈ L1([a, b],R+) such that

‖F(t, x)‖ = sup{|v| : v ∈ F(t, x)} ≤ ϕα(t)

for all x ∈ R with ‖x‖ ≤ α and for a.e. t ∈ [a, b].
For each x ∈ C([a, b],R), denote the set of selections of F by

SF,x := {v ∈ L1([a, b],R) : v(t) ∈ F(t, x(t)) for a.e. t ∈ [a, b]}.

For a normed space (X, ‖ · ‖), let Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.
The following lemma is used in the sequel.

Lemma 4 ([38]). Let F : [a, b]×R→ Pcp,c(R) be an L1-Carathéodory multivalued map and let
Θ be a linear continuous mapping from L1([a, b],R) to C([a, b],R). Then, the operator

Θ ◦ SF : C([a, b],R)→ Pcp,c(C([a, b],R)), x 7→ (Θ ◦ SF)(x) = Θ(SF,x)

is a closed graph operator in C([a, b],R)× C([a, b],R).

Theorem 3. Assume that Ω1 < 1. In addition, we suppose that:

(A1) F : [a, b]×R→ Pcp,c(R) is L1-Carathéodory multi-valued map;
(A2) there exists a nondecreasing and continuous function Φ : [0, ∞)→ (0, ∞) and a function

p ∈ L1([a, b],R+) such that

‖F(t, x)‖P := sup{|y| : y ∈ F(t, x)} ≤ p(t)Φ(‖x‖) for each (t, x) ∈ [a, b]×R;
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(A3) there exists a number M > 0 such that

M
‖p‖Φ(M)Ω

>
1

1−Ω1
, (25)

where Ω and Ω1 are given in (17) and (18), respectively.

Then, the sequential Hilfer inclusion fractional boundary value problem (4) has at least one solution
on [a, b].

Proof. We define an operator N : C([a, b],R) −→ P(C([a, b],R)) by

N (x) =



h ∈ C([a, b],R) :

h(t) =



Iα;ψ
a+ v(t)− k

∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds

+
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ v(s)ds− k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds

+
m

∑
j=1

θj I
α;ψ
a+ v(ξ j) + k

∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ v(b)

]
,


for v ∈ SF,x, in order to transform the problem (4) into a fixed point problem. Clearly, the

solutions of the boundary value problem (4) are fixed points of N .
Our proof strategy is to show that all conditions of Leray–Schauder nonlinear alterna-

tive for multi-valued maps [39] are satisfied and, consequently, we conclude that sequential
Hilfer inclusion fractional boundary value problem (4) has at least one solution on [a, b].
We will give the proof in several steps.

Step 1: N (x) is convex for all x ∈ C([a, b],R).

For z1, z2 ∈ B(x),, there exist v1, v2 ∈ SF,x such that

zi(t) = Iα;ψ
a+ vi(t)− k

∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds

+
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ vi(s)ds− k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds

+
m

∑
j=1

θj I
α;ψ
a+ vi(ξ j) + k

∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ vi(b)

]
, i = 1, 2,

for almost all t ∈ [a, b]. Let 0 ≤ ω ≤ 1. Then, we have

[ωz1 + (1−ω)z2](t)

= Iα;ψ
a+ [ωv1 + (1−ω)v2](t)− k

∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[ n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ [ωv1 + (1−ω)v2](s)ds

+
m

∑
j=1

θj I
α;ψ
a+ [ωv1 + (1−ω)v2](ξ j)− Iα;ψ

a+ [ωv1 + (1−ω)v2](b)

−k
n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds− k

m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds
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+k
∫ b

a
ψ′(s)x(s)ds

]
.

F has convex values and thus SF,x is convex and ωv1(s) + (1−ω)v2(s) ∈ SF,x. Conse-
quently, ωz1 + (1−ω)z2 ∈ N (x), which proves that N is convex-valued.

Step 2: Bounded sets are mapped by N into bounded sets in C([a, b],R).

Let Br = {x ∈ C([a, b],R) : ‖x‖ ≤ r}, r > 0. For each h ∈ N (x), x ∈ Br, there exists
v ∈ SF,x such that

h(t) = Iα;ψ
a+ v(t)− k

∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds

+
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ v(s)ds− k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds +

m

∑
j=1

θj I
α;ψ
a+ v(ξ j)

+k
∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ v(b)

]
, t ∈ [a, b].

Then, for t ∈ [a, b], we have

|h(t)| ≤ Iα;ψ
a+ |v(t)|+ |k|

∫ t

a
ψ′(s)|x(s)|ds

+
(ψ(t)− ψ(a))γ−1

|Λ|

[
|k|

n

∑
i=1
|µi|

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)|x(u)|duds

+
n

∑
i=1
|µi|

∫ ηi

a
ψ′(s)Iα;ψ

a+ |v(s)|ds + |k|
m

∑
j=1
|θj|

∫ ξ j

a
ψ′(s)|x(s)|ds

+
m

∑
j=1
|θj|I

α;ψ
a+ |v(ξ j)|+ |k|

∫ b

a
ψ′(s)|x(s)|ds + Iα;ψ

a+ |v(b)|
]

≤ ‖p‖Φ(‖x‖)
{
(ψ(b)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[
n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]}
+ ‖x‖

{
|k|(ψ(b)− ψ(a))

+
(ψ(b)− ψ(a))γ−1

|Λ|

[1
2
|k|

n

∑
i=1
|µi|(ψ(ηi)− ψ(a))2

+|k|
m

∑
j=1
|θj|(ψ(ξ j)− ψ(a)) + |k|(ψ(b)− ψ(a))

]}
.

Thus,

‖h‖ ≤ ‖p‖Φ(r)

{
(ψ(b)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[
n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]}
+ r

{
|k|(ψ(b)− ψ(a))

+
(ψ(b)− ψ(a))γ−1

|Λ|

[1
2
|k|

n

∑
i=1
|µi|(ψ(ηi)− ψ(a))2
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+|k|
m

∑
j=1
|θj|(ψ(ξ j)− ψ(a)) + |k|(ψ(b)− ψ(a))

]}
.

Step 3: Bounded sets are mapped by N into equicontinuous sets.

Let t1, t2 ∈ [a, b] with t1 < t2 and x ∈ Br. For each h ∈ N (x), we obtain

|h(t2)− h(t1)|

=
1

Γ(α)

∣∣∣∣∣
∫ t1

a
ψ′(s)[(ψ(t2)− ψ(s))α−1 − (ψ(t1)− ψ(s))α−1]v(s)ds

+
∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))α−1v(s)ds

∣∣∣∣∣+ |k|r(ψ(t2)− ψ(t1))

+
(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1

|Λ| ‖p‖Φ(r)

[
n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]

+
(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1

|Λ| r
[1

2
|k|

n

∑
i=1
|µi|(ψ(ηi)− ψ(a))2

+|k|
m

∑
j=1
|θj|(ψ(ξ j)− ψ(a)) + |k|(ψ(b)− ψ(a))

]
≤ ‖p‖Φ(r)

Γ(α + 1)
[2(ψ(t2)− ψ(t1))

α + |(ψ(t2)− ψ(a))α − (ψ(t1)− ψ(a))α|]

+
(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1

|Λ| ‖p‖Φ(r)

[
n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]
+ |k|r(ψ(t2)− ψ(t1))

+
(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1

|Λ| r
[1

2
|k|

n

∑
i=1
|µi|(ψ(ηi)− ψ(a))2

+|k|
m

∑
j=1
|θj|(ψ(ξ j)− ψ(a)) + |k|(ψ(b)− ψ(a))

]
→ 0,

as t2 − t1 → 0, and is independent of x ∈ Br. By the Arzelá–Ascoli theorem, it follows that
N : C([a, b],R)→ P(C([a, b],R)) is completely continuous.

In the next step, we will prove that N is upper semicontinuous. In order to reach
the desired conclusion, we have to recall from [35], Proposition 1.2 that a completely con-
tinuous operator is upper semicontinuous if it has a closed graph. Therefore, we will show the
following result.

Step 4: N has a closed graph.

Consider xn → x∗, hn ∈ N (xn) and hn → h∗. Then, we will show that h∗ ∈ N (x∗).
From hn ∈ N (xn), there exists vn ∈ SF,xn such that, for each t ∈ [a, b],

hn(t) = Iα;ψ
a+ vn(t)− k

∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds
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+
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ vn(s)ds− k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds

+
m

∑
j=1

θj I
α;ψ
a+ vn(ξ j) + k

∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ vn(b)

]
, t ∈ [a, b].

We must show that there exists v∗ ∈ SF,x∗ such that, for each t ∈ [a, b],

h∗(t) = Iα;ψ
a+ v∗(t)− k

∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds

+
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ v∗(s)ds− k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds

+
m

∑
j=1

θj I
α;ψ
a+ v∗(ξ j) + k

∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ v∗(b)

]
, t ∈ [a, b].

Consider the linear operator Θ : L1([a, b],R)→ C([a, b],R) given by

v 7→ Θ(v)(t) = Iα;ψ
a+ v(t)− k

∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds

+
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ v(s)ds− k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds

+
m

∑
j=1

θj I
α;ψ
a+ v(ξ j) + k

∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ v(b)

]
, t ∈ [a, b].

Observe that ‖hn(t)− h∗(t)‖ → 0 as n→ ∞. By Lemma 4 that Θ ◦ SF is a closed graph
operator. Moreover, we have hn(t) ∈ Θ(SF,xn). Since xn → x∗, we have that

h∗(t) = Iα;ψ
a+ v∗(t)− k

∫ t

a
ψ′(s)x(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds

+
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ v∗(s)ds− k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds

+
m

∑
j=1

θj I
α;ψ
a+ v∗(ξ j) + k

∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ v∗(b)

]
, t ∈ [a, b]

for some v∗ ∈ SF,x∗ .

Step 5: We show that there exists an open set U ⊆ C([a, b],R) with x /∈ θN (x) for any θ ∈ (0, 1)
and all x ∈ ∂U.

Let x ∈ θN (x) for some θ ∈ (0, 1). Then, there exists v ∈ L1([a, b],R) with v ∈ SF,x
such that, for t ∈ [a, b], we have

x(t) = θ Iα;ψ
a+ v(t)− kθ

∫ t

a
ψ′(s)x(s)ds
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+θ
(ψ(t)− ψ(a))γ−1

Λ

[
− k

n

∑
i=1

µi

∫ ηi

a
ψ′(s)

∫ s

a
ψ′(u)x(u)duds

+
n

∑
i=1

µi

∫ ηi

a
ψ′(s)Iα;ψ

a+ v(s)ds− k
m

∑
j=1

θj

∫ ξ j

a
ψ′(s)x(s)ds

+
m

∑
j=1

θj I
α;ψ
a+ v(ξ j) + k

∫ b

a
ψ′(s)x(s)ds− Iα;ψ

a+ v(b)

]
.

Following the computation as in Step 2, we have for each t ∈ [a, b],

|x(t)| ≤
{
(ψ(b)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[
n

∑
i=1
|µi|

(ψ(ηi)− ψ(a))α+1

Γ(α + 2)

+
m

∑
j=1
|θj|

(ψ(ξ j)− ψ(a))α

Γ(α + 1)
+

(ψ(b)− ψ(a))α

Γ(α + 1)

]}
‖p‖Φ(‖x‖)

+

{
|k|(ψ(b)− ψ(a)) +

(ψ(b)− ψ(a))γ−1

|Λ|

[1
2
|k|

n

∑
i=1
|µi|(ψ(ηi)− ψ(a))2

+|k|
m

∑
j=1
|θj|(ψ(ξ j)− ψ(a)) + |k|(ψ(b)− ψ(a))

]}
‖x‖

= ‖p‖ψ(‖x‖)Ω + Ω1‖x‖.

Thus,
(1−Ω1)‖x‖ ≤ ‖p‖Φ(‖x‖)Ω,

or
M

‖p‖Φ(M)Ω
≤ 1

1−Ω1
. (26)

In view of (A3), there exists M such that ‖x‖ 6= M. Consider

U = {x ∈ C([a, b],R) : ‖x‖ < M}.

Note that N : U → P(C([a, b], R)) is a compact, upper semicontinuous multi-valued map
with convex closed values, and there is no x ∈ ∂U such that x ∈ θN (x) for some θ ∈
(0, 1), from the choice of U. By the Leray–Schauder nonlinear alternative for multivalued
maps [39], we deduce that N has a fixed point x ∈ U, which is a solution of the sequential
Hilfer inclusion fractional boundary value problem (4). This completes the proof.

Example 2. Consider the boundary value problem for Hilfer type sequential fractional differential
inclusion involving integral multi-point boundary conditions

(
H D

7
4 , 1

3 ;loge(t
2+1) +

1
6

H D
3
4 , 1

3 ;loge(t
2+1)

)
x(t) = F(t, x(t)), t ∈

[
1
8

,
5
4

]
,

x
(

1
8

)
= 0, x

(
5
4

)
=

1
11

∫ 1
4

1
8

g(s)x(s)ds +
2
13

∫ 1
2

1
8

g(s)x(s)ds

+
3

17

∫ 3
4

1
8

g(s)x(s)ds +
4
19

∫ 9
8

1
8

g(s)x(s)ds +
6

29
x
(

3
8

)
+

7
31

x
(

5
8

)
+

8
37

x
(

7
8

)
,

(27)

where the set F(t, x) is defined by

F(t, x) =
[

0,
8

8t + 63

(
x16

1 + x14 +
2|x|9

3(1 + |x|9) +
1
3

e−x2
)]

,
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and the function g(s) = (loge(s
2 + 1))′ = 2s/(s2 + 1).

Choosing constants α = 7/4, β = 1/3, ψ(t) = loge(t
2 + 1), k = 1/6, a = 1/8, b = 5/4,

n = 4, µ1 = 1/11, µ2 = 2/13, µ3 = 3/17, µ4 = 4/19, η1 = 1/4, η2 = 1/2, η3 = 3/4,
η4 = 9/8, m = 3, θ1 = 6/29, θ2 = 7/31, θ3 = 8/37, ξ1 = 3/8, ξ2 = 5/8, ξ3 = 7/8. With
the given data, it can be computed that γ = 11/6, Λ ≈ 0.5829695974, Ω ≈ 1.576164146,
Ω1 ≈ 0.4832654105. It is obvious that the set F(t, x) satisfies condition (A1) in Theorem 3.
In addition, from

‖F(t, x)‖P ≤
8

8t + 63

(
x2 + 1

)
,

we choose functions p(t) = 8/(8t + 63) and Φ : [0, ∞) → (0, ∞) by Φ(u) = u2 + 1.
Then, ‖p‖ = 1/8 and there exists a constant M ∈ (0.4630224201, 2.159722634) satisfying
inequality (25) in (A3) of Theorem 3. Thus, we can conclude that the boundary value
problem for Hilfer type sequential fractional differential inclusion involving integral multi-
point boundary conditions (27) has at least one solution on [1/8, 5/4].

5. Conclusions

In this work, we studied a new class of ψ-Hilfer sequential boundary value problems of
fractional order, supplemented with integral multi-point boundary conditions. Fractional
differential equations and inclusions are considered. Existence and uniqueness results
are established in the single-valued case, by using the classical Banach and Krasnosel’skiĭ
fixed point theorems. In the multi-valued case, an existence result is proved by using
Leray–Schauder nonlinear alternative for multi-valued maps. Illustrative examples are
presented to show the validity of our main results. The present work is innovative and
interesting, and significantly contributes to the available material on ψ-Hilfer fractional
differential equations and inclusions.
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