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Abstract: The Gray—Scott (GS) model is a non-linear system of equations generally adopted to
describe reaction—diffusion dynamics. In this paper, we discuss a numerical scheme for solving the
GS system. The diffusion coefficients of the model are on surfaces and they depend on space and time.
In this regard, we first adopt an implicit difference stepping method to semi-discretize the model in
the time direction. Then, we implement a hybrid advanced meshless method for model discretization.
In this way, we solve the GS problem with a radial basis function—finite difference (RBF-FD) algorithm
combined with the closest point method (CPM). Moreover, we design a predictor-corrector algorithm
to deal with the non-linear terms of this dynamic. In a practical example, we show the spot and stripe
patterns with a given initial condition. Finally, we experimentally prove that the presented method
provides benefits in terms of accuracy and performance for the GS system’s numerical solution.

Keywords: radial basis function; reaction—diffusion; kernel methods; finite difference

1. Introduction

Reaction—diffusion systems model many physical phenomena. In fact, such a system
is frequently encountered into many branches of physics, such as electromagnetism [1],
heat transfer [2], and diffusion [3]. For the problem of fluid mechanics in porous formations
(aquifers and petroleum reservoirs), reaction—diffusion equations lend themselves as a
powerful diagnostic tool to determine the hydraulic properties of formations. Briefly, from
a well (or a battery of wells), the water is pumped/injected over a measured interval. The
effect of such a stimulation upon the pressure distribution in the flow domain is recorded,
and the hydraulic properties are detected by matching the measured pressure values
against the theoretical ones.

In the context of hydrological applications, several analytical studies are focused on
solving reaction—diffusion equations (see [4] for a comprehensive collection of the classical
solutions). These analytical studies commonly model the formation as homogeneous (or at
most as a sequence of homogeneous layers). However, geological formations are de facto
heterogeneous with hydraulic conductivity, in particular, varying in the space somewhat
largely (see, e.g., [5]). These irregular changes have a tremendous impact upon transport
processes taking place in porous formations [6]. The common (and widely accepted) ap-
proach to tackle these erratic spatial variations is a stochastic framework that regards the
conductivity as a random space function [7], therefore rendering the reaction—diffusion
equation(s) stochastic [7]. Consequently, mean values are insufficient to adequately charac-
terize the spatial distribution of the aquifer’s parameters (that now become random fields)
since one is required to quantify the uncertainty. Hence, uncertainty quantification has
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witnessed developments in response to the promise of achieving reliable predictions. In
this research field, the integration of ideas from multiple disciplines to effectively design
actions is being adopted by engineers, mathematicians, physicists. Uncertainty of any
random field X can be quantified by deriving deterministic equations governing the prob-
ability density function of X or, alternatively, by computing moments of X [8]. Although
quantifying the uncertainty of such random fields is a mathematically challenging problem,
it has been scarcely considered in the past (partly due to technical difficulties).

In this paper, we consider one of the most interesting models in engineering, physics,
and chemistry, the Gray—Scott (GS) system, which describes the following chemical reaction:

u+22v — 3V, )
V — P,

where U, V, and P are chemicals. The corresponding GS surface model has the form

Wt — G Dy (x, ) Vru(x £)] — u(x, o2 (x, £) + F(1 — u(x t)), x€T CR3 >0,

@

W0l) — 1. [Dy(x, 1) Vro(x, )] + u(x )02 (x, ) — (F+ K)o(x,t), x €T CR3, t>0,

where u(x, t) and v(x, t) are the concentrations of chemical species; D, (x, t) and Dy(x, t)
are the variable diffusion coefficients of the chemicals species U and V, respectively; K is
the conversion rate from U to P; and F is the in-flow rate of u from the outside; therefore
(F 4+ K), is the removal rate of v from the reaction field; V1 denotes the curve gradient
operator. We aim to design and implement a numerical method to solve (2) using a radial
basis function combined with finite differences method (RBF-FD). This represents the
first (but most important) step toward uncertainty quantification of the random fields u—
v. However, in this work, a more general novel case is considered in which the system
coefficients depend on space and time. For this reason, first, an implicit difference stepping
method is adopted to semi-discretize the model in the time direction. Then, a hybrid
advanced meshless approach is considered to fully discretize the model. In this way, an
effective sparse meshless method based on radial basis function—finite difference (RBF-
FD) technique combined with the closest point method (CPM), as an efficient embedding
procedure for solving PDEs on surfaces, is proposed. Here, we suggest a predictor—-corrector
algorithm to deal with the non-linear terms of the dynamics. Finally, we prove through
experiments that RFB-FD provides benefits in terms of accuracy and performance.

The paper is organized as follows: Section 2 provides a review of related works;
Section 3 describes the numerical discretization procedure. In Section 4, some numerical
experiments are considered.

2. Related Numerical Works

The so-called Turing models are coupled partial differential equations describing
the reaction and diffusion behaviour of chemicals. The fundamental concept introduced
by Turing was that diffusion favours model instability; as a consequence, these models
describe the arising of spatially heterogeneous configurations [9]. These formations are
called Turing patterns and were firstly observed in chemical experiments; then, they
attracted the attention of mathematical biologists due to their ability to imitate biological
both regular patterns, such as the stripes of a zebra or the spots of a cheetah, and more
irregular patterns, such as those of leopards and giraffes. Moreover, branching in plants
and spot patterns of vegetation in the deserted area are also described. As for vegetation
dynamics, results concerning the numerical counterpart of the Turing instability have been
investigated [10]. In the Gray—Scott model, the reactions create patterns that successfully
describe formations in living things. Data on the intriguing history of the Gray—Scott
reaction—diffusion model and its applications to the real world are freely available at Robert
Munafo’s web page [11]. The main results concerning evidence of the Gray—-Scott equations
documented in the following: Turing 1952 (embryo gastrulation; multiple spots in a 1-



Mathematics 2021, 9, 924

30f20

D system), Bard and Lauder 1974 (leaves, hair follicles), Bard, 1981 (spots on deer and
giraffe), Murray 1981 (butterfly wings), Meinhardt 1982 (stripes, veins on leaf), Young 1984
(development of eye), Meinhardt and Klinger 1987 (mollusk shells), Turk 1991 (leopard,
jaguar, zebra). Reaction and diffusion of chemical species can produce a variety of patterns.
These PDE systems model pattern formation on curved surfaces. Here, we present a
numerical study for studying Turing patterns [12]. In our approach, we adopt a meshless
scheme based on radial basis function—finite difference (RBF-FD). Moreover, we use the
closest point discretization to deal with the computational complexity of the problem.
Radial basis functions (RBFs) are a fundamental mesh-free method to numerically solve
PDEs on irregular domains (see [13-15] for the global collocation approach). This is due to
the versatility of scattered data interpolation techniques used in several applications, e.g.,
surface reconstruction, image restoration, and in painting, meshless/Lagrangian methods
for fluid dynamics [16]. The numerical solution of elliptic partial differential equations by
a global collocation approach based on RBF refers to a strong-form solution in the PDE
literature [13].

The main drawback for the global approach, although spectrally accurate, consists of
solving large, ill-conditioned, dense linear systems, and many attempts are known to deal
with it [17,18]. In some cases, local methods are preferred, giving up spectral accuracy for
a sparse, better-conditioned linear system and more flexibility for handling non-linearities.
The comprehensive literature concerns local RBF schemes by partitioning the domain,
referred to as partition of unity (PU) [19-21].

An open issue in RBF theory concerns the choice of the shape parameter. The study
of this parameter is a crucial topic to guarantee the stability of numerical methods. To
overcome the problem, hybrid approaches called variably scaled kernels (VSKs) have been
recently introduced [22].

In [23], the authors propose a different local approach based on a generalization of the
classical finite difference (FD) method. The FD weights are computed using polynomial
interpolation [24,25]. Finite difference methods are applied to solve PDEs on triangulated
surfaces [26]. Some numerical issues are involved in the geometric quantities calculation,
including values of the normal vector or the curvature of a surface [27]. For solving PDEs
on surfaces with complex geometries [28], a level set representation of surfaces and the use
of smart projection operators are generally adopted. RBF approaches are also discussed in
the literature for the sphere [29] and to deal with embedded surfaces [30,31].

Regarding the level set representation of a surface, the closest point represents a
surface, whereby grid nodes store the closest point in Euclidean distance to the surface, suc-
cessfully used in the computation of diffusion-generated motions of curves on surfaces [32].
The closest point operator is generally designed to solve PDEs on surfaces in embedding
space to extend the problem from the surface to the surrounding space. This method
allows for boundary conditions at surface boundaries and immediately generalizes beyond
surfaces embedded in R3 to objects of any dimension embedded in any R” [33].

The CPM is generally designed for problems posed on static surfaces [33], using
standard finite difference schemes. The classical formulation adopts explicit time stepping,
and the stability results are given in the surface case (see [34] for details). Finally, the
solution of PDEs on moving surfaces is also of considerable interest. In this paper, we
solve the GS system on surfaces by proposing an implicit formulation in the time direction.
Moreover, the RBF-FD [35,36] is considered to discretize the time-independent problem in
the spatial direction.

3. Numerical Discretization Scheme

Here, an accurate implicit formulation is proposed to discretize the problem (2) in the
time direction. For this purpose, firstly, the time interval [0, T] is uniformly decomposed
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into M sub-intervals U]-I\igl [t/,611], where t/ = jt,j=0,--- ,Mand T = T/M is time step

size. Then, by substituting t = #"*1 in the system (2), the following relations are obtained:

au(xéttnﬂ) =Vr- [Du(X, f”+1)vru(x, t"+1)} _ u(x, t”+1)02(x, t”+1) + F(l _ u(X, t”+1)),

E)v(x,t”“) n+1 n+1 n+1\,,2 n+1 n+1 (3)
2 = Vr - [Dy(x, ") Vro(x, t"71)] + u(x, ") o (x, ") — (F 4+ K)o(x, t"*1)

withx € T C R?and t € [0, T]. The time integer derivative can be discretized at two
sequential time levels, n 4- 1 and #, as follows:
u (X, tn+1) L R av(x/ tn+l) ohttl _ pn

_ Rn+1, — RnJrl, 4
ot T + ot T * @)

where 1" = u(x, t") and v" = v(x, ") . In addition, R"*! denotes the truncation error that
is bounded by |R""!| < Ct. By substituting Equation (4) in (3), the following relations at
the (n + 1)—th time level for n = 0,1,2,--- , M — 1 are obtained:

1 _yn _ VF . (DﬂJerru”Jrl) _ un+1(0n+1)2 + F(l _ un+1)

&)
— VF . (DZHVrv"“) + un+1(vn+1)2 _ (P + K)v”'H.

By rearranging the above relations, the following equations result in the following:

(1+tF)u"! — vV - (DIFIVru ) = —qu" (0" )2 4 tF 40,
(6)
(14 7(F+K))o"*! — 7V - (DI IVo" ) = 7yt (o )2 4o,

Now, we consider the closest point method for solving PDEs on surfaces using the
RBF-FD to discretize the time-independent problems (6) in the spatial direction. In the
following subsection, we discuss space decomposition schemes.

3.1. Closest Point Method

CPM is an embedding approach for numerically solving partial differential equations
on surfaces. It considers a limited, narrow band surrounding the surface I. Then, the
closest point function maps each point of the embedding band to its closest point on the
surface. CPM applies different standard numerical techniques to solve the embedding
PDEs. Since it preserves the solution constant along with normal directions to the surface,
the gradient and Laplacian over the embedding space all retrieve their inherent surface
properties when restricted to the surface. The obtained embedding solutions are equal to
the original PDEs’ solutions on the surface. In this work, an efficient local meshless method
based on RBFs is combined with CPM.

We consider the surface I' C R and ¢ to be a point in the embedding space Q C R¥.
The closest point function for I' is defined by

CPr(2) :argrgeipl\x—é‘ﬂf 7)

which identifies the closest point of ¢ on the surface I'.

In a neighborhood of the surface, CPr is C'-smooth for a C'*1-smooth surface T.
Moreover, the embedding space () is considered a tubular neighborhood of surface I'.
To prevent the entry discontinuities into CPr, it should be assumed that the radius of
the computational tube, (), has been chosen such that it consists only of points within a
distance x5! of the surface I', where k. is an upper bound on the curvatures of T [37].

Regarding the CPM, solving the surface PDE on the surface is converted to solv-
ing a proper embedding PDE on the computational domain; the surface derivatives
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should be replaced with Cartesian derivative and closest points operators according to two

principles [33]:

1. Suppose V to be a function defined on R that is constant along normal directions of
I'. Then, at the surface, ViV = VV.

2. Suppose V to be a vector field on R? that is tangent to I' and also tangent at all
surfaces displaced by a fixed distance from I'. Then, at the surface, Vi - V=V - V.

The first principle states that if a function is constant in the normal direction, it only
varies along the surface. Moreover, the second principle explains that a flux that is directed
everywhere along the surface can only spread out within the surface directions.

If u is a function defined on the surface, u(CP) is constant along the directions normal
to the surface; thus, the first principle implies

Vru = Vu(CP). (8)

Since u(CP) is tangent to the distance function’s level-sets, applying the second
principle yields the surface Laplacian, which is known as the Laplace-Beltrami operator in
the following form:

Vr - (Vru) =V - (Vu(CP)). )

More generally, we consider the surface diffusion operator Vr - (A(x)Vr), where the
diffusion coefficient is not constant and depends on position. In this case, A(CP)V (u(CP))
is tangent to the level surfaces, which implies

Vr - (A(X)Vriu) = V - (A(CP)V (u(CP))). (10)

By combining the two principles, all surface differential operators in the governing
problem can be replaced with the corresponding Cartesian differential operators. Therefore,
by using the relation (10), the surface Equations (6) are changed to the embedding equations,
which depend only on Cartesian derivatives as follows:

(1 +TF)LAIH+1 —TV- (DZHrlvﬁrH»l) _ 7Tﬁ"+1(ﬁn+1)2 +TF + ﬁn/
(11)
(1+7(F+K))o"+! — - (VDI won+l) = o+l (97 +1)2 4 o7,

where the constants along the normal direction extension of u and v are denoted by
i:0 — Rand?: Q) — R, respectively. The above relations are equivalent to

(14 tF)a" 1t — tvDIH v+l — DIFI2gntl = —7Gn+l 4 tF 441,
(12)
(1+T(F+K))o"*! — rvDITIvent! — rDIHF V2o = 7gntl 4 97,

where G"*1 = #"*1(4"*1)2, Finally, the points are on the tubular computational domain,
and the corresponding closest point on the surface forms the closest point representation.
Therefore, a suitable platform was provided for performing a suitable numerical method
in order to solve the embedding problem.

3.2. CPM Based on RBF-FD Technique

The radial basis function—finite difference (RBF-FD) method is a hybrid and advanced
procedure in numerical analysis constructed by combining the beneficent characteristics of
the radial basis function (RBF) and easy implementation of finite difference [35,36]. The
main factor behind the RBF-FD method’s extension is to reduce the computational cost of
global methods. Particularly, reducing computational cost in the face of the big problems
is essential.

In this section, the RBF-FD method on the closest point representation is introduced.
For this purpose, corresponding to each point of the surface I', a local domain containing
1. nearest points of the computational domain () is considered. The group of points in
the local domain is called a stencil. Although the problem raised in this work is three-
dimensional, a schematic view in two dimensions is shown to better understand the
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RBF-FD method combined with CPM. Figure 1 is a schematic demonstration of the circular
curve in the two-dimensional perspective. This figure shows an example of an RBF-FD
stencil that consists of the m = 14 closest grid points to a particular surface point. The
aim is to approximate a linear operator £ at the point x; on the surface I' using a linear
combination of the function value u; in the corresponding stencil. In this work, the linear
Cartesian operator £ can be V2, V, or the identity operator such that

[:ﬁ(X]) = Eru(xj), (13)

where xj = CPr(¢ j), I j € () and the surface operator L1 can be demonstrate the V2, Vr,
or identity operator. Here, to solve the time discretization embedding Equation (12), we
could apply CPM based on RBF-FD. For this purpose, for each scattered point {x;} ,,
x; € T, such that x; = CPr(§;), we assume the stencil contains some points &; = { j}}q;l C
Q. In the RBF-FD procedure, the operator £ is approximated at the evaluation point x, by
a linear weighted combination of the functions #1; = 1(¢;) at n. nearest neighboring points

E;. Therefore, we aim to identify weights {a)j};z;] as follows:

Li(x) ~ Y wii(E)). (14)
=1

The combined RBF and polynomial interpolant is assumed to be a linear combination
of the radial and polynomial functions; thus ,it takes the form

a(&) = Y A1 — &) + L) (15)

i=1

where ¢(.) is a radial basis function, p;(.) is the i—th monomial in the polynomial basis

function in the space coordinates xI = [x,y,z|, and np is the number of monomials. To

solve for the unknowns, we force the interpolant to match the data at the point locations
ne np
a(g;) ~s(&) = Y Aip(1E; — &ill) + Y vipi(E)) (16)
i=1 i=1

where ¢(.) is a radial basis function, p;(.) is the i—th monomial in the polynomial basis
function in the space coordinates x = [x,y,z], and 1, is the number of monomials.
Moreover, to find an unique result for unknown coefficients, the following . constraint
orthogonality conditions are imposed

¢
Y Aip(€&) =0,  k=1,---,np, (17)
i=1

Equations (15) and (16) are arranged in a linear system of 1. + n, equations for the
ne + np unknowns {A;}1, U {; :lzpl as follows:

[ 11 M [ 2(81) T
R P ; :
/\nc ﬁ(gnc)
= , (18)
T 0
PT 0 : :
L 4L Ty | L 0 i
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where the coefficient matrix M is a non-singular (1. +n,) x (1 + n,) matrix [16,38],
in which

Rlij=¢lIg; —&ill, 1<i,j<n
[Plij=pi(§), 1<i<n, 1<j<n, (19)

and 0 is the n, x n, zero matrix. Therefore, solving the linear system (18) yields the

unknown coefficients as follows:
A=M"1C (20)

Evaluating the operator £ of the interpolant at x, and using relation (20) give

ne p
Lia(xe) = ) ALo(lxe —&ill) + Y 1ilpilxe) (21)
i=1 i=1
= [&PIIxe—élH~~~£4>||xe—§nc|\ Lpi(xe) - -+ Lpn, (xe) | A (22)
BT
= (B"M)c (23)

Once multiplied, BT M~ gives the weights vector W, = [w1, - - - W, wie + 1, - - Wien, )
for approximating Lil(x.). Therefore, the solution vector W, in relation (14) could be deter-
mined in the following form:

1 Tas—1 T
We£ =B'M - [wlleI et Iwncl wnc-&-l/' o /wnchnp] . (24)

Note that in the vector W,, the entries W41, Whetn,, should be scrapped. Hence,
the first n. components of vector W, are constructed of the weight vector
Wep = [w,w), - ,wy,]T corresponding to stencil points Z;.

Therefore, for evaluation point x, on the surface, the local approximation (14) in the
related stencil can be written in novel notation as follows:

Li(x,) ~ Wa(E)). (25)

Then, by computing Wj for all closest points {x; }]Ii 1, the global sparse N x N matrix
W, = {Wiz Wyy - - Wy, }T could be assembled such that

LUy = WU, (26)
where Uy = [0(x1) (x) - - - h(xn)]T and Uz = [12(Z1) 2(&2) - - - #(&n)]T. For computing
the numerical solutions of the problem (12), each differential operator is replaced by the

relation (26) in the following form:

(1+TF)W; ag“ — TVDI Wy ag“ — DI Wy Clg“ = —1G"*t1 4 7F + W U2,

(27)
(14 T(F + K))W Vi — e VDI Wy Vi — eDf T Wen V7 = oG - Wi v
Therefore, relation (27) can be rewritten as follows:
4+l n+1 rn
Ay Ug = —1G +TtF+ B, ug/ (28)

AvVg-‘rl — Tgn-‘rl 4 vagnr
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where the N x N matrices A;, Ay, B, and B, are defined in the following forms:

Ay = (1+TF)W; — TVDI Wy — tDI Wy,

Ay = (1+7(F+K))W; — VDI Wy — DI Wy,
B, = WI/

By, = Wi

(29)

In numerical implementation to face the non-linear term G, a predictor—corrector
Algorithm 1 is used.

Algorithm 1 Predictor—corrector algorithm

Consider initial guesses Ugﬂ’* — Ug and Vgﬂ'* — Vg
switch =1
while switch > 0 do
Solve system (28) as follows:
Ang+1 = —rg(ag“'*, Vg*l/*) +TF + Buflg,
ALV = G (U, ) + BV,

g 7'g
if ||Hg+1’* — Ug+1|| < ¢1 and ||Vg‘+1’* - Vg‘“” < ¢ then
switch = —1,
else
CI;H’* — l:lgH and Vgﬂ’* — Vg“.
end if
end while

Moreover, for implementing the procedure, the thin plate spline (TPS) RBFs
o(r)=r**In(r), p=12,---, (30)
and generalized multiquadric (GMQ) RBFs
¢(r) = (1+(r)?)?, c>0, (31)

are applied. These radial basis functions depend on scatter points on the computational domain,
such as x = [x,y,z| through the radial variable r = \/(x — x;)2 + (y — y;)? + (z — z;)2,
which is the Euclidean distance between the point of interest x and a computational point
x; in three-dimensional space. The TPS belongs to C??~! and has strictly conditionally
positive definite radial functions of order p + 1 [16,38]. Moreover, The GMQ belongs to
C*®, and for 0 < g < 1, it has a strictly, conditionally positive definite order of one [38].
Moreover, for g = 0.5 we have the standard multiquadric (MQ) RBFs. The accuracy and
stability of the methods based on the GMQ radial basis functions depend on the shape
parameter c. Furthermore, a set of three-dimensional quadratic monomial basis functions
{1,x,y,2,x%,y?,2%,xy, xz,yz, xyz} is used to implement the procedure. It is noteworthy
that adding polynomials and constructing the augmented RBFs, which guarantee the
non-singularity and uniquely solvability of the linear system when using conditionally
positive RBFs, could improve the accuracy of the numerical results [39]. Therefore, adding
polynomials could improve the stability of the procedure using RBFs. Furthermore, the
shape parameters’ sensitivity is reduced by augmenting the polynomials into RBFs, and
the range of selection of the shape parameters is extended [40].

To verify the numerical stability of the proposed method, the noise effects on error
estimates are investigated. For this purpose, we suppose that the initial solutions ug and v
in the numerical process are perturbed to iy = (1 4 )ug and Fy = (1 + J)vy, respectively.
Therefore, the influence of noise ¢ on error estimates is studied for perturbation solutions
fyand 9, at T = 1.
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Figure 1. A scheme of the closest points (red dots) to the tubular points in the computational
domain (blue dots) on the surface and m = 14 point stencil (circled blue dots) for a surface point
(squared red dot).

4. Numerical Results

In this section, the proposed technique’s performance and accuracy in dealing with
the GS system with variable coefficients (2) are verified. The suggested method is imple-
mented to solve four test problems. In the numerical implementation, a tubular-embedding
computational domain with a radius of 7q and N uniformly distributed nodes surround-
ing the intended surface is considered. Furthermore, the shape parameters’ sensitivity
is reduced by augmenting the polynomials into RBFs, and the range of selection of the
shape parameters is extended [40]. Furthermore, The TPS radial basis function (30) with
p = 2 and the MQ radial basis function combined with three-dimensional quadratic mono-
mials basis functions are used to construct shape functions. The root mean square error
(er) and maximum absolute error (€« ) are considered to measure the accuracy of the
following method:

\/Zf\il (we(xir t) — wa (X, t))z

€, = max ,
' t€[0,T) N

€co = Max |[|We(X,t) —wy(x,t ,

w = max [[we (%, ) — wa(x, £)[|oo

which is applied to make comparisons, where w,(x, t) and w,(x, t) demonstrate the exact
and approximate solutions, respectively. Furthermore, to verify convergence rates of the
presented time discretization scheme, the following rate is calculated:

 log(ew(T) /()
Re="oglu/n)

Example 1. As the first example, we consider the following problem on a sphere with radius of one
and a center of zero:

%—Lt’ = Vr.[103uvVru] — uv? +20(1 — u),

% = Vr.[1073u0 Vo] + uv? — 200.
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The exact solutions of Equation (1) are

u(x,y,t) = 3 sin(t) cos(7tx) cos(my) cos(mz),

o(x,y,t) = 1 sin(t) cos(mx) cos(my) cos(nz).

The proposed numerical technique is applied to solve the problem. The resulting error
estimates and CPU times for various values of N by letting T = 0.5(dx)? for two different
RBFs are reported in Table 1. As observed, by increasing the number of computational
points, the suggested numerical method’s accuracy is improved. Table 2 demonstrates the
estimated errors and computational temporal convergence rate R in terms of time step
sizes T. The results are obtained by introducing stencil size n; = 33 and N = 2670 data
points in the TPS and MQ cases. The shape parameter for the MQ radial basis function
is ¢ = 0.35. The given results show the first-order convergence of the proposed temporal
discretization scheme. Furthermore, the suggested method’s stability is reported in Table 3.
This table shows the impression of the noise (§) on absolute computational errors and
indicates that the proposed method has a reasonable and stable behaviour against the
enforcing noise. Moreover, the graphs of exact and computed solutions related to u and v
by taking N = 4416 ,n; = 33,and T = O.5(0lx)2 for TPS radial basis functions are shown
in Figure 2. Furthermore, the coefficient matrix’s sparsity pattern for two types of RBFs is
plotted in Figure 3.

Table 1. Error estimates and CPU times of Example 1 by letting T = 0.5(dx)? for different values of dx, and stencil size ;.
TPS MQ

dx N ns Variables e€q € Time c €oo € Time

1 408 23 u 41486 x 107% 4.3919 x 10~* 0.9821 0.10 4.4010 x 10~* 4.3779 x 10~* 1.0046
v 2.2143 x 10~% 2.2009 x 10~* 2.2055 x 107% 2.1939 x 10~*

T 1320 27 u 2.6649 x 107* 1.1915x 10~* 1.8851 020 25918 x 10* 1.1650 x 10~* 2.0103
v 1.3479 x 10~* 6.0050 x 10~° 1.3110 x 10~* 5.8701 x 10~°

L 2640 30 u 14240 x 107* 56536 x 10 3.3515 030 1.3717x107* 55761 x 107> 3.8863
v 7.2269 x 107> 2.8490 x 10~° 6.9622 x 107> 2.8094 x 107>

§ 4416 33 u 9.0510 x 107> 3.3602 x 10> 6.8865 040 8.7769 x 107° 3.3398 x 107° 7.3159
v 44598 x 107> 1.6814 x 107> 40514 x 107° 1.0144 x 10~°

& 6912 36 u 6.4931 x 107> 23586 x 107° 13.1929  0.50 6.3311 x 107> 2.3627 x 10> 14.3260
v 3.3009 x 107> 1.1874 x 10> 3.2186 x 10~° 1.1893 x 10>

5 9936 39 u 49980 x 107° 1.8055 x 10> 24.9908  0.60 4.8150 x 10~> 1.8046 x 10~> 27.6299
v 2.5415 x 10~>  9.0903 x 10~° 24485 x 107> 9.0848 x 10~°

Table 2. Error estimates and CPU times of Example 1 by letting dx = %, stencil size n; = 33, and ¢ = 0.35 for different

values of T.
TPS MQ
T Variables €oo € Re €oo € Re
dx? u 1.0129 x 10~* 39335 x 107> — 1.0131 x 107* 39279 x 107>  —
v 5.0860 x 10~°> 19706 x 10>  — 50869 x 107> 19678 x 10>  —
Jdx*  u 53413 x 107>  2.0678 x 107> 0.9232 53423 x 107> 2.0620 x 107> 0.9232
v 26821 x 107>  1.0359 x 107°  0.9231 26826 x 107> 1.0330 x 107°  0.9231
1dx? u 2.7287 x 107 1.0797 x 10> 0.9689 26501 x 107> 1.0746 x 107> 1.0114
v 1.3699 x 107>  5.4088 x 107  0.9692 1.3303 x 107°  5.3833 x 107>  1.0118
ddx? u 1.0929 x 107> 59440 x 107 1.3200 1.0829 x 10> 5.8848 x 107° 12911
v 54796 x 107¢ 29766 x 107°®  1.5814 54293 x 107 29469 x 107  1.2929
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Figure 2. Plot of the exact solution (a) and plot of the approximate solution (b) related to u, and plot of the exact solution
(c) and plot of the approximate solution (d) related to v with TPS for Example 1 by taking dx = % and T = 0.5dx2.

Table 3. The effect of noise on error estimates of Example 1 for N = 1848, T = 0.5(dx)2, and n, = 27.

TPS MQ

) Variables €0 €0

0 u 1.8968 x 104 1.8538 x 104
v 9.6149 x 107> 9.3972 x 107>

0.001 u 2.0232 x 10~ 1.9802 x 10~*
v 1.0256 x 10~* 1.0038 x 10*

0.01 u 3.1611 x 10~* 3.1177 x 1074
v 1.6033 x 10~* 1.5813 x 10~*

0.1 u 1.4527 x 1073 1.4448 x 1073
v 7.3918 x 10~4 7.3679 x 10~4
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Figure 3. Sparsity pattern for Example 1 with (a) TPS and (b) MQ by taking dx = %, T = dx?, and
ne = 33.

Example 2. As the second example, we consider the following problem:
W = Vr.[10~4?Vru] — uv? +10(1 — u),

?th] - Vr,[10*4vzvrv} + uv? — (104 0.01)w.

on the irreqular bumpy sphere
I'=(x,y,z):x=rsinfcos¢p, y =rsinfsing, z=rcosp, 0<0 <271, 0< ¢ <,

where ,
r=1+ 5 sin(60) sin(7¢).

The exact solutions of Equation (2) are

(=)

exp(—t) cos(7tx) cos(7y) cos(7tz),
exp(—t) sin(7rx) sin(7ty) sin(7z).

NN =

u(x,y,t)
v(x,y,t) =

The presented computational technique is used to solve this example. Several re-
ports are given to verify the accuracy and efficiency of the suggested procedure. Table 4
reports the absolute and RMS errors and CPU times of the various values of N by taking
T = 0.5(dx)? for the two kinds of RBFs tat are presented. This table shows the accuracy
and convergence of the method by increasing the number of computational points. In
Table 5, the absolute and RMS errors and computational temporal convergence rate R in
terms of time step sizes T are demonstrated. The results are given by taking stencil size
ns = 35 and N = 4509 data points for the two kinds of RBFs. The obtained numerical re-
sults illustrate the first-order convergence of the proposed temporal discretization scheme.
Moreover, the proposed numerical method’s stability affected by the noise (J) on absolute
computational errors is reported in Table 6. In addition, the graphs of exact and computed
solutions related to u and v are shown in Figure 4. These results are achieved by letting
N = 4509, ns = 35, and T = 0.5(dx)? for TPS radial basis function. The sparsity pattern of
the coefficient matrix for two types of RBFs is plotted in Figure 5.

Example 3. As the third example, we consider the following problem on a ellipsoidal surface:
%—”t‘ = Vr.[107*uVru] — uv? +5(1 — u),

% — Vr.[107*0 Vo] + uv? — (54 0.01)w.
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on the ellipsoidal surface

I'=(xy,z):x=rcosbcos¢p, y=rcosfsing, z=rsing, — % <6< g, 0<¢<2m,

where
o 0.75% x 1.25
\/1:252(0.75% cos? ¢ + 0.75% sin? ) cos? 0 + 0.75* sin’ 0

The exact solutions of Equation (3) are

u(x,y,t) = cos(i(x +y+z—1)),

0.1

0.1

015

(a) (b)
0-15 015

01 0.1

0.05 ( 0.05
0 .

’ 2 o N ' 2 205

-0.1
0.4

-0.15
-0.15

(c) (d)

Figure 4. Plot of the exact solution (a) and plot of the approximate solution (b) related to u, and plot of the exact solution (c) and plot
of the approximate solution (d) related to v with TPS for Example 2 by taking dx = % and T = 0.5dx>.
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Figure 5. Sparsity pattern for Example 2 with (a) TPS and (b) MQ by taking dx = %, T = dx?, and

n. = 35.

Table 4. Error estimates and CPU times of Example 2 by letting T = 0.5(dx)? for different values of dx and stencil size 7.

TPS MQ

dx N ns Variables € € Time c €0 € Time

1401 23 u 47199 x 10~% 4.7145 x 10~* 0.9295 0.10 4.7202 x 10~* 4.7161 x 10~* 1.2348
v 47362 x 10~* 4.7200 x 10~* 47418 x 10~* 4.7246 x 1074

T 1257 29 u 25693 x 10~% 1.1483 x 10~* 1.7973 0.20 2.5740 x 10~* 1.1510 x 10~* 2.1156
v 25571 x 10~* 1.1471 x 10~* 2.5729 x 10~* 1.1530 x 10~*

12608 32 u 1.2988 x 10~ 5.1986 x 10™> 3.6231 030 1.3095x 10~* 52074 x 10> 4.2815
v 1.2887 x 1074 4.7212 x 10~° 1.3001 x 10~% 4.7452 x 10~°

§ 4509 35 u 7.6720 x 107> 2.9180 x 107> 7.1556 040 7.7605 x 107° 2.9222 x 10~° 8.2007
v 7.6123 x 107° 2.6934 x 10~° 7.6694 x 107> 2.7073 x 107>

L 7049 37 u 5.0690 x 107> 1.8478 x 107> 14.0363  0.50 5.1322 x 107° 1.8497 x 10™° 16.6223
v 49984 x 107> 1.7654 x 10~ 5.0342 x 107> 1.7744 x 10~

L 10114 40 u 3.6096 x 107> 12770 x 107° 28.4784  0.60 3.6423 x 1075 1.2786 x 10> 29.3094
v 3.5423 x 10~° 1.2567 x 10~° 3.5701 x 107> 1.2634 x 10~°

Table 5. Error estimates and CPU times of Example 2 by letting dx = %, stencil size n; = 35, and ¢ = 0.4 for different

values of T.
TPS MQ
T Variables €00 € Re € = Re
dx u 1.9579 x 1073 75409 x 1074  — 19615 x 1073 75426 x 1074  —
v 1.9542 x 1073 6.9668 x 104 — 1.9564 x 1073 6.9704 x 10~*  —
jdx  u 9.8855 x 107* 37975 x107*  0.9859 9.9231 x 107* 37993 x 10~*  0.9830
v 9.8555 x 10~*  3.5080 x 10~*  0.9875 9.8781 x 10~* 35118 x 10~*  0.9858
idx u 49720 x 107* 19003 x 10~*  0.9914 5.0101 x 10~*  1.9021 x 10~*  0.9859
v 49457 x 1074 1.7551 x 10~%  0.9947 49686 x 1074 17589 x 10~*  0.9913
idx u 25103 x 10~%  9.4987 x 10~°  0.9859 25485 x 107% 95169 x 10~°  0.9751
v 24858 x 10~%  8.7699 x 10~°  0.9924 25088 x 10~  8.8082 x 10~°  0.9858
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Table 6. The effect of noise on error estimates of Example 2 for N = 1862, T = 0.5(dx)2, and n, = 27.

TPS MQ
) Variables € €00
0 u 1.7948 x 10~4 1.7941 x 104
v 2.0621 x 10~* 2.0791 x 10~*
0.001 u 1.9725 x 10~4 1.9718 x 104
v 2.2684 x 10~* 2.2854 x 10~*
0.01 u 35719 x 10~* 3.5712 x 1074
v 41253 x 10~ 41425 x 10~*
0.1 u 1.9556 x 103 1.9565 x 1073
v 2.2694 x 1073 22713 x 1073

The suggested numerical method is applied to solve this example. The computational
results show the accuracy and efficiency of the proposed technique. The accuracy and
convergence of the numerical technique in terms of the number of computational points N
are demonstrated in Table 7. In this table, the error estimates and CPU time are obtained
by letting T = 0.5(dx)? for both TPS and MQ radial basis functions. The computational
error estimates and convergence rate in terms of time step size are reported in Table 8. The
achieved numerical results are computed by letting N = 2670 and ns = 33. The results
show that the computational convergence rate R follows the analytical convergence rate
O(7). Furthermore, the computational method’s stability is investigated by considering
the effect of noise () on absolute computational errors, as shown in Table 9. The graphs of
exact and computed solutions related to # and v are demonstrates in Figure 6. All figures
are achieved by letting N = 3316, n; = 33, and 7 = 0.5(01x)2 for the TPS radial basis
function. Furthermore, the sparsity patterns of the coefficient matrix related to two kinds
of RBFs are plotted in Figure 7.

Example 4. In this example, we examine several practical problems to show that the GS model’s
pattern reconstruction property is preserved with variable diffusion coefficients. Considering that in
real-world problems, only some conditions such as initial conditions can be determined, the proposed
method’s effect and performance in solving the GS model were investigated according to the initial
conditions. In these cases, only the initial condition is given on the desired surface. The results show
the efficiency of the suggested numerical method in detecting spot and stripe patterns based on the
initial condition on the surfaces.
In the first case, we consider a spherical surface with the following initial condition:

(L,0), x*<Ly*<1,z22<1,

(uo,20) = (0,1), 0.w.

Furthermore, the coefficients are Dy (x,y,z,t) = 107*t(x +y +z).2 and Dy(x,y,z,t) =
5 x 1075¢(x + y + z)?. The parameters are F = 20 and K = 103, Figure 8 shows the numerical
solutions v and u on the spherical surface.

In the second case, we consider a bumpy spherical surface with the following initial condition:

(1’0)’ x2 S 1/y2 S 1/
(1o, 20) = (0,1), 0.w.

In addition, the coefficients are Dy (x,y,z,t) = 10™* cos(7tx) cos(rty) cos(7tz) sin(t) and
Dy(x,y,2,t) = Dy(x,y,2,t), and the constant parameters are F = 5 and K = 1073, Figure 9
shows the numerical solutions v and u on the irreqular bumpy sphere surface.
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In the third case, we consider an ellipsoidal surface with the following initial condition:

1 cos?(4mx) cos?(4my) cos?(4mz),  0.15 < x%,y? < 1,0.15 < z% < 1.25,

Uu =
0 1, 0.W.

where vy = 1 — ug. Additionally, the coefficients are Dy, (x,y,z,t) = 10~*sin(7tx) sin(7ty) sin(7z)
exp(t) and Dy(x,y,2,t) = Dy(x,y,z,t), and the parameters are F = 20 and K = 10~3. Figure 10
shows the approximate solutions v and u on the surface.

As can be seen, in Figures 8—10, each pair of shapes corresponds to the variables u and v.
Therefore, the inverse colours in these figures are due to different initial conditions for the two
variables u and v. That is, each shape represents the pattern recognition corresponding to each
variable by different initial conditions.

0.98 0.98

0.96 0.96

094 0.94
0.92 1002
109 109
1088 1 0.88
0.56 0.86
0.64 0.54
0.82 n.62
(a) (b)
0.1
0.1
0
0
1 -0.1
1-0.2
1-0.3
-0.4
-0.5

(c) (d)

Figure 6. Plot of the exact solution (a) and plot of the approximate solution (b) related to 1, and plot of the exact solution (c¢) and plot
of the approximate solution (d) related to v with TPS for Example 2 by taking dx = % and T = 0.5dx2.
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Figure 7. Sparsity pattern for Example 3 with (a) TPS and (b) MQ by taking dx = %, T = dx?, and

n. = 33.

(a) (b)

Figure 8. The plot of approximate solution of # (a) and the plot of approximate solution of v (b) with
TPS for Example 4 by taking dx = §, and T = 0.5dx2.

(a) (b)

Figure 9. The plot of approximate solution of # (a) and the plot of approximate solution of v (b) with
TPS for Example 4 by taking dx = %, and T = 0.5dx2.
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(a)

(b)

Figure 10. The plot of approximate solution of u (a) and the plot of approximate solution of v (b) with
TPS for Example 4 by taking dx = %, and T = 0.5dx2.

Table 7. Error estimates and CPU times of Example 3 by letting T = 0.5(dx)? for different values of dx, and stencil size 7.

TPS MQ

dx N ns Variables e € Time c € € Time

I 400 23 u 8.8895 x 10™* 7.6597 x 10~* 0.8523  0.10 8.8902 x 10~* 7.6596 x 10~* 0.9776
v 7.0625 x 10~% 3.8833 x 10~* 7.0614 x 10% 3.8834 x 104

1 1084 27 u 1.9633 x 10~% 1.8441 x 10~% 1.7290 020 1.9630 x 10~% 1.8441 x 10~* 1.7944
v 1.2277 x 1074 7.0582 x 107> 1.2275 x 1074 7.0585 x 10~

¢ 2040 30 u 8.8826 x 107> 8.3012 x 10> 2.9296 0.30 8.8817 x 10> 8.3013 x 10> 3.2686
v 5.0638 x 107> 2.6842 x 107> 5.0679 x 107> 2.6842 x 10>

$ 3316 33 u 51215 x 107> 4.7909 x 10~° 5.0001 040 5.1214 x 10™® 4.7907 x 10~> 5.7858
v 2.7470 x 107> 1.4511 x 10> 2.7469 x 107> 1.4508 x 10>

& 5026 36 u 3.3824 x 1072 3.1699 x 10~° 8.5943 0.50 3.3821 x 10™° 3.1698 x 10> 9.6472
v 1.7267 x 107> 9.4886 x 10° 1.7291 x 10~° 9.4871 x 10~°

& 7104 39 u 24384 x 107> 22899 x 10~° 14.7785  0.60 2.4381 x 107> 2.2898 x 10> 16.3848
v 1.2347 x 107> 6.9526 x 10~° 1.2364 x 107° 6.9507 x 10~°

4 9500 42 u 1.8708 x 107> 1.7598 x 10™° 253011  0.70 1.8704 x 10~> 1.7597 x 10~> 28.1007
v 9.5094 x 107° 5.4846 x 10~° 9.5156 x 107° 5.4822 x 10~°

Table 8. Error estimates and CPU times of Example 3 by letting dx = %, stencil size ng = 33, and ¢ = 0.35 for different

values of T.
TPS MQ
T Variables €00 €r Re €0 € Re
dx u 8.8455 x 10~4 7.7656 x 1074 — 8.8459 x 10~4 7.7657 x 10~4 -
v 6.5736 x 1074 2.6026 x 10~4 — 6.5742 x 10~4 2.6026 x 10~4 -
tdx u 42416 x 107%  4.0695 x 10~*  1.0603 42422 x107%  4.0695 x 107*  1.0601
v 2.8983 x 10~* 1.2418 x 104 1.1814 2.8990 x 10~* 1.2418 x 1074 1.1812
1dx u 2.0447 x 10~* 2.0144 x 10~4 1.0527 2.0449 x 10~* 2.0144 x 10~4 1.0527
v 1.2432 x 104 5.6703 x 10> 1.2211 1.2439 x 104 5.6702 x 10> 1.2206
ddx u 1.0449 x 107*  1.0091 x 10~*  0.9685 1.0449 x 107%  1.0091 x 10~*  0.9686
v 5.6503 x 107> 2.7500 x 107> 1.1376 5.6573 x 107> 2.7498 x 107> 1.1366
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Table 9. The effect of noise on error estimates of Example 3 for N = 1496, T = 0.5(dx)2, and n, = 27.

TPS MQ
) Variables € €0
0 u 1.2665 x 10~4 1.2664 x 10~*
v 7.6139 x 107> 7.6115 x 107>
0.001 u 1.3683 x 104 1.3686 x 10~4
v 1.0696 x 104 1.0694 x 104
0.01 u 3.7383 x 1074 3.7384 x 1074
v 4.8819 x 104 48819 x 1074
0.1 u 3.8131 x 1073 3.8131 x 1073
v 5.2149 x 1073 5.2150 x 103

5. Conclusions

In this work, an advanced and powerful computational technique is used to nu-
merically investigate the three-dimensional Gray—Scott system with variable diffusion
coefficients on surfaces. Firstly, the appearing time derivatives are discretized by em-
ploying an implicit difference stepping approach. The time-independent discretization
problem is solved using a meshfree method based on the combination of RBF-FD and CPM.
A meshless local RBF-FD method is used to discretize the governing time-independent
problem in the spatial direction. In our implementation, two radial basis functions, thin
plate splines and multiquadrics radial basis functions, are used. The presented method is
applied to four numerical examples. The presented results, through the tables and figures,
show the performance and accuracy of the proposed numerical technique.
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