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Abstract: The paper is devoted to studying the exponential stability of a mild solution of stochastic
differential equations driven by G-Brownian motion with an aperiodically intermittent control. The
aperiodically intermittent control is added into the drift coefficients, when intermittent intervals
and coefficients satisfy suitable conditions; by use of the G-Lyapunov function, the p-th exponential
stability is obtained. Finally, an example is given to illustrate the availability of the obtained results.
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1. Introduction

In this paper, stochastic differential equations driven by G-Brownian motion (G-SDEs)
are considered as follows

dx(t) = f (t, x(t))dt + g(t, x(t))d〈B〉(t) + σ(t, x(t))dB(t), t ≥ 0, (1)

where the coefficients f , g, σ : R+ × Rn → Rn, x(0) = x0 ∈ Rn. B(t) is G-Brownian
motion, 〈B〉(t) is usually called the quadratic variation process of G-Brownian motion.
Due to the nonlinear properties of expectation with G-Brownian motion, G-SDEs are
more general than classical SDEs driven by Brownian motion, and can be widely used
in many fields. With the development of G-theory and related stochastic calculus ([1]),
many interesting results of G-SDEs have been obtained, for instance, existence, uniqueness,
boundedness ([2–7] and the references therein).

As we know, stability is one of the most interesting topics in dynamic behaviors. Re-
garding SDEs, many interesting works have been obtained on this issue (one can see [8,9]).
Similarly, a lot of researchers have made great efforts on the subject of G-SDEs, for instance,
exponential stabilization and quasi-sure exponential stabilization ([10]). However, the most
relevent is how to make an unstable system stable. Recently, an aperiodically intermittent
control has been presented to make systems stable ([11,12]). In particular, Yang et al. [13]
investigated the stability of a solution of G-SDEs by constructing an aperiodically inter-
mittent control which is set in diffusion coefficient. Meanwhile, based on the stability
of G-SDEs, the stabilization of a stochastic Cohen–Grossberg neural networks driven by
G-Brownian motion was established. A natural problem is whether one can stabilize the
G-SDEs when an aperiodically intermittent control is added into the drift coefficients. As
far as we know, there is no result on this topic. Taking the issue under consideration, we
will investigate the stability of (1) with an aperiodically intermittent control added into the
drift coefficient

dy(t) = f (t, y(t))dt + h(s)g(t, y(t))d〈B〉(t) + h(s)σ(t, y(t))dB(t), t ≥ 0, (2)
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where the aperiodically intermittent control

h(t) =

{
− 1, t ∈ [ti, si),

0, t ∈ [si, ti+1),

ti+1 − si is the rest width and si − ti is the control width. Let inf
i
(si − ti) = µ > 0,

sup
i
(ti+1 − ti) = υ < ∞, ψk = (tk+1 − sk)(tk+1 − tk)

−1 and ψ = lim sup
k→∞

ψk > 0.

Differing from Yang et al. [13], we investigate the stabilization problem of G-SDEs,
whose drift coefficients are added with an aperiodically intermittent control. The main
innovations and contributions of this paper are highlighted as follows.

• A new aperiodically intermittent control is designed to stabilize this class stochastic
system, driven by G-Brownian motion. Moreover, the aperiodically intermittent
control is added to the drift coefficient.

• The aperiodically intermittent interval satisfies

a2ψ < a1(1− ψ),

where ψk = (tk+1 − sk)(tk+1 − tk)
−1 and ψ = lim sup

k→∞
ψk > 0, which can be easily real-

ized.
• By the Lyapunov function satisfying suitable conditions, the p-th exponential stability

is obtained. When p = 2, it is the exponential stability in mean square. Finally, an
example is presented to show the efficiency of the obtained result .

The rest of the paper is arranged as follows. In the next section, some basic notions,
preliminaries and lemmas are provided. In Section 3, we prove exponential stability for
the solution of G-SDEs, whose drift coefficients are added to an aperiodically intermittent
control. Finally, an example is presented to show the efficiency of the result.

2. Notations

In this section, some notations, with respect to G-Brownian motion and related stochas-
tic calculus, are introduced. Ω denotes the collection of all continuous functions ω on Rn

with ω0 = 0, and the distance in Ω is given by

ρ(ω1, ω2) =
∞

∑
i=1

2−i
[(

max
t∈[0,i]

|ω1
t −ω2

t |
)
∧ 1
]

.

Bt(ω) is the canonical process and is defined by Bt(ω) = ωt, t ≥ 0. The filtration Ft
generated by (Bt)t≥0 is given with Ft = σ(Bs, 0 ≤ s ≤ t), and F =

∨
t≥0
Ft, E is a sublinear

expectation defined on (Ω,F ).
We denote Cb,Lip(Rn) as the space of all bounded Lipschitz continuous functions on

Rn, and

LLip(F ) = {ξ := φ(B(t1), B(t2), . . . , B(tn)), n ≥ 1, 0 < t1 < t2 < · · · < tn < ∞,

φ ∈ Cb,Lip(Rn)
}

.

Definition 1. A random variable X is G-normally distributed, denoted by X v N(0, [σ̄, σ]), 0 ≤
σ̄ ≤ σ, if for any ξ ∈ LLip(F ), the operator defined by E

[
ξ
(

x +
√

tX
)]

:= u(t, x) is the viscosity
solution of the following nonlinear heat equation

∂u
∂t
− G

(
∂2u
∂t2

)
= 0

u(0, x) = ξ(x),
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where G(r) = 1
2

(
σ2r+ − σ2r−

)
, r ∈ R.

Definition 2. The canonical process B(t)t≥0 is called G-Brownian motion, if the following proper-
ties are verified

(1) B0(ω) = 0;

(2) For each t, s ≥ 0, the increment B(t + s)− B(s) v N(0, [
√

sσ̄,
√

sσ]) and is independent
from (B(t1), B(t2), · · · , B(tn)), for any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn.

Furthermore, the sublinear expectation E is called the G-expectation.

In the following part, we introduce the Itô integral with respect to the G-Brownian
motion. Firstly, some space notations are prsented.

Lp
G(FT)(p ≥ 1) is the completion of LLip(FT) with the norm ‖X‖ = {E|X|p}

1
p , as

well as, Lp
G(F ) is considered as the completion of LLip(F ). Furthermore

Mp,0
G ([0, T]) =

{
gt =

N

∑
j=1

ξtj I[tj−1,tj)
(t); ξtj ∈ Lp

G(Ftj), tj−1 < tj, j = 1, 2, . . . , N

}
.

Mp
G([0, T]) is denoted as the completion ofMp,0

G ([0, T]) satisfying

‖g‖Mp
G([0,T]) =

(∫ T

0
E‖gs‖pds

) 1
p
.

Definition 3. (Itô Integral) For gt =
N−1
∑

j=0
ξtj I[tj ,tj+1)

∈ Mp,0
G ([0, T]), Itô Integral with respect to

B(t) is defined ∫ T

0
gsdB(s) :=

N−1

∑
j=0

ξtj

(
B(tj+1)− B(tj)

)
,

moreover, the quadratic variation process of the G-Brownian motion B(t) is defined by

〈B〉t := lim
N→∞

N−1

∑
j=0

(
BN(tj+1)− BN(tj)

)2
= B2(t)− 2

∫ t

0
B(s)dB(s).

Definition 4. For any gt ∈ M1,0
G ([0, T]), define

∫ T

0
gtd〈B〉(t) :=

N−1

∑
j=0

ξtj

[
〈B〉(tj+1)− 〈B〉(tj)

]
.

3. Main Results

Definition 5. Suppose there exist positive constants λ and C, such that the solution X(t) of
(1) satisfies

E
∣∣X(t)

∣∣p ≤ CE|X(0)|pe−λt, for any initial value X(0), p ≥ 2,

then, the mild solution X(t) is said to be p-th exponentially stable.

If V(t, x) ∈ C1,2(R+ ×Rn; Rn), the Lyapunov operator L : R+ ×Rn → Rn associated
to the G-SDEs (1) is defined as below

LV(t, x) = Vt(t, x) + Vx(t, x) f (t, x) + G(〈Vx(t, x), 2g(t, x)〉+ 〈Vxx(t, x)σ(t, x), σ(t, x)〉),
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where

Vt(t, x) =
∂V(t, x)

∂t
, Vx(t, x) =

(
∂V(t, x)

∂x1
,

∂V(t, x)
∂x2

, . . . ,
∂V(t, x)

∂xn

)
,

Vxx(t, x) =

(
∂2V(t, x)

∂xi∂xj

)
n×n

.

Theorem 1. Assume that the function V(t, x) associated with (2) is in C1,2(R+ ×Rn; Rn) and
there exist positive constants c1, c2, a1, a2, γ, M such that

c1|y(t)|p ≤ V(t, y(t)) ≤ c1|y(t)|p, (3)

LV(t, y(t)) ≤ −a1V(t, y(t)), t ∈ [ti, si), (4)

and

LV(t, y(t)) ≤ a2V(t, y(t)), t ∈ [si, ti+1). (5)

Furthermore, suppose the aperiodically intermittent interval satisfies the inequality a2ψ <
a1(1− ψ), then

E|y(t)|p ≤ ME|y(0)|pe−γ t, γ ∈ (0, a1(1− ψ)− a2ψ).

Proof of Theorem 1. Taking Itô formula to ea1tV(t, x), we have

d
(
ea1tV(t, y(t))

)
= ea1t{a1V(t, y(t)) + Vt(t, y(t)) + Vy(t, y(t)) f (y(t))

}
dt

+ea1t〈Vy(t, y(t)), h(s)g(y(t))
〉
d〈B〉(t)

+ea1t〈Vy(t, y(t)), h(s)σ(y(t))
〉
dB(t)

+
1
2

ea1t〈Vyy(t, y(t))h(s)σ(y(t)), h(s)σ(y(t))
〉
d〈B〉(t). (6)

If t ∈ [t0, s0), it follows from the (6)

ea1tV(t, y(t)) = ea1t0 V(t0, y(t0)) +
∫ t

t0

ea1s[a1V(s, y(s)) + LV(s, y(s))]ds + Mt0
t

+
∫ t

t0

ea1s〈Vy(s, y(s)), h(s)σ(y(s))
〉
dB(s), (7)

where

Mt0
t =

∫ t

t0

ea1s〈Vy(s, y(s)), h(s)g(y(s))
〉
d〈B〉(s)

+
1
2

∫ t

t0

ea1s〈Vyy(s, y(s))h(s)σ(y(s)), h(s)σ(y(s))
〉
ds

−
∫ t

t0

ea1sG
(〈

Vy(s, y(s)), 2h(s)g(y(s))
〉
+
〈
Vyy(s, y(s)), h(s)σ(y(s))

〉)
ds.

Following (4) and (7), it deduces

ea1tV(t, y(t)) ≤ ea1t0 V(t0, y(t0)) + Mt0
t +

∫ t

t0

ea1s〈Vy(s, y(s)), h(s)σ(y(s))
〉
dB(s). (8)

From [5], EMt ≤ 0, and by using G-expectation on (8), it shows

Eea1tV(t, y(t)) ≤ Eea1t0 V(t0, y(t0)). (9)
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When t ∈ [s0, t1), as similar way, we can get

ea1tV(t, y(t)) = ea1s0 V(s0, y(s0)) +
∫ t

s0

ea1s[a1V(s, y(s)) + LV(s, y(s))]ds + Ms0
t

+
∫ t

s0

ea1s〈Vy(s, y(s)), h(s)σ(y(s))
〉
dB(s). (10)

Again, taking the expectation on both sides of (11), and from (5), then

Eea1tV(t, y(t)) ≤ Eea1s0 V(s0, y(s0)) + (a1 + a2)
∫ t

s0

ea1sEV(s, y(s))ds. (11)

By means of the Gronwall inequality, we can claim that

Eea1tV(t, y(t)) ≤ Eea1s0 V(s0, y(s0))e(a1+a2)(t−s0) ≤ Eea1t0 V(t0, y(t0))e(a1+a2)(t−s0).

For t ∈ [t1, s1), we have

Eea1tV(t, y(t)) ≤ Eea1t1 V(t1, y(t1)) ≤ Eea1t0 V(t0, y(t0))e(a1+a2)(t1−s0).

We consider the other case t ∈ [s1, t2),

Eea1tV(t, y(t)) ≤ Eea1s1 V(s1, y(s1))e(a1+a2)(t−s1)

≤ Eea1t0 V(t0, y(t0))e(a1+a2)(t1−s0)+(a1+a2)(t−s1).

Repeating the aforementioned procedure, we have

Eea1tV(t, y(t)) ≤ Eea1t0 V(t0, y(t0))e
(a1+a2)

i−1
∑

k=0
(tk+1−sk)

, t ∈ [ti, si),

and

Eea1tV(t, y(t)) ≤ Eea1t0 V(t0, y(t0))e
(a1+a2)

i−1
∑

k=0
(tk+1−sk)+(a1+a2)(t−si)

≤ Eea1t0 V(t0, y(t0))e
(a1+a2)

i
∑

k=0
(tk+1−sk)

, t ∈ [si, ti+1).

With regard to the definition of ψ, for t ∈ [ti, si)

(a1 + a2)
i−1

∑
k=0

(tk+1 − sk)− a1t = (a1 + a2)
i−1

∑
k=0

ψk(tk+1 − tk)− a1t

≤ (a1 + a2)ψt− a1t.

Thus,

EV(t, y(t)) ≤ EV(t0, y(t0))e((a1+a2)ψ−a1)t, t ∈ [ti, si). (12)

By the definition of ψ and υ, for t ∈ [si, ti+1)

(a1 + a2)
i

∑
k=0

(tk+1 − sk)− a1t = (a1 + a2)
i

∑
k=0

[ψk(tk+1 − tk)]− a1t

≤ (a1 + a2)ψt + (a1 + a2)ψ(tk+1 − t)− a1t

≤ [(a1 + a2)ψ− a1]t + (a1 + a2)ψυ.
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Then,

EV(t, y(t)) ≤ EV(t0, y(t0))e(a1+a2)ψυe((a1+a2)ψ−a1)t, t ∈ [si, ti+1). (13)

From (12) and (13), we obtain

EV(t, y(t)) ≤ EV(t0, y(t0))e(a1+a2)ψυe−γ t, t ≥ 0.

It follows from (3) that

E|y(t)|p ≤ c2

c1
E|y(0)|pe(a1+a2)ψυe−γ t, t ≥ 0.

Setting M = c2
c1

e(a1+a2)ψυ, we get the desired result.

Example 1. Consider the one-dimensional stochastic nonliear system driven by G-Brownian motion

dx(t) = x(t) sin tdt + (4 + sin t)x(t)d〈B〉(t) +
√

2 + cos tx(t)dB(t), t ≥ 0, (14)

where B(t) is R-valued G-Brownian motion obeying N(0, [ 1
2 , 1]). Assuming V(t, x) = |x|2,

we have

Vx(t, x(t)) f (t, x(t)) = 2|x(t)|2 sin t,

Vx(t, x(t))g(t, x(t)) = 2|x(t)|2(4 + sin t),

Vxx(t, x(t))σ2(t, x(t)) = 2|x(t)|2(2 + cos t)

and

LV(t, x(t)) ≥ −2|x(t)|2 + G(12|x(t)|2 + 2|x(t)|2) = 5|x(t)|2

Therefore, the (14) is not exponentially stable in mean square. Now, substituting the
aperiodiacally intermittent controller h(t) into the system (14), we assume the control of
the following system

dy(t) = y(t) sin tdt + h(s)(4 + sin t)y(t)d〈B〉(t) + h(s)
√

2 + cos ty(t)dB(t), t ≥ 0, (15)

For any t ∈ [ti, si), we can conclude

LV(t, y(t))) ≤ 2|y(t)|2 + G(−12|y(t)|2 + 6|y(t)|2) = −|y(t)|2.

If t ∈ [si, ti+1), we can obtain

LV(t, y(t))) ≤ 2|y(t)|2.

Let C1 = 1, C2 = 5, C3 =
√

2, a1 = 1, a2 = 2, then, ψ ∈ (0, 1
3 ), from Theorem 1, then

the system (15) is stable.

4. Conclusions

The paper studied the p-th exponential stability for the mild solution of stochastic
differential equations driven by G-Brownian motion. By using an aperiodically intermittent
control, added to the drift coefficients and G-Lyapunov function, the desired result is
obtained under suitable conditions. Moreover, the length of intermittent intervals is given.
Finally, an example is presented to introduce the effectiveness of the results.
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