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Abstract: We extend the classical compartmental frameworks for susceptible-infected-susceptible
(SIS) and susceptible-infected-recovered (SIR) systems to include an exposed/latent class or a
chronic class of infection. Using a suite of stochastic continuous-time Markov chain models we
examine the impact of latent and chronic infection on the mean time to extinction of the infection.
Our findings indicate that the mean time to pathogen extinction is increased for infectious diseases
which cause exposed/latent infection prior to full infection and that the extinction time is increased
further if these exposed individuals are also capable of transmitting the infection. A chronic infection
stage can decrease or increase the mean time to pathogen extinction and in particular this depends
on whether chronically infected individuals incur disease-induced mortality and whether they are
able to transmit the infection. We relate our findings to specific infectious diseases that exhibit latent
and chronic infectious stages and argue that infectious diseases with these characteristics may be
more difficult to manage and control.

Keywords: infectious disease modelling; disease control; infection fade-out

1. Introduction

Mathematical models of infectious disease are key tools for understanding the epi-
demiological dynamics and persistence of infections in humans and animals [1,2]. Model
systems have been used to determine the expected persistence time of infection [3–5],
and thereby provide insight into ways of reducing the impact and spread of pathogens and
inform policy for infectious disease management [6,7].

Following an outbreak, an infection may fade-out due to random fluctuations in the
number of infected individuals. This can lead to epidemic fade-out where, after a major
outbreak, the population is depleted to a level where the number of infected individuals
is low and pathogen extinction (zero sources of infection) occurs due to stochasticity or
endemic fade-out where pathogen extinction occurs due to stochasticity from a relatively
stable endemic state [1,4]. Analysis of endemic fade-out focuses on the expected time to
pathogen extinction, τ, beginning from the quasi-stationary distribution of the number of
susceptible and infectious individuals. The expected pathogen extinction time increases as
the population size increases while also depending on the relative timescales of infection
and demographic processes [4,8]. The analysis of an epidemic fade-out is more complicated
and arises when population numbers drop to low levels following an epidemic outbreak
which can temporarily limit transmission. Persistence through the outbreak depends
on the replenishment of susceptible individuals and the tail of infecteds following the
outbreak [4,8].

The mean time to pathogen extinction has been calculated for SIS (susceptible-infected-
susceptible) and SIR (susceptible-infected-recovered) model frameworks that assume
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density-dependent transmission and a constant population size (and therefore omit the
impact of disease-induced mortality on regulating host density). For an SIS framework,
where the basic reproductive number of the infection (defined as the number of secondary
cases when a single infected individual is introduced into a disease-free population) ,R0,
is greater than unity, the mean time to pathogen extinction is given by τ ∼ C√

N
eAN , where

the coefficients A and C depend on model parameters but are independent of the total
population, N, [9,10]. The expression also holds for SIR model frameworks but with A
computed numerically and indicates that recovery from infection to immunity reduces the
persistence time of infection compared to SIS dynamics where recovery replenishes the
susceptible pool [11,12]. These model studies emphasize the importance of the infection
processes in determining the persistence of a pathogen.

The infectious disease dynamics for many real-world systems are more complex than
the SIS and SIR frameworks. For example, immunity to infection may be temporary [12],
the infection may have a significant latent period in which an individual has been exposed
to the pathogen but is asymptomatic and non-infectious [13] (such as with rabies [14]),
asymptomatic individuals may be infectious (as with Epstein Barr virus infections [15]
and COVID-19 coronavirus disease [16]) and following infection there may be a prolonged
chronic stage of disease in which individuals can still transmit the infection or can revert to
the infectious state (as has been suggested for African swine fever [17,18]). Of particular
relevance is the inclusion of disease-induced mortality as it may lead to a large drop in
population size following an infectious outbreak and this has an impact on pathogen
persistence [19]. Since disease-induced mortality leads to a non-constant population
size it is also important to consider different forms of transmission, where, for example,
density-dependent transmission can promote an initial infectious outbreak and frequency-
dependent transmission can aid persistence of infection at low population levels [20].

In this study, we develop and assess a range of infectious disease model frameworks
to explore and understand how the inclusion of more complex epidemiological processes
will affect the persistence of infection. In all model frameworks we include disease-induced
mortality and a combination of density-dependent and frequency-dependent transmission.
We extend classical infectious disease frameworks without immunity (susceptible-infected-
susceptible, SIS) and with immunity (susceptible-infected-recovered/immune, SIR) to
include an exposed/latent class, E and a chronically infected class, C. For this mathematical
study we define E as the stage prior to full infection, I. In this exposed class, E, individuals
do not incur disease-induced mortality (which individuals in the infected class do incur)
but may transmit the infection. The exposed class therefore approximates asymptomatic or
presymptomatic individuals that may or may not be infectious. We examine the impact
of the exposed class on pathogen persistence by comparing systems without immunity,
SIS and SEIS, and those with immunity SIR and SEIR. In a similar manner we define the
chronically infected class, C, as the stage that follows full infection, I. Individuals in this
class may suffer disease-induced mortality and may be able to transmit the infection but at
a reduced rate compared to the infected class. We examine the impact of the chronically
infected class on pathogen persistence by comparing systems without immunity, SIS
and SICS, and those with immunity, SIR and SICR. We estimate the persistence time
of the infection numerically using a suite of stochastic continuous-time Markov chain
models [21,22] and our aim is to understand the importance of exposed/latent and chronic
infection on pathogen persistence. Although the definitions of exposed/latent and chronic
infection we employ are common in the theoretical literature [1,2,7,17], we acknowledge
that their definitions may not match the precise characteristics of a specific infectious
disease. Notwithstanding, our model framework allows the effect of exposed/latent and
chronic infection on the mean time to extinction of an infection to be isolated and allows us
to infer and discuss the impact of these processes on the persistence and management of
specific infectious diseases.
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2. Methods

We will first outline the model frameworks in the absence of immunity. For the SIS
framework we describe the deterministic model framework and then the corresponding
stochastic (continuous-time Markov chain) model [22,23]. The deterministic SIS model is
based on classical, compartmental infectious disease modelling frameworks [2,24] and is
represented by the following system of equations:

dS
dt

= bN(1− qN)− βFS
I
N
− βDSI + γI − dS,

dI
dt

= βFS
I
N

+ βDSI − (α + γ + d)I. (1)

Here, S represents the susceptible population density, I the infected density and
N = S + I the total population density. The maximum birth rate is given by b, which is
modified due to intra-specific competition through the parameter, q = (b− d)/bK, where K
denotes the carrying capacity of the population (the stable population level in the absence
of infection). The natural death rate is given by d. For the infection dynamics we denote βF
to be the frequency-dependent transmission rate, βD the density-dependent transmission
coefficient, γ the recovery rate and α the disease-induced mortality incurred by infected
individuals. The equivalent stochastic model is a continuous-time Markov chain [22,23],
with transition rates given in Table 1.

Table 1. Possible events and their respective state transitions and transition rates for the stochastic
representation of an SIS model framework. Model parameters are defined in the main text. Note,
the transition rate for the birth of a susceptible is set to zero if qN > 1.

State Transition Transition Rate

Birth of susceptible S→ S + 1 bN(1− qN)
Natural death of susceptible S→ S− 1 dS

Infection S→ S− 1, I → I + 1 βFS I
N + βDSI

Recovery of infected S→ S + 1, I → I − 1 γI
Death of infected I → I − 1 (α + d)I

In the stochastic model of the SIS framework the susceptible class, S, and infected
class, I, are integer values that represent the population number. Individual simulations
can be undertaken using a Gillespie algorithm [21,25] that describes the dynamics for
a single realization. We run 100 realizations of the stochastic model and determine the
mean time to extinction of the infection, τ, (pathogen extinction occurs when no sources of
infection remain in the population) and the 95% confidence interval for the mean for each
distinct model framework and set of parameters. We only consider simulations in which an
initial infectious outbreak occurs, which we define as a drop in the susceptible population
number below 90% of the pre-infection population size prior to pathogen extinction. For all
simulations we choose a carrying capacity of K = 1000 and use the initial conditions:
(S0, I0) = (995, 5).

We choose a baseline set of parameters as defined in Table 2. These are chosen such that
the basic reproductive number of the infection,R0, is greater than unity and so pathogen
persistence will depend on epidemic or endemic fade-out. TheR0 for the SIS framework
and the other model frameworks considered in this study can be found in supplementary
information (Equations (S4)–(S6)). We compare results for a low, medium and high level of
disease-induced mortality (see Table 2) and undertake a sensitivity analysis on other key
parameters to understand their impact on pathogen persistence. The SIS model is then
extended to an SEIS or SICS framework with the inclusion of an exposed/latent class, E,
(referred to as the exposed class for the remainder of the methods and results section) or a
chronic class, C, respectively. The deterministic versions of these model frameworks are
shown in Equations (2) and (3).
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Table 2. Baseline parameter values and their biological meaning.

b = 10 Maximum birth rate of the population.
d = 1 Natural death rate of the population.
K = 1000 Population carrying capacity in the absence of infection.
βF = 30 Frequency-dependent transmission rate.
βD = 0.15 Density-dependent transmission coefficient.
γ = 50 Recovery rate of infected individuals.

α = [10, 40, 80] Disease-induced mortality rate, with α = 10, 40, 80 representing a
low, medium and high rate, respectively.

κ = 80 Rate of progression from an exposed or chronically infected state.

Exposed/latent
ε = 0 Proportional pathogen transmission for the exposed/latent class.
Chronic

ε = 0, c = 0.5

ε = 0.5, c = 0

For models that include chronic infection we consider two
baseline cases for the proportional transmission from chronically
infected individuals, ε, and the proportion of disease-induced
mortality incurred by chronic individuals, c.

In the SEIS model (Equation (2)) susceptible individuals progress to the exposed
class, E, following transmission and subsequently progress from the exposed class to the
infected class at rate κ. An exposed individual does not incur disease-induced mortality
but could be infectious and transmit the pathogen at a proportion ε of that of an infected,
I, individual. Our default (Table 2) is to assume ε = 0 and we consider 0 < ε < 1 as part
of a parameter sensitivity analysis. Following infection an individual progresses back to
the susceptible class at rate γ. All other parameters are as described for the SIS model.
The deterministic SEIS model is as follows:

dS
dt

= bN(1− qN)− βFS
I + εE

N
− βDS(I + εE) + γI − dS,

dE
dt

= βFS
I + εE

N
+ βDS(I + εE)− (κ + d)E,

dI
dt

= κE− (α + γ + d)I. (2)

In the SICS model (Equation (3)) susceptible individuals progress to the infected class,
I, following transmission and then progress to the chronically infected class, C, at rate γ.
A chronically infected individual can progress back to the susceptible class at rate κ and may
incur disease-induced mortality at a proportion, c, of that of an infected individual. In a
similar manner to the SEIS model above we assume that a chronically infected individual
may also be infectious (at a proportion ε of that of an infected individual). We consider
two baseline cases, one where chronically infected individuals incur disease-induced
mortality but cannot transmit the infection and one where they do not incur disease-
induced mortality but can transmit the infection. All other parameters are described for
the SIS model. The deterministic SICS model is as follows:

dS
dt

= bN(1− qN)− βFS
I + εC

N
− βDS(I + εC) + κC− dS,

dI
dt

= βFS
I + εC

N
+ βDS(I + εC)− (α + γ + d)I,

dC
dt

= γI − (κ + d + cα)C. (3)
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For both the SEIS and SICS model the exposed and chronically infected population
are not infectious when ε = 0. Note, in the limit of κ → ∞ both models converge back to
the original SIS model. The proportional level of pathogen transmission, ε, of exposed
and chronic individuals, the rate of progression, κ, from the exposed and chronic class and
the proportional level of disease-induced mortality incurred by the chronic class, c, will be
varied to understand their effect on the persistence of infection.

We adapt the methods described above to include immunity by considering SIR,
SEIR and SICR model frameworks. In these frameworks individuals enter a recovered
and immune class R following recovery from the infected class, I, or chronically infected
class, C, as appropriate. These model frameworks are detailed in full in the Supplementary
Information (Equations (S1)–(S3)).

3. Results

Model simulations showing the population dynamics for the deterministic SIS model
and for 100 realizations of the stochastic SIS model, for baseline parameters and low,
medium and high values of disease-induced mortality are shown in Figure 1. Numerical
solutions of the deterministic model were produced using Matlab R2019a, ode15s. For the
stochastic models considered in this manuscript we developed our own implementation of
the Gillespie algorithm for simulation of continuous-time Markov chains in Matlab R2019a.
In the deterministic model the infection persists for all scenarios with a decrease in infected
density as the disease-induced mortality increases. For the stochastic version of the model
the infection persists (for the timescale tested) in all model realizations at low levels of
disease-induced mortality (Figure 1B(i)). At medium levels of disease-induced mortality
the stochastic model typically exhibits endemic fade-out with the population settling to
endemic levels prior to infection fade-out and a return to disease-free population levels
(Figure 1B(ii)). At high levels of disease-induced mortality the stochastic model typically
exhibits epidemic fade-out where the population crash and rapid turnover of infected
individuals reduces the force of infection to levels that cannot support the infection (Figure 1B(iii)).
This highlights the different possible outcomes of deterministic and stochastic frameworks
and the need to consider stochastic models to determine the extinction time of infections.

Figure 1. Population densities for the deterministic (Equation (1)) SIS model framework (A) and
population numbers for the stochastic (Table 1) SIS model framework (B) with susceptible densi-
ties/numbers (black) and infected densities/numbers (blue). For the stochastic model the results
of 100 individual realizations are shown. Results are shown for three values of the disease-induced
mortality rate (i) α = 10, (ii) α = 40 and (iii) α = 80, representing a low, medium and high mortality
rate, respectively. Baseline parameter values (see Section 2) were used for other parameters.
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3.1. The Impacts of Exposed/Latent Infection on the Mean Time to Pathogen Extinction

Figures 2–4 explore the impact of exposed/latent infection on pathogen persistence
by comparing the SIS and SEIS and the SIR and SEIR model frameworks. A key result is
that the inclusion of an exposed class leads to a pronounced increase in the mean time to
pathogen extinction. Here, exposed individuals promote pathogen persistence since they
delay progression to the infected class, which in itself extends the mean time to extinction
of the infection, but also reduces the severity of the population crash in the initial outbreak
and thereby reduces the chance of epidemic fade-out. It is also clear that the mean time to
pathogen extinction is lower in models that include recovery to immunity.
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Figure 2. The mean time to pathogen extinction (with 95% confidence intervals) plotted against
disease-induced mortality rate for (A) models without immunity: SIS (black) and SEIS (green),
and (B) models with immunity: SIR (black) and SEIR (green). Also note the difference in vertical
axis scale between A and B. When not changed in the figure baseline parameter values were used
(see Table 2).
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Figure 3. A parameter sensitivity analysis for (i) the SIS (black) and (ii) the SEIS (green) model
frameworks with α = 80. The mean time to pathogen extinction (with 95% confidence intervals)
is plotted against (A) the frequency-dependent transmission rate, βF; (B) the density-dependent
transmission coefficient, βD; (C) the infected recovery rate, γ; (D) the exposed progression rate, κ;
and (E) the exposed infectiousness, ε. When not changed in the figure baseline parameter values
were used (see Table 2). Note, at low, α = 10, and medium, α = 40 levels of disease-induced mortality
the mean extinction time of the infection for the SEIS model exceeds our simulation time scale and so
results are not shown. Results for the SIS model at α = 40 are shown in Figures 5 and 6.
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Figure 4. A parameter sensitivity analysis for the SIR (black) and SEIR (green) model frameworks
and where in (i) α = 10, (ii) α = 40 and (iii) α = 80. The mean time to pathogen extinction (with 95%
confidence intervals) is plotted against (A) the frequency-dependent transmission rate, βF; (B) the
density-dependent transmission coefficient, βD; (C) the infected recovery rate, γ; (D) the exposed
rate, κ; and (E) the exposed infectiousness, ε. When not changed in the figure baseline parameter
values were used (see Table 2).
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Figure 5. The mean time to pathogen extinction (with 95% confidence intervals) plotted against the
proportion of disease-induced mortality incurred by chronically infected individuals compared to
infected individuals. The results are shown for models with no immunity (A), with SIS (black), SICS
and ε = 0 (blue) and SICS and ε = 0.5 (red) and for models with immunity (B), with SIR (black),
SICR and ε = 0 (blue) and SICR and ε = 0.5 (red). In (i) α = 40 and (ii) α = 80. When not changed
in the figure baseline parameter values were used (see Table 2). Note, at low levels of disease-induced
mortality, α = 10, the mean time to pathogen extinction for the models without immunity exceeds
our simulation time scale and so results are not shown.
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Figure 6. A parameter sensitivity analysis for the SIS (black) and SICS model frameworks with a chronically infected
class that exhibits disease-induced mortality (c = 0.5, ε = 0, blue) and a chronically infected class that can transmit the
infection (c = 0, ε = 0.5, red) for (i) α = 40 and (ii) α = 80. The mean time to pathogen extinction (with 95% confidence
intervals) is plotted against (A) the frequency-dependent transmission rate, βF; (B) the density-dependent transmission
coefficient, βD; (C) the infected recovery rate, γ; (D) the chronically infected progression rate, κ; and (E) the chronically
infected infectiousness, ε. When not changed in the figure baseline parameter values were used (see Table 2). Note, at low
levels of disease-induced mortality, α = 10, the mean time to pathogen extinction exceeds our simulation time scale and so
results are not shown. Red lines are not shown in figure (A(i)), (B(i)), and (D(i)) as here τ exceeds our simulation time scale.
Red lines are not shown in (E(i)) and (E(ii)) as this scenario assumes chronic individuals are infectious.

To validate the simulation method that we employ to calculate the mean time to
extinction of the infection, τ, we compare our results for the SIS system with those that
use continuous-time Markov chain theory on a finite set of states [26]. Details of this
comparison are shown in the Supplementary Information (Section S2) and indicate that our
method of determining τ from simulations is a close fit with the Markov chain theory for
the SIS framework. Note, the Markov chain theory method becomes too computationally
intensive for higher-dimensional models.

A parameter sensitivity analysis for the models indicates that in the absence of im-
munity the mean extinction time of the infection decreases as disease-induced mortality
increases (Figure 2A). When immunity is included the mean time to extinction of the
infection remains relatively constant (Figure 2B).

There is little change in the mean time to pathogen extinction for changes in the
infection transmission terms in models without the exposed class (Figures 3A,B and 4A,B)
and extinction is rapid. When an exposed class is included the mean extinction time of the
infection increases as frequency-dependent and density-dependent transmission increases
since this leads to an increase in exposed individuals which contribute to the persistence of
the infection.

In the absence of immunity pathogen persistence is maximized at an intermediate
level of the infected recovery rate, γ (Figure 3C). When the recovery rate is low, the time to
pathogen extinction is short as there is a buildup of individuals in the infected class which
increases the force of infection, leads to a large population crash and subsequent epidemic
fade-out of the infection. At intermediate rates of recovery the time spent in the infected
class is reduced but is sufficient to support infection without causing a severe crash in the
population, and so leads to an increase in the time to extinction of the pathogen. If the rate
of recovery is increased further then the time spent in the infected class is reduced to levels
where infected numbers and consequently the force of infection is low leading to a reduced
extinction time of the infection. When immunity is included the mean time to pathogen
extinction decreases as the recovery rate increases (Figure 4C) since with no opportunity to
progress back to a susceptible class pathogen persistence is prolonged by a low recovery
rate, and thereby increased duration, in the infected class.

The mean time to extinction of the infection increases as the rate of progression from
the exposed class decreases since exposed individuals do not incur additional mortality
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but do act as a source of future infected individuals. When the progression rate from the
exposed class, κ, is high (and with ε = 0) the length of time in the exposed class is short and
the SEIS and SEIR models converge to SIS and SIR models respectively and therefore so
do the mean extinction times (Figures 3D and 4D).

Increasing the proportional level of infectiousness of the exposed class, by increasing
ε, increases the average time to pathogen extinction (compared to when ε = 0) (Figures 3E
and 4E) since here the exposed class provides an additional transmission route without
the cost of disease-induced mortality. However, in the absence of immunity the mean
extinction time of the infection is maximized at intermediate levels of ε (Figure 3E) as
higher levels of transmission from exposed individuals increases the force of infection
which reduces the pool of susceptible individuals.

3.2. The Impacts of Chronic Infection on the Mean Time to Pathogen Extinction

Figures 5–7 explore the impact of chronic infection on pathogen persistence by com-
paring the SIS and SICS and the SIR and SICR model frameworks. A key characteristic
of chronic infection is that individuals may incur disease-induced mortality (albeit at a
reduced rate compared to infected individuals) and/or may be able to transmit infection.

In the absence of immunity, the mean time to pathogen extinction decreases as the pro-
portional rate of disease-induced mortality of chronically infected individuals, c, increases
(Figure 5A). A threshold exists for c below which the presence of a chronic class increases
the mean time to extinction of the infection. When chronically infected individuals suffer
high levels of disease-induced mortality they reduce the supply of susceptible individuals
following recovery. When immunity is included, rapid epidemic fade-out is seen and the
mean time to extinction of the infection remains relatively constant to changes in the level
of disease-induced mortality incurred by chronically infected individuals. A key result is
that the characteristics of chronic infection are critical to whether the mean extinction time
of the infection is increased or decreased.

We undertake a parameter sensitivity analysis for models that include a chronically
infected class for the following two set-ups: (i) chronically infected individuals incur
disease-induced mortality but do not transmit the infection (the blue line in Figures 5–7)
and (ii) chronically infected individuals can transmit the infection but do not incur disease-
induced mortality (the red line in Figures 5–7).

The mean time to extinction of the infection initially increases as frequency-dependent
and density-dependent transmission increases (Figures 6A,B and 7A,B). However, further
increases in transmission can reduce the mean time to pathogen extinction as the high
rate of transmission leads to a more severe population crash and epidemic fade-out of
the infection.

In the absence of immunity, the mean time to extinction of the infection is maximized
at intermediate levels of recovery when chronic infection incurs disease-induced mortality
(Figure 6C) in a similar manner to that described for models that include exposed infection.
When chronically infected individuals transmit the infection but do not incur additional
mortality an increase in the recovery rate (from the infected to chronic class) increases
the mean extinction time of the infection. When immunity is included the mean time
to extinction of the infection decreases as the recovery rate increases in the same way as
models with exposed infection (Figure 7C).

In the absence of immunity and where chronically infected individuals do not transmit
the infection an increase in the progression rate from the chronic class (to the susceptible
class) increases the mean time to pathogen extinction (Figure 6D) since a more rapid
transition from the chronic class (which incurs additional mortality) provides a source of
susceptible individuals. In the case where chronically infected individuals can transmit the
infection (but do not incur disease-induced mortality) pathogen persistence is promoted
by remaining in the chronic class (Figure 6D). Both scenarios tend towards the SIS model
framework as the progression rate increases. In models with immunity the mean time to
pathogen extinction for the SICS model framework without an infectious chronic class is
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short and shows little variation as the rate of leaving the chronic class varies (Figure 7D). When
the chronic class can transmit the infection, we see a decline in mean time to pathogen
extinction as progression from the chronic class increases for the same reasons as explained
for the case without immunity.
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Figure 7. A parameter sensitivity analysis for the SIR (black) and SICR model frameworks with a chronically infected class
that exhibits disease-induced mortality (c = 0.5, ε = 0, blue) and a chronically infected class that can transmit the infection
(c = 0, ε = 0.5, red) for (i) α = 10, (ii) α = 40 and (iii) α = 80. The mean time to pathogen extinction (with 95% confidence
intervals) is plotted against (A) the frequency-dependent transmission rate, βF; (B) the density-dependent transmission
coefficient, βD; (C) the infected recovery rate, γ; (D) the chronically infected progression rate, κ; and (E) the chronically
infected infectiousness, ε. When not changed in the figure baseline parameter values were used (see Table 2). Red lines are
not shown in (E(i)) and (E(ii)) as this scenario assumes chronic individuals are infectious.

The mean time to extinction of the infection increases as the proportional rate of
transmission from the chronic class increases in all scenarios (Figures 6E and 7E). Here,
the additional source of infection from a class with reduced disease-induced mortality,
compared to the infected class, promotes pathogen persistence.

4. Discussion

Both deterministic and stochastic modelling approaches are key tools for understand-
ing the epidemiological dynamics and persistence of infectious disease. Deterministic
models have advantages of analytical tractability, where for example, determining the
endemic level of infection becomes more straightforward. However, real systems are sub-
ject to random fluctuations and stochastic models developed to capture this randomness
indicate that an infection can become extinct even whenR0 > 1 [27]. In this study we ex-
amine classical infectious disease model frameworks to consider the role of exposed/latent
and chronic infection in systems with and without recovery to immunity and the role of
epidemiological parameters on the mean time to extinction of an infection.

Our study confirms previous findings that compare SIS and SIR frameworks and
indicate that the inclusion of immunity reduces the time to extinction of the infection and
therefore the likelihood of pathogen persistence [11,12]. We also show that an increase
in disease-induced mortality reduces the mean time to pathogen extinction for models
that do not include immunity. Our work therefore extends previous findings for focused
stochastic models that examine the impact of disease-induced mortality and infection
induced reduction in fecundity in SI frameworks [19]. For models that include immunity
the relationship between disease-induced mortality and mean time to pathogen extinction
is less clear. For a wide range of parameters the persistence time of the infection is short
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and has low sensitivity to changes in disease-induced mortality. However, at lower rates
of recovery from infection there is evidence of a reduction in the mean time to pathogen
extinction as disease-induced mortality increases. Here, the increase in the force of infection
that arises from a longer duration in the infected class is offset as the level of disease-
induced mortality increases. Reduced pathogen persistence for acute disease has been
shown in spatial SIR models [28] where the rapid turnover of infected individuals can lead
to the loss of infection before it can be transmitted to neighboring areas.

A key model assessment that we have undertaken in this study determines the im-
pact of latent/exposed and chronic infection on the persistence of infection. Our model
findings indicate that the mean time to pathogen extinction is increased when there is an
exposed/latent period prior to infection. The extinction time of the infection is further
increased if individuals in the exposed class are capable of transmission. Wildlife diseases
have been represented by models that include an exposed class [7], including those for
infections that incur high levels of disease-induced mortality, such as rabies [14] and Tas-
manian devil facial tumor disease [29]. Furthermore, animal tuberculosis (TB) in wild
boar [30–32] has an infection process where initial infection does not cause high levels of
mortality and infected individuals have low rates of transmission (similar to the exposed
class in our model where exposed individuals can transmit the infection at a reduced rate).
Infected wild boar progress to generalized infection in which they incur increased mortality
and have high rates of transmission (similar to the infected class in our model - with a low
recovery rate, γ, since individuals do not recover from TB). Under these conditions our
model framework indicates that the ‘exposed’ class plays a significant role in pathogen
persistence as it provides a future source of infected individuals. Theoretical assessments
of the COVID-19 epidemic use SEIR model frameworks to account for the incubation
period of the virus [33,34], and a further key aspect of COVID-19 epidemiology is that
asymptomatic individuals can transmit the infection. Although this latter process does
not precisely fit one of our defined model frameworks, since for COVID-19 asymptomatic
individuals that transmit the infection may progress directly to the immune stage, our
model results do allow us to infer that infection from exposed individuals may be a key
process in promoting persistence of this infection.

The impact of chronic infection on pathogen persistence depends on the characteristics
of chronic infection. If chronically infected individuals incur disease-induced mortality but
cannot transmit the infection then chronic infection can reduce the mean extinction time of
the infection in models without immunity. Here, the chronic stage acts to delay the recovery
while incurring the costs of disease-induced mortality. If chronically infected individuals
can transmit the infection but incur low levels of disease-induced mortality then the mean
persistence time of the infection is increased. The role of a chronic stage (named survivors
in Stahl, et al. [18]) has been implicated in the persistence of African swine fever where
the infection persists in the long-term even though the disease is highly virulent and leads
to significant losses at the population level [17,18]. In particular, two types of survivor
are discussed [18]. Type I survivors continue to shed the virus following infection, but
they are also likely to incur additional levels of mortality compared to healthy individuals.
Here, our model results indicate that the balance between transmission of infection and
the level of increased mortality is a key determinant of whether pathogen persistence is
enhanced. Type II survivors can revert to the infectious stage from the chronic stage and
could therefore be represented by a SICI model framework. A comparison between an SI
and SICI framework (see Figure S2) indicates that the chronic stage here can lead to an
increase in the mean time to extinction of the infection. Therefore, our study suggests that a
chronic stage of infection could aid pathogen persistence, make the infection more difficult
to eradicate and could be a mechanism that promotes the observed persistence of African
swine fever following an outbreak [17].

Our strategic model study has considered the importance of different epidemiological
processes on the persistence of infectious disease. We have confirmed and extended the find-
ings that indicate that pathogen persistence is reduced for infections that lead to immunity.
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We have also shown that a latent or chronic stage of infection can increase the persistence
time of an infection which may make infectious diseases with these characteristics more
difficult to manage and control.
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