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Abstract: According to the Pan American Health Organization, cardiovascular disease is the leading
cause of death worldwide, claiming an estimated 17.9 million lives each year. This paper presents
a systematic review to highlight the use of IoT, IoMT, and machine learning to detect, predict, or
monitor cardiovascular disease. We had a final sample of 164 high-impact journal papers, focusing
on two categories: cardiovascular disease detection using IoT/IoMT technologies and cardiovascular
disease using machine learning techniques. For the first category, we found 82 proposals, while
for the second, we found 85 proposals. The research highlights list of IoT/IoMT technologies,
machine learning techniques, datasets, and the most discussed cardiovascular diseases. Neural
networks have been popularly used, achieving an accuracy of over 90%, followed by random forest,
XGBoost, k-NN, and SVM. Based on the results, we conclude that IoT/IoMT technologies can predict
cardiovascular diseases in real time, ensemble techniques obtained one of the best performances in
the accuracy metric, and hypertension and arrhythmia were the most discussed diseases. Finally, we
identified the lack of public data as one of the main obstacles for machine learning approaches for
cardiovascular disease prediction.

Keywords: systematic review; cardiovascular disease; machine learning; wearable technologies;
IoT; IoMT

1. Introduction
According to the Pan American Health Organization, cardiovascular disease (CVD) is

the leading cause of death worldwide, claiming an estimated 17.9 million lives each year [1].
CVD refers to a group of diseases affecting the heart and blood vessels, including coronary
heart disease (acute myocardial infarction), cerebrovascular disease, peripheral arterial
disease, congenital heart disease, rheumatic heart disease, and venous and pulmonary
thrombosis [2]. The major behavioral risk factors for heart disease and stroke are physical
inactivity, harmful use of alcohol, unhealthy diet, and tobacco use [3]. More than four out
of five CVD deaths are due to strokes and heart attacks, and one-third of these deaths occur
prematurely in people under the age of 70 [3]. The World Health Organization projects
that nearly 23.6 million people will die from CVD by 2030, and it is predicted to remain
the leading cause of death worldwide [2]. Low- and middle-income countries account for
more than 75% of CVD deaths [2]. Thus, the analysis of mortality due to CVD globally has
become a top priority.

Artificial intelligence technologies are rapidly growing, and IoT and machine learn-
ing approaches can now be used to monitor and even predict CVD. The IoT consists of
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everyday objects connected to the Internet without human interaction [4]. The application
of the tools, principles, concepts, and techniques used in the accepted Internet of Things
approach within the medical and healthcare sectors is called the Internet of Medical Things
(IoMT) [5]. Machine learning, on the other hand, is defined as a branch of artificial intel-
ligence techniques that extract knowledge from data, also known as predictive analytics
or statistical learning [6]. In particular, these techniques derive models from data (i.e.,
information such as documents, audio, and images), where the resulting model is the final
product of machine learning [7]. Machine learning applied to medicine can transform
existing modes of healthcare delivery [8].

Technological solutions based on IoMT and machine learning can improve the quality
of life of patients diagnosed with CVD by preventing risk conditions, as well as helping
those without easy access to healthcare services. The use of IoMT through smart devices
enables the real-time detection, monitoring, and prediction of CVD, as well as allowing for
emergency communication (i.e., alerts sent to caregivers or hospitals), all integrated into
a portable device. Over the past few years, IoT/IoMT has evolved rapidly, with sensors
or devices that are more powerful and capable of monitoring the vital signs of patients
with chronic diseases, making it one of the most important technologies. The integration
of smart wearables through IoT/IoMT has a significant impact on modern healthcare
systems, providing value to health-seekers, delivering high-quality and cost-effective
services, and facilitating effective remote care. However, the amount of data generated
by these devices in the cloud environment is a major concern, which has led to several
challenges, including determining the best machine learning techniques to mine this data.
Many applications and frameworks have been developed using machine learning and
deep learning for CVD prediction and monitoring, improving the quality of healthcare
and providing accurate results. Thus, it is important to be aware of and analyze the
state-of-the-art of the techniques and technologies being implemented to predict, monitor,
or classify CVD.

We conducted a systematic review to highlight the use of IoT/IoMT and machine learn-
ing in the detection, prediction, or monitoring of CVD. We adopted the PRISMA [9] guide-
lines (Preferred Reporting Items for Systematic Reviews) and the research scope was based
on the application of the PICOC framework [10]. This systematic review aims to identify
state-of-the-art CVD and machine learning approaches based on four main contributions:
(i) IoT/IoMT devices for monitoring or predicting cardiovascular disease; (ii) different
types of CVD in the population; (iii) machine learning applications for detecting, predicting,
or monitoring CVD; and (iv) data sets used with such machine learning techniques.

The main goal of this paper is to identify the current state of IoT/IoMT in CVD
detection or monitoring, machine learning techniques, and data sets used to predict or
classify these conditions. Despite the existence of literature reviews on the use of IoT/IoMT
technologies to detect, predict, or monitor CVD, a compilation of research proposals on the
use of these technologies in combination with machine learning techniques and the data
sets used remains lacking. We aim to collectively analyze data sets, IoT/IoMT wearable
devices/smart devices/medical devices, machine learning approaches, and disease types.
In this paper, we present the best-practice technological devices, relevant machine learning
approaches, evaluation metrics, and their results over the past seven years.

The remainder of this paper is organized as follows: Section 2 describes the related
surveys. Section 3 presents the methods, such as the research question, the scope of the
study, the literature review, and the inclusion and exclusion criteria. Section 4 describes
the selected papers using IoT/IoMT technology. Section 5 presents the selected papers
applying machine learning techniques. Section 6 discusses the papers considered for further
analysis. Finally, Section 7 concludes the paper with future directions. The structure of the
paper, as a comprehensive study roadmap, is shown in Figure 1.
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Figure 1. Structure of the paper as a comprehensive study roadmap.

2. Related Surveys

Several articles have been published on IoT/IoMT technologies and machine learning
techniques in healthcare. This section briefly reviews the studies detailing systematic
reviews on IoT/IoMT technologies applied to CVD along with machine learning methods
and their results. We found that some of these articles focused only on the machine learning
approaches and their results in a specific disease, while others focused on the technologies
applied for disease monitoring.

For example, along with some recommendations, Friedrich et al. [11] focused on appli-
cations of machine learning approaches related to cardiovascular drugs. They identified
215 studies in their systematic review using PubMed and Embase as research databases.
They concluded that 87% of the methods used belong to the supervised learning context
(tree-based methods being the most common, followed by network and regression anal-
ysis, and boosting approaches). Similarly, Hazra et al. [12] provided brief descriptions
of 35 research papers published between 2006 and 2016 which examined computational
methods for predicting heart disease. They concluded that, among the classification tech-
niques, Decision Tree, Naïve Bayes, Artificial Neural Networks, Association Rule Mining,
and Fuzzy Logic were the most commonly used. The data mining tools with better results—
in terms of practical execution—were Java, WEKA, Tanagra, and Matlab. On the other hand,
Shameer et al. [13] discussed machine learning algorithms and potential data sources. They
summarized the open-access biomedical and healthcare ontologies and big data resources
in cardiovascular medicine for the development of machine learning resources. Further-
more, they assessed the potential limitations and challenges associated to implementing AI
in medicine. Bolhasani et al. [14] explored deep learning techniques for healthcare IoT appli-
cations. They presented how deep learning can address telemedicine and ambient assisted
living systems, machine health monitoring systems, human activity recognition, patient
vital signs collection, and data fusion. Their survey divided the research studies into four
categories: Medical diagnosis and differentiation applications, home and personal health
applications, disease prediction applications, and human behavior recognition applications.
They identified the number of studies by deep learning techniques used (convolutional
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neural networks being the most-used) and the proposed evaluation environments (data set,
implementation, and simulation).

Other papers have focused on IoT/IoMT technologies applied in healthcare systems or
applications. Huang et al. [15] focused on IoT technologies for health management system—
including clinical device management, medication management, clinical data management,
remote medicine, mobile medical care, and individual health management—with the
purpose of serving as a starting point for future IoT/IoMT security management and
design. Lin et al. [16] presented recent developments in monitoring various physiological
signals using flexible sensors for CVD through pulse wave technology (ECG, PCG, PPG,
and SCG/BCG); in particular, they focused on five types of signals that can reflect CVD
using flexible sensing technology. Rahaman et al. [17] presented IoT-based smart health
monitoring systems with their advantages and disadvantages, highlighting the design and
implementation of these monitoring devices with respect to the patients. They summarized
13 studies from 2015 to 2019, including the year, feedback device, key hardware components,
use, and cost. Panicker and P. Gayathri [18] classified their work into various categories,
such as feature selection, heart sounds, heart images, heart rate variability, IoT/wearable
technology, fuzzy systems, and predictive models. They presented a tabulated summary
in their literature review highlighting the different machine learning techniques and data
sets used, results, and research gaps. However, this summary included only 13 works
published between the years 2015 and 2018. The remaining works were cited and described
in the document.

Other papers have discussed relevant studies focused on chronic diseases such as
diabetes, cancer, CVD, hypertension, and glaucoma. Dadkhah et al. [19] summarized the
use of IoT for chronic disease management, and concluded that CVD is one of the highest
priorities for the use of IoT in the context of developing countries. Their results included
92 studies classified into 47 focused on CVD, 37 on hypertension, 5 on cerebrovascular, 1 on
rheumatic, 1 on rheumatism, and 1 on ischemic. Lamonaca et al. [20] focused on monitoring
blood pressure from a metrological point of view, aiming to address the lack of traceability
and reliability of BP measurements. They analyzed the vulnerabilities and opportunities of
smart devices and wearables, including medical devices, in terms of accuracy and reliability.
They focused on smart metering devices, Internet-connected devices, and devices that
enable the implementation of the Internet of Medical Things (IoMT).

Since 2020, reviews have focused on artificial intelligence for disease diagnosis, high-
lighting the analysis of cardiovascular disease. Argha, Celler, and Lovell [21] reviewed
AI-based blood pressure estimation approaches with a focus on recent advances in deep
learning-based techniques. They concluded that deep learning methods make it possible
to develop reliable and accurate blood pressure estimation algorithms/devices. They
also noted the lack of adequate data sets on invasive and non-invasive blood pressure
as standard references. Huang et al. [22] identified and described recent developments
in the application of digital health to CVD, focusing on AI models driven by data col-
lected from wearables. They reported the type of disease detected, the algorithms applied,
the application, and the performance for machine learning and deep learning approaches.
Hinai et al. [23] identified articles on the end-to-end deep learning analysis of resting ECG
signals for the detection of structural cardiac pathology. They identified 12 articles, 3 of
which detected left ventricular systolic dysfunction, 1 of which detected left ventricular
hypertrophy, 6 of which detected acute myocardial infarction, and 2 of which detected
stable ischemic heart disease. The performance measures used were AUC and accuracy.
On the other hand, Faizal et al. [24] outlined various conventional models for assessing
and predicting risk and compared them with AI-based approaches. They briefly reported
some deep learning and machine learning algorithms, with their respective performance,
focusing on the country, study area, risk factors, and performance.

Chen et al. [25] reported on the use of deep learning algorithms in medical technol-
ogy applications, focusing on challenges and recommendations for ECG detection and
classification. The highlights of this paper were as follows: algorithms for CVD detec-
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tion and classification, smart wearable devices and hardware based on deep learning and
ECG, and recognition using ECG biological signs. Qureshi et al. [26] presented ambient
assisted living solutions to reduce morbidity and mortality in patients with cardiovascular
conditions. They focused on the application, devices, testing platform, monitored signals,
features, and limitations for ambient assisted solutions and monitoring/clinical manage-
ment. They also focused on the purpose, architecture, accuracy, deep learning methods,
databases, and pre-processing of deep learning-based solutions for ambient assisted living.
However, they only reviewed articles published between 2015 and 2019, and selected only
40 as relevant to their research. Bhushan, Pandit, and Garg [27] discussed how machine
learning and deep learning approaches have been used for the analysis of various heart dis-
eases. They classified the articles by summary, technique/tool, advantages, disadvantages,
and performance measure. The existing works related to ensemble models using machine
learning and deep learning, as well as a description of relevant data sets, were reported as
a separate section.

The review of Rath et al. [28] included methods for feature extraction, selection, and re-
duction, as well as machine learning-/deep learning-based classification schemes, CVD
data sets, and types of heart disease. They also listed some heart disease attributes identi-
fied in the 60 collected papers. Maurya et al. [29] reviewed studies on the early prediction of
heart failure, determination of its severity, prediction of adverse outcomes, and improving
patient adherence to medication. They focused on the parameters measured, endpoint,
impact on heart failure, algorithms, evaluation measures, and the data (e.g., how patients
were monitored, data sets). However, they did not explain the study selection, whether they
used a methodology or guidelines for the review, or how many papers they found relevant.
Kumar et al. [30] conducted a survey based on artificial intelligence to diagnose chronic
disease including heart disease, stroke, and hypertension. They focused on healthcare
applications, type of disease, data set, technique, reported outcomes, feature extraction,
and the classification process for prediction.

Jasinska-Piadlo et al. [31] offered a comprehensive examination of the utilization of
data science and machine learning in heart failure data sets. They summarized significant
discoveries while critically assessing the effectiveness, suitability, and precision of various
approaches. In different sections, they also reported the dimensionality of the used data
sets, missing data, the performance of the algorithms (for the most-used machine learning
methods) and, most importantly, how machine learning and data analysis impact heart
failure problem-solving. Chakrabarti et al. [32] reported the diagnostic applications of
wrist-worn devices in detecting multiple diseases, including cardiovascular conditions.
They also provided a brief discussion of machine learning algorithms for wearable data
analysis and addressed the current challenges associated with wearables and medical
data. Finally, Guo et al. [33] reviewed the advancements in wearable devices—specifically,
unobtrusive sensing technologies—that provide support and tools for the management
of chronic disease. They not only focused on cardiovascular diseases, but also on chronic
diseases for long-term health monitoring and patient management.

3. Methods

According to Xiao and Watson [34], literature reviews are essential for academic re-
search. MacMillan et al. [35] stated that a systematic review provides a broad overview of a
particular research topic. For this reason, literature reviews should have clearly defined
inclusion and exclusion criteria. They should also present a comprehensive search that
identifies all of the relevant literature, uses explicit and reproducible selection criteria for
included studies, rigorously assess potential bias in the included studies, and systemat-
ically summarize the results of the included studies [35]. The purpose of a systematic
review should be to answer an important, answerable question or to identify areas of high
importance [36]. This review aims to map the landscape of IoT/IoMT technologies and
machine learning techniques used for the detection, prediction, and monitoring of CVD.
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This systematic review was guided by three research questions based on detecting,
predicting, or monitoring CVD, as presented in Table 1. These research questions are
based on the main contributions previously described in Section 1: IoT/IoMT devices for
monitoring and predicting CVD; different types of CVD in the population; and machine
learning applications for detecting, predicting, or monitoring CVD.

Table 1. Research questions related to the detection, prediction, or monitoring of CVD.

RQ1 What types of devices with IoT and IoMT technologies have been used to detect and predict cardiovascular disease using machine learning?
RQ2 What machine learning techniques have been used to detect and predict cardiovascular disease?
RQ3 What diseases were detected and predicted?

This review also follows the PICO(C) (population, intervention, comparison, and out-
come) template to develop answerable, researchable questions by considering the elements
listed in Table 2, always in accordance with the three research questions defined in Table 1.

Table 2. PICOC template points.

Population Formal publications on detection or prediction of cardiovascular disease
Intervention Techniques, methods, or machine learning algorithms that are implemented through IoT or IoMT
Comparison Comparison of technologies, methods, or algorithms implemented by IoT or IoMT
Outcome Assessing the proposals analyzed for early detection of cardiovascular disease

Context Technologies, techniques, and methods by means of computational mechanisms for the monitoring of people with
cardiovascular diseases

3.1. Data Sources

For accessibility, we focused on reviewed articles from databases such as PubMed,
IEEE Library, Springer Link, and Science Direct, in order to retrieve relevant JCR proposals
using IoT or IoMT for CVD detection, prognosis, or surveillance. Our time-frame was
between 1 January 2016 and 9 May 2023, in order to include technologies that are new
and have not yet been discontinued. The search terms consisted of the keywords listed in
Table 3, derived from the template elements defined in Table 2.

Table 3. List of keywords used in the literature search.

P Cardiovascular disease, heart disease, cardiovascular events, heart illness, heart condition
I IoT, IoMT
C Machine learning, deep learning, data mining
O Early detection, detect, predict, monitor
C Wearable devices, devices

With the keywords described above, we proceed to construct the generic search string,
which included some words to be searched only in the abstract (ab): (ab “cardiovascular
diseases” or ab “heart disease” or ab “cardiovascular events” or ab “heart illness” or ab
“heart condition”) and (“IoT” or “IoMT” or “machine learning” or “deep learning” or “data
mining”) and (ab “early detection” or ab “detect” or ab “predict” or ab “monitor”) and
(“wearable devices” or “devices”).

After retrieving the potential papers from the databases, we implemented the following
inclusion criteria: (i) JCR studies only, (ii) articles written in English, and (iii) studies
published between January 2016 and May 2023, based on compatibility and technological
evolution. On the other hand, we applied the following exclusion criteria to the resulting
set of papers: (i) Publication types other than JCR journal articles (posters, conferences,
proceedings), (ii) articles whose full text was not in English, (iii) studies published before
January 2016 and after May 2023, and (iv) articles detecting or predicting CVD by heart
sounds. Due to accessibility issues, 24 articles were excluded from the PubMed, IEEE,
Springer Link, and Science Direct databases, as they could not be downloaded.
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3.2. Study Selection

We obtained 1500 articles in total after applying the inclusion/exclusion criteria,
of which 39 were from PubMed, 555 from IEEE, 416 from Springer Link, and 490 from
Science Direct. Figure 2 shows the number of studies found in each digital library consulted.

Studies were selected for this review using the four-step process (identification, screen-
ing, eligibility, and inclusion) according to the PRISMA flowchart shown in Figure 3. In the
first stage of identification, we collected 1500 articles, of which 340 were reduced by title.
Duplicates were removed at this stage, resulting in 1144 articles. In the screening stage,
articles were thoroughly screened by reading the abstract to determine whether the article
was focused on detecting, predicting, or monitoring CVD, and 700 papers that did not meet
the inclusion criteria were excluded. At the eligibility stage, we read the full text of 444
papers to determine whether they were eligible for inclusion in the systematic review.
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Figure 2. Papers found in digital libraries.

Figure 3. PRISMA flow diagram explaining the article selection process.
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As shown in Figure 3, articles were excluded for several reasons (exclusion criteria) at
the screening and eligibility stages. Each article was analyzed and classified by the authors,
according to the following criteria: (i) area of study (monitoring, prediction, detection), (ii)
disease (stroke, arrhythmia, atrial fibrillation, hypertension), (iii) data set used (public or
private), (iv) approach (machine learning techniques), and (v) results (evaluation metrics:
accuracy, precision, F1 score).

We conducted a peer review of the 162 potential studies answering the above three
research questions to identify those that addressed the detection or prediction of cardiovas-
cular disease and met the inclusion criteria. Appendix A shows these results, sorted by date.
The 162 articles were divided into two main categories: CVD detection using IoT/IoMT and
CVD detection using machine learning with public/private data sets. For the first category,
we retrieved 78 papers, and 84 were retrieved for the second category. Figure 4 shows the
JCR papers selected for this systematic review, divided into the two categories described
above (i.e., papers that used IoT/IoMT technologies and machine learning-based CVD
detection with public/private data sets). However, 32 of the papers in these two categories
considered both IoT/IoMT technologies and machine learning-based CVD detection with
public/private data sets.
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Figure 4. Histogram of the papers, divided into two main categories.

3.3. Bibliometric Analysis

The 162 papers included in the final analysis were published between January 2016
and May 2023 (Figure 5). We observed an increase in research output starting around 2019,
with an even stronger increase in the following years. In 2022, we retrieved more papers
related to the diagnosis, detection, prediction, and monitoring of CVD.
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Figure 5. Histogram of the number of published papers per year.
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The percentages of articles retrieved from the various databases are depicted in Figure 6.
Science Direct had the major publication percentage (with 44%), followed by IEEE (with
35%). Springer Link had a 16% publication percentage, while PubMed contributed only 5%
of the 164 papers selected for this review.

Figure 6. Percentage of articles selected by database.

We conducted a bibliometric analysis regarding authors, keywords, and journals.
For each article, we obtained the database, journal, title, keywords or index terms, authors,
number of citations, number of pages, and publication year. A word cloud was generated,
according to the frequencies of keywords. The most frequently used keywords are high-
lighted in larger and bolder fonts, while the less frequently used keywords are highlighted
in a smaller font in Figure 7. The keywords were grouped by similar words, and the most
frequently used keyword was machine learning (43), followed by electrocardiogram (34),
deep learning (30), and convolutional neural network (25).

Figure 7. Word cloud for the most frequently used keywords.

Figure 8 depicts the authors who most frequently published articles from the
164 selected papers. Without removing duplicates, there were 797 authors. The most
frequent authors were: Li, Y. (8), followed by Acharya, U. R. (7), and Ciaccio, E. I. (4).
However, some authors seemed to have the same surname (e.g., Li) and a similar first
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name beginning with Y, such as Li, Ye (3); Li, Ya; Li, Yuanlu; Li, Yaowei (2); and Li, Yixuan.
Acharya, U.R. was the only author with seven written articles related to CVD diseases.
Similarly, Ciaccio, Edward J., have written four articles related to CVD disease. In total,
Acharya, U.R. had 1074 citations in the seven papers, while Cicaccio, Edward J. had 433.
The top 10 most-cited articles of the 164 articles that were selected are shown in Table 4.

Figure 8. Word cloud for the most frequently published authors.

Table 4. Top ten cited articles.

Year Authors Database Name of the Journal Number of Citations Reference

2019 Mohan, S.; Thirumalai, G.; Srivastava, G. IEEE IEEE Access 888 [37]
2018 Yildirim, Ö. et al. Science Direct Comput. Biol. Med. 579 [38]
2020 Tuli et al. Science Direct Future Gener. Comput. Syst. 432 [39]
2018 Sannino, G.; De Pietro, G. Science Direct Future Gener. Comput. Syst. 351 [40]
2018 Kumar, P.M.; Gandhi, U.D. Science Direct Comput. Electr. Eng. 258 [41]
2019 Yildirim et al. Science Direct Comput. Methods Programs Biomed. 256 [42]
2020 Khan, M.A. IEEE IEEE Access 188 [43]
2019 Sellami, A.; Hwang, H. Science Direct Expert Syst. Appl. 158 [44]
2020 Khan, M.A.; Algarni, F. IEEE IEEE Access 153 [45]
2020 Lih et al. Science Direct Artif. Intell. Med. 146 [46]

The most-cited articles were from the year 2019 and the IEEE database: Mohan, S.,
Thirumalai, G., and Srivastava, G. Science Direct had seven of the ten most-cited CVD-
related articles: three from 2018, two from 2019, and two from 2020. The most-cited article
had 888 citations, whereas the second and third had 579 and 432, respectively. The journal
word cloud is shown in Figure 9.

The journal with the most articles related to CVD was Biomed. Signal Process. Control
(28) from the Science Direct database. In second place was IEEE Access (20), followed by
Comput. Biol. Med. (9) from the Science Direct database and IEEE Sens. J. (8).
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Figure 9. Word cloud for the most frequently published journals.

4. Research on CVD Detection Using IoT/IoMT

The JCR papers selected as relevant for this review were classified according to the
disease under study: Abnormality detection, arrhythmia, atrial fibrillation, blood pressure
and hypertension, cardiovascular disease and heart disease, and another type of disease
(e.g., aortic stenosis, arterial stiffness, chronic disease, chronic heart failure, myocardial
infarction, and ischemic heart disease). Proposals may not address more than one disease,
data set, or IoT/IoMT technology.

We provide a summary of the wearable devices/smart devices/medical devices used,
the machine learning techniques applied, and the results in terms of evaluation metrics.
Figure 10 shows a pictorial representation of the organizational structure by disease for
the research on CVD detection using IoT/IoMT and/or machine learning. Table 5 shows a
summary of the disease classification. This classification led to the discovery that there is a
wide variety of works using IoT/IoMT to promote the detection, prediction, or monitoring
of CVD. The most commonly detected condition was CVD or heart disease in general
(22.91%), arrhythmia (19.75%), other diseases (chronic heart failure, coronary artery disease,
stroke, carotid artery disease; 8.69%), and blood pressure or hypertension (6.32%). On the
other hand, aortic stenosis and arterial stiffness were the least-detected CVD conditions
using IoT/IoMT.

Table 5. Type of disease in selected proposals using IoT or IoMT technologies.

A 1 B 2 C 3 D 4 E 5 F 6 Number of Proposals

[47–71] 25 (33.78%)
[72–74] 3 (4.05%)

[75–77] 3 (4.05%)
[78–85] 8 (10.81%)

[39,41,43,86–110] 29 (37.83%)
[111–121] 10 (13.51%)

1 Abnormality detection/arrhythmia/atrial fibrillation. 2 Aortic stenosis/aortic valve. 3 Arterial stiffness/arterial.
4 Blood pressure/hypertension. 5 CVD/Heart disease/heart. 6 Others.
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Figure 10. Organizational structure for the research on CVD.

4.1. Abnormality Detection and Arrhythmia

An abnormality or arrhythmia refers to an abnormal heartbeat rhythm; this means that
the heart may beat too fast, too slow, or with an irregular rhythm. Arrhythmia is caused by
changes in heart tissue, activity, and the electrical signals that control the heartbeat, which
may be caused by damage from disease, injury, or genetics. Although there are usually
no symptoms, some people experience an irregular heartbeat. Symptoms may include
disorientation, difficulty breathing, fainting, or dizziness. The most common test used to
diagnose arrhythmia is an electrocardiogram (EKG or ECG) [122]. Atrial fibrillation is the
most common kind of treated heart arrhythmia. In atrial fibrillation, the atria—the upper,
smaller chambers of the heart—do not generate normal electrical impulses and, therefore,
do not contract. This causes the ventricles—the main pumping chambers of the heart—to
beat rapidly and irregularly. Although atrial fibrillation is the most commonly sustained
arrhythmia, it is not common. For example, in a 22-year study of 5191 adult men and
women, only 2% developed chronic atrial fibrillation [123].

Table 6 shows the proposals classified by abnormality and arrhythmia detection, as well
as atrial fibrillation. There were 26 proposals, but only Sannino and De Pietro [40] used a
medical device (unspecified Holter) for condition monitoring. Keyanfar et al. [52] used a
cardioverter–defibrillator device, Raheja and Manocha [60] used an ECG machine without
specifying the model, and Fayyazifar et al. [62] used a MAC 550HD and a MUSE V9 (GE
Healthcare, Chicago, Illinois, USA). Venkataramanaiah and Meenakshi [51] used biomedical
sensors for the detection of arrhythmia without specifying the device. Two proposals
used a smartphone (specifically, the Sony Xperia Z series model) (Sony, Tokyo, Japan):
Mehrang et al. [70] and Lahdenoja et al. [66]. Mehrang et al. [70] also used a continuous five-
lead telemetry ECG (Philips IntelliVue MX40). Cai et al. [68] and Hill et al. [69] used portable
devices (KardiaMobile and a Mason linear ECG lead system, respectively) (AliveCor Inc.,
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CA, USA), (CardioCloud Medical Technology, Beijing, China). Yang et al. [67] used an
integrated analog front-end for heart rate monitoring, while Rawal, Prajapati, and Darji [71]
used the device ZYNQ Ultrascale ZCU106 FPGA (Advanced Micro Devices, Inc., Santa
Clara, CA, USA).

Table 6. IoT/IoMT-based abnormality and arrhythmia detection.

Wearable/Smart/Medical Device Approach Results

VA Processor/SoC, (Custom-made) [47] Naive Bayes Accuracy: 86%,
Power consumption reduction: 62.2%

Electrodes (3 unipolar limb leads, 3 bipolar limb
leads, 6 unipolar chest leads) [48] Convolutional Neural Network Accuracy: 98%,

Sensitivity: 96%

Lenovo Smart ECG vest, (Lenovo Group Ltd.,
Beijing, China) [49] Convolutional Neural Network Accuracy: 86.3%

Arduino Uno, (Arduino, Scarmagno, Italy),
Raspberry Pi 3B, (Raspberry Pi Foundation,

Cambridge, UK) AD8232 ECG sensor
(DFRobot, Shanghai, China), [50]

k-NN Accuracy: 94.44%

Biomedical sensors, ARM processor, FPGA [51] k-NN Accuracy: 99%

Intelligent electrocardiograph device [52] Neural network architecture based on deep learning
1st network Accuracy: 91%,

2nd network Accuracy: 100%,
3rd network Accuracy: 90%

AD8232 EKG sensor, (SparkFun Electronics,
Niwot, CO, USA), Arduino board,

(Arduino, Scarmagno, Italy), Jetson Nano
microcomputer, (Nvidia Corporate,

Santa Clara, CA, USA) [53]

Dynamic mode selected energy, adaptive window
sizing, R location correction algorithm for detecting

R-peaks with better efficiency

Accuracy: 99.94%,
Sensitivity: 99.98%,
Precision: 99.96%

Specificity: 99.98%
AUC: 99.89%

Detection error rate: 0.06%

Raspberry Pi 3B (Raspberry Pi Foundation,
Cambridge, UK) [54]

Fourier Transform, Convolutional Neural network
(CNN)

Accuracy: 99.91%
F1-Score: 95%

Average inference time: 9 ms
Maximun memory usage: 12 mb%

SensorTile (STEVAL-STLKT01V1),
(STMicroelectronics,

Grenoble, France), AD8232 (DFRobot, Shanghai,
China),

Raspberry Pi (Raspberry Pi Foundation,
Cambridge, England, UK) [55]

Convolutional Neural network (CNN)

Accuracy: 97%
Sensitivity: 96.92%
Precision: 91.50%
F1-Score: 94.89%

Raspberry Pi 4 (Raspberry Pi Foundation,
Cambridge, UK) [56]

1D Convolutional Neural network (1D-CNN)
GridSearch Accuracy: 99.46%

Arduino Uno, (Arduino, Scarmagno, Italy),
ATMEGA328P Microcontroller, (Microchip, AZ,

USA)
Raspberry Pi (Raspberry Pi Foundation,

Cambridge, UK) [57]

Incremental Support vector Regression

Accuracy: 98.5%
Sensitivity: 88%
Precision: 90%

Specificity: 99%

Sensor nodes [58] Convolutional Neural network (CNN)

Accuracy: 95%
Sensitivity: 94.63%
Specificity: 94.63%

ROC: 96.53%

Diagnosis and Tracking Shield, (Custom-made),
ADS1298 (TX Instruments, Dallas, TX, USA),

Raspberry Pi (Raspberry Pi Foundation,
Cambridge, UK) [59]

Depth Convolutional Neural Network
Accuracy: 96.67%
Sensitivity: 96.63%
Specificity: 96.67%

ECG Machine [60] Convolutional Neural network (CNN)
Accuracy: 99.12%
Sensitivity: 100%

Specificity: 99.12%

Smartphone device [61] Convolutional Neural network (CNN) Accuracy: 93%

MAC 5500 HD, (GE Healthcare, Chicago, Illinois,
USA),

MUSE v9, (GE Healthcare, Chicago, Illinois,
USA) [62]

Convolutional Neural network (CNN)

Sensitivity: 88.50%
Specificity: 88.54%

Positive Predictive: 88.54%
Negative Predictive: 88.54%

F1-Score: 88.49%

Wearable sensors [63] Convolutional Neural network (CNN), Artificial Bee
Colony, Grey Wolf Optimizer

Accuracy: 94%
Recall: 94.5%

Precision: 96%
Specificity: 95.4%



Healthcare 2023, 11, 2240 14 of 50

Table 6. Cont.

Wearable/Smart/Medical Device Approach Results

Noninvasive healthcare sensor, SkopEdge
(Custom-made, India), Raspberry Pi,

(Raspberry Pi Foundation, Cambridge, UK) [64]
Randon Forest

MIT-BIH Accuracy: 98.53%
PTB Accuracy: 99%

RF Accuracy: 98.68%

BH1790GLC (Rohm, Kyoto, Japan) [65] Convolutional Neural network (CNN)

Sensitivity: 99.5%
Specificity: 98.7%
F1-Score: 99.1%

Time: 19 s%

Sony Xperia Z-series, (Sony, Tokyo, Japan) [66] Kernel SVM
Accuracy: 97.4%,
Sensitivity: 93.8%,
Specificity: 100%

AFE4403 (TX Instruments, Dallas, TX, USA) [67] Linear Kernel SVM
TPR 1: 70.10%,
TNR 2: 88.61%,

Accuracy: 80.37%

Mason-Likar ECG 12-lead system
(CardioCloud Medical Technology, Beijing,

China) [68]
Deep Densely Connected Neural Network (DDNN)

Accuracy: 96.73%,
Sensitivity: 96.67%,
Specificity: 96.93%

KardiaMobile EKG Monitor (AliveCor Inc., CA,
USA) [69] Neural Network AUC 3: 82.7%,

Specificity: 74.9%

Sony Xperia Z1/Z5, (Sony, Tokyo, Japan),
Philips IntelliBue MX40 (Philips,
Amsterdam, Netherlands) [70]

Random Forest, XGBoost, Logistic Regression

AUC AFib 4:
98%, 98%, 96%,
AUC ADHF5:
85%, 82%, 83%

ZYNQ Ultrascale ZCU106 FPGA, (Advanced Micro
Devices, Inc., Santa Clara, CA, USA) [71] 1D Convolutional Neural network (1D-CNN)

Accuracy: 99.17%,
Sensitivity: 97.03%,
Specificity: 99.37%,
Precision: 93.72%,
F1-score: 97.90%

1 True positive rate. 2 True negative rate. 3 Data obtained from [124]. 4 Atrial fibrillation. 5 Acute decompensated
heart failure.

On the other hand, nine proposals used a microcontroller board, such as an Ar-
duino Uno (Arduino, Scarmagno, Italy) and/or Raspberry Pi (Raspberry Pi Foundation,
Cambridge, UK): Moghadas, Rezazadeh and Farahbakhsh [50], Al et al. [53], Farag [54],
Scrugli et al. [55], Cheikhrouhou et al. [56], Sanamdikar, Hamde, and Atsutkar [57], Be-
laid et al. [59], Medhi, Ahmed and Hussain [61], and Misra et al. [64]. Zhao et al. [49] used a
Lenovo smart ECG chest (Lenovo Group Ltd., Beijing, China), while Farahani et al. [48] used
an unspecified set of electrodes and Yasin et al. [47] used a custom-made VA processor/SoC.
Finally, Kumar et al. [58], Karthiga, Santhi, and Sountharrajan [63] and Shafi et al. [65] used
an unspecified set of sensors nodes.

The best accuracy achieved was 99.94% by Al et al. [53] with AD8232 EKG Sensor
(SparkFun Electronics, Niwot, CO, USA), Arduido board (Arduino, Scarmagno, Italy),
and a Jetson Nano microcomputer (Nvidia Corporate, Santa Clara, CA, USA) using the R
location correction (RLC) algorithm. The lowest accuracy was achieved by Yang et al. [67],
with an integrated analog front-end using a linear kernel SVM. Other proposals have
used metrics such as recall, precision, specificity, sensitivity, AUC, true positive rate, true
negative rate, positive predictive, negative predictive, and ROC.

4.2. Aortic Stenosis

Aortic stenosis is an obstruction of blood flow from the left ventricular outflow tract
which can occur at various levels, including at the aortic valve (valvular aortic stenosis),
above (supravalvular aortic stenosis), or below the semilunar valve (subvalvular aortic
stenosis). However, the clinical presentation of shortness of breath, syncope, and/or chest
pain may be identical. Patients may have a systolic ejection murmur that is constant or
changes with certain maneuvers (as in hypertrophic obstructive cardiomyopathy), as well
as a variable intensity of the second heart sound, depending on the severity of the obstruc-
tion [125].

In Table 7, we list the proposals classified by aortic stenosis detection using IoT/IoMT.
Yang et al. [72] used a three-axis accelerometer and three-axis gyroscope employing three
classifiers: Decision tree, random forest, and neural network. Petrou et al. [73] used a
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non-implantable mixed-flow turbodynamic blood pump (Deltastream DP2, Xenios AG,
Helibronn, Germany) with a cardiac output estimation pipeline, while Cheng et al. [74]
used an ultrasound with two 3D convolutional neural networks (GE Vingmed Ultrasound
AS, Norway Health Tech, Horten, Norway). The best performance was obtained by
Yang et al. [72] combining seismo-cardiography (SCG) and gyro-cardiography (GCG)
features with a random forest classifier (98.96%). The lowest accuracy was achieved by
Cheng et al. [74], with an accuracy of 83%.

Table 7. IoT/IoMT-based aortic stenosis detection.

Device Machine Learning Approach Results

3-axis MEMS accelerometer,
Kionix KXRB5-2042, (Kionix, Inc.,

New York, USA), 3-axis MEMS gyroscope,
Invensense MPU9150, (Invensense, Inc.

San Jose, CA, USA) [72]

Decision Tree,
Random Forest,
Neural Network

Accuracy SCG 1: 94.79%, 95.94%, 93.54%,
Accuracy GCG 2: 96.98%, 97.40%, 96.04%,

Accuracy SCG + GCG 3: 96.98%, 98.96%, 97.08%

Non-implantable-mixed flow turbodynamic
blood pump, Deltastream DP2

(Xenios AG, Helibronn, Germany) [73]

Cardiac output estimation pipeline
utilizing a PIP sensor

Linear/quadratic discriminant analysis:
Matthews correlation coefficient: 0.771

Sensititivity: 91.3%
Specificity: 87.1%

GE Vingmed Ultrasound AS,
(Norway Health Tech
Horten, Norway) [74]

Two 3D Convolutional Neural Nerwork

LV function detection
Accuracy: 86%

AV regurgitation detection
Accuracy: 83%

1 Seismo-cardiography: measurement of the linear acceleration components of the chest wall induced by the
heartbeat. 2 Gyro-cardiography: recording of heart-induced rotational vibrations of the chest wall in the form
of angular speed. 3 SCG and GCG signals can be acquired by placing a microelectromechanical system (MEMS)
inertial measurement unit (IMU) on the chest wall.

4.3. Arterial Stiffness

Arterial stiffness is associated with changes in the structure and function of the arter-
ies. Increased arterial stiffness is caused by impaired smooth muscle action, resulting in
altered arterial dilation and constriction and increased blood pressure. In older adults, it
is associated with isolated systolic hypertension and greater CVD risk. In addition to the
functional regulation of blood pressure, structural changes within the vessels contribute to
arterial stiffening. These changes include thickening and re-modeling within each of the
three layers of the artery [126].

Table 8 shows the proposals classified by arterial stiffness detection using IoT/IoMT.
Miao et al. [75] used a medical device OMRON BP-203RPE III (OMRON Industrial Au-
tomation, Kyoto, Japan) and multi-variate linear regression to achieve an accuracy of
89% for vascular age. A back-propagation neural network was employed to achieve an
accuracy of 94% for CVD risk estimation. Dami and Yahaghizadeh [76] used a different
set of unspecified sensors to achieve an accuracy of 88.42% through a combination of
principal component analysis, deep belief networks, and a long short-term memory model.
Asorey et al. [77] proposed a diagnostic system with an unspecified bio-sensors that can
issue an alert within three hours if an artery appears to be blocked, and release medication
in the next three hours if the artery is really blocked. Only two proposals have reported
evaluation metrics such as accuracy. The lowest reported accuracy was 88.42% by Dami
and Yahaghizadeh [76], while Miao et al. [75] reported 89% and 94%.

Table 8. IoT/IoMT-based arterial stiffness detection.

Wearable/Smart/Medical Device Machine Learning Approach Results

OMRON BP-203RPE III,
(OMRON Industrial Automation, Kyoto, Japan) [75]

Multiple Linear Regression,
Back Propagation Neural Network Accuracy: 89%, 94%

Heart rate monitoring, respiratory sensor,
optical sensor [76]

PCA,
Deep Belief Networks

Long Short-Term Memory

Accuracy: 88.42%
Sensitivity: 85.13%
Specificity: 85.54%

Bio-sensors [77]
Diagnostic system based on implanted devices

and nano-nodes circulating in the cardiovascular
system

Diagnosis of blocked artery in 3 h,
and medication released by another 3 h
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4.4. Blood Pressure and Hypertension

Hypertension—or high systemic arterial blood pressure—is a common disease that
develops when blood flows through the arteries at higher than normal pressure. There are
two numbers that describe blood pressure: systolic and diastolic. The pressure created when
the ventricles pump blood out of the heart is called systolic pressure, while the pressure
between heartbeats—when the heart is filled with blood—is called diastolic pressure. Blood
pressure changes throughout the day, based on activities [127]. The 2003 Guidelines of the
European Society of Hypertension/European Society of Cardiology consider a patient as
hypertensive when either the systolic blood pressure or diastolic blood pressure value is
≥140/90 mmHg [128].

Table 9 provides a summary of the proposals for blood pressure and hypertension
detection using IoT/IoMT. Miao et al. [85] used a vital signs monitor (Benevision N12
Mindray), while Lan et al. [81] used a ring PPG, an accelerometer, and a Zigbee device on a
custom-built device. Yan et al. [84] used a blood pressure monitor Finometer MIDI Model II,
(Finapres Medical Systems B.V., Amsterdam, The Netherlands) and a pulse oximeter (Con-
tec Inc., Qinhuangdao, China). On the other hand, Mohebbian et al. [82] and Riaz et al. [83]
used the Raspberry Pi (Raspberry Pi Foundation, Cambridge, UK) and Arduino (Arduino,
Scarmagno, Italy) microcontroller boards. Forkan et al. [78] used an accelerometer, a GPS,
an ECG, and a blood pressure monitor without specifying the devices. Zhang et al. [80]
used three electronic components from TX Instruments (ADS1299EEG-FE, AFE4490SPO2,
MSP430F5529IPN, TX Instruments, Dallas, TX, USA). Finally, Ghosh et al. [79] used a
custom-built device based on the principle of impedance plethysmography with an auto-
adaptive algorithm based on impedance cardiography signals.

In terms of accuracy, the best performance was 99.78% for Patient 2 by Forkan et al. [78],
achieved using a decision tree J48 as the classifier. The lowest performance was 81.52%,
achieved using the radial basis function in the same proposal [78]. Other works have
used the mean error, root mean square error, or mean absolute error to evaluate their
results. For example, Zhang et al. [80] used mean error, mean absolute error, and root
mean square error for heart rate estimation. The results were 0.8 ± 2.7 beats per minute for
mean error and standard deviation, 1.8 beats per minute for mean absolute error, and 2.8
beats per minute for root mean square error. Conversely, Mohebbian et al. [82] achieved
3 ± 0.7 mmHg for systolic blood pressure by root mean square error, 2.2 ± 0.7 mmHg for
diastolic blood pressure by root mean square error, 4.4 ± 1.0 mmHg for systolic blood
pressure by mean absolute error, and 2.9 ± 1.2 mmHg for diastolic blood pressure by
mean absolute error. Yan et al. [84] used the mean absolute error for systolic and diastolic
blood pressure, obtaining 0.043 mmHg and 0.011 mmHg, respectively. The mean blood
pressure obtained was 0.008 mmHg. Miao et al. [85] used the mean difference ± standard
deviation accuracy, which was obtained as −0.22 ± 5.82 mmHg for systolic blood pressure.
The mean arterial pressure mean difference ± standard deviation accuracy obtained was
−0.57 ± 4.39 mmHg. Finally, the mean difference ± standard deviation accuracy obtained
was −0.75 ± 5.62 mmHg for diastolic blood pressure. Ghosh et al. [79] predicted systolic
BP, diastolic BP, and heart rate accuracies of ±2.33 mmHg, ±3.60 mmHg, and ±2.88 mmHg
beats per min, respectively.
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Table 9. IoT/IoMT-based blood pressure and hypertension detection.

Wearable/Smart/Medical Device Machine Learning Approach Results

Accelerometer, GPS, ECG, Blood Pressure Monitor [78]

Multilayer Perceptron,
Decision Tree J48,

Decision Table,
Radial Basis Function,

Bayes Network

Accuracy for three different types of patient
Accuracy MLP: 91.46%, 95.54%, 90.75%,

Accuracy J48: 99.14%, 99.78%, 99.1%,
Accuracy DTable: 95.91%, 97.08%, 96.33%,

Accuracy RBF: 81.52%, 83.95%, 84.78%,
Accuracy BN: 86.58%, 95.11%, 88.55%

Impedance cardiography sensor,
(Custom-made, India) [79]

Auto-adaptive algorithm based
on Impedance Cardiography signals
for non-invasive, cuffless, continous

monitoring of blood pressure
and heart rate

Systolic BP: ±2.33 mmHg
Diastolic BP: ±3.60 mmHg

Heart rate: ±2.88 beats

ADS1299EEG-FE, (TX Instruments, Dallas, TX, USA),
AFE4490SPO2, (TX Instruments, Dallas, TX, USA),

MSP430F55291PN, (TX Instruments, Dallas, TX, USA) [80]

SVM,
Dynamic Time Warping (DTW),

K-medoids clustering

ME 1± STD 2: 0.8 ± 2.7 BPM 3,
MAE 4: 1.8 BPM,
RMSE 5: 2.8 BPM
For HR estimation

Ring PPG, Accelerometer, ZigBee,
(Custom-made device, Taiwan) [81]

MIL (Multiplate instance
learning algorithm)

Accuracy Standard Deviation
of all RR (NN) intervals: 85.74%,

Specificity: 83.33%,
Precision: 92.11%,
Sensitivity: 86.42%

Raspberry Pi 2, (Raspberry Pi Foundation,
Cambridge, UK) [82]

Random Forest,
Decision Tree, SVM,

AdaBoost

SBP 6 RMSE 5: 3.2 ± 0.7 mmHg,
DBP 7 RMSE 5: 2.2 ± 0.7 mmHg,
SBP 6 MAE 4: 4.4 ± 1.0 mmHg,
DBP 7 MAE 4: 2.9 ± 1.2 mmHg

Pulse oximeter, (Arduino, Scarmagno, Italy) [83]
k-NN, SVM,

Decision Tree,
Neural Network

10 fold cross
k-NN Precision: 91%,
SVM Precision: 96%,
DT Precision: 95%,
NN Precision: 96%,

LOOCV 8 k-NN Precision: 90%,
SVM Precision: 93%,
DT Precision: 94%,
NN Precision: 95%

CMS50FW Pulse Oximeter, (Contec Inc., Qinhuangdao, China)
Finometer MIDI Model II, (Finapres Medical Systems B.V.,

Amsterdam, The Netherlands) [84]
SVM

MAE 4: systolic 0.043 mmHg,
diastolic 0.011 mmHg,

mean blood pressure 0.008 mmHg

Mindray N12, (Mindray, Shenzhen, China) [85]
Residual Network

Long Short-Term Memory
Network (Res-LSTM)

SBP6 Mean difference ± Standard deviation accuracy:
−0.2 ± 5.82 mmHg,

Mean Arterial Pressure Mean
difference ± Standard deviation accuracy:

−0.57 ± 4.39 mmHg DBP 7,
Mean difference ± Standard deviation accuracy:

−0.75 ± 5.62 mmHg
1 Mean error. 2 Standard deviation. 3 Beats per minute. 4 Mean absolute error. 5 Root mean square error. 6 Systolic
blood pressure. 7 Diastolic blood pressure. 8 Leave-one-out cross-validation.

4.5. Cardiovascular Disease and Heart Disease

Some proposals have not specified the disease or disorder to be detected, instead
considering cardiovascular disease or heart disease as a general disease. In Table 10, we list
the proposals that correspond to this classification using IoT/IoMT.

There were 31 proposals corresponding to this classification. The majority used sen-
sors or microcontrollers such as Raspberry Pi or Arduino in combination with heart rate
sensors, temperature sensors, blood pressure sensors, SpO2 sensors, or even temperature
sensors. Six proposals used medical devices such as those manufactured by OMRON,
Holter, Zephyr, or even Polar. Five proposals used wearable devices, but did not provide
further details. There were two proposals which used a radar and a chip in combination
with a mixed-signal neural network: Reservoir-computation (RC-NN) and long short-term
memory (LSTM), respectively. A total of 20 proposals used accuracy as an evaluation
metric, 8 of them used specificity, 4 used sensitivity, 10 used precision, 2 did not specify the
evaluation metric used, while others reported median error, root mean-squared difference,
the worst performance with SI score, train loss/valid loss, and 1 reported 90% less energy
consumption. Clifford et al. [97] proposed an application cloud infrastructure to provide de-
tailed information on the physical activity, behaviors, and psycho-social and physiological
status of urban African American young adults without providing further details.
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The best accuracy achieved was 99.58% by Demirel, Bayoumy, and Faruque [110].
Conversely, the lowest accuracy was 60.98%, obtained by Moradkhani, Broumandnia,
and Mirabedini [105] using a probabilistic neural network. In terms of sensitivity and
specificity, the best performance was that of Demirel, Bayoumy, and Faruque [110], who
used a convolutional neural network and obtained 99.2% and 99.4%, respectively. The low-
est performance in terms of sensitivity was 45.5%, obtained by Boursalie, Samavi, and
Doyle [88] using a support vector machine classifier. The lowest specificity was 55.1%,
again obtained by Moradkhani, Broumandnia, and Mirabedini [105].

Table 10. IoT/IoMT-based cardiovascular and heart disease detection.

Wearable/Smart/Medical Device Approach Results

Zephyr HxM heart rate/BioHarness
(Zephyr Technology Corporation
Annapolis, Maryland, USA) [86]

Pan Tompkins algorithm
10 times faster
and consumed
90% less energy

Holter [87] Decision Tree, SVM

ECG accuracy: 90.77%,
AP clustering accuracy: 87.40%,

Action recognition accuracy: 93.36%,
AP clustering accuracy: 94.49%

Raspberry Pi 2, (Raspberry Pi Foundation,
Cambridge, England, UK),

2014 Motorola Moto G,
(Motorola Mobility LLC
Chicago, IL, USA) [88]

SVM, Multilayer Perceptron (MLP)
Accuracy: 71.30%, 77.50%,
Sensitivity: 45.5%, 60.37%,
Specificity: 76.21%, 61.03%

Raspberry Pi 3B, (Raspberry Pi Foundation,
Cambridge, UK) [39]

Deep Neural Network,
Bagging Classifier

Accuracy
1 edge node: 78%,
2 edge node: 78%,
3 edge node: 72%,
4 edge node: 74%,
5 edge node: 74%

Wearable watch [89]

Boltzmann Deep Belief
Neural Network (HOBDBNN),

Genetic Algorithm-Based Trained Recurrent
Fuzzy Neural Networks (GA-TRFNN),

Swarm Optimized Convolutional Neural
Network-Support Vector (SCNN-SVM),
Particle Optimized Feed Forward Back

Propagated Neural Network (PFFBPNN),
Particle Swarm Optimized Radial Basis

Function Network (PSRBFN)

Accuracy: 99.03%

Distance 2Go radar,
INFINEON entry-level kit
(Infineon Technologies AG,

Munich, Germany) [90]

Long Short-Term Memory (LSTM) Train loss: 00086,
Valid loss: 0.0054

SensEcho, (Beijing SensEcho
Science & Technology Co, Ltd.,

Beijing, China) [91]

Bidirectional Long Short-
Term Memory (BI-LSTM)

Bradycardia sensitivity: 92.86%,
Bradycardia specificity: 99.92%,
Bradycardia precision: 85.53%,
Tachycardia sensitivity: 81.44%,
Tachycardia specificity: 99.80%,
Tachycardia precision: 84.24%

Wearable sensor for Smart
Healthcare Monitoring

System (SHMS) [98]

SVM, k-NN, Naive Bayes,
Decision Tree

Accuracy: 92%, 72%, 83%, 75%,
F1-score: 85%, 72%, 84%, 76%

Smartwatch,
OMRON HeartGuid bp8000m,

(OMRON Industrial Automation, Kyoto, Japan),
AD8232 SparkFun Single Lead

Heart Rate Monitor,
(SparkFun Electronics, Niwot, CO, USA)
Raspberry Pi, (Raspberry Pi Foundation,

Cambridge, UK) [43]

Modified Deep Convolutional
Neural Network (MDCNN) Accuracy: 98.2%

Arduino Uno, (Arduino, Scarmagno, Italy),
Finger tip heart rate sensor Linear Regression ————

Wearable IoT device [41] Logistic Regression

Sensitivity Respiratory Rate: 92.06%,
Heart rate: 72.38%,

Blood pressure SR 1: 85.71%,
Blood pressure DR 2: 48.25%,
Body temperature: 82.54%,

Blood sugar fasting: 60.63%,
Blood sugar post-meal: 25.8%
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Table 10. Cont.

Wearable/Smart/Medical Device Approach Results

IR Plethysmograph Velcro Strap,
MLT 1020 PPG, (AD Instruments, Sydney, Australia),

Bio-amplifier, Dual Bio-AMP-FE 232, (AD Instruments,
Sydney, Australia), DAQ, Power Lab 8/35,

ML135, (AD Instruments, Sydney, Australia) [92]

Deep Neural Network

Accuracy: 80%,
Recall: 75%,

Precision: 73%,
F1-Score: 78%,

Raspberry Pi,
(Raspberry Pi Foundation,

Cambridge, UK) [93]

Deep Neural Network (DNN),
Logistic Regression,

Random Forest

LR F1-Score: 84%
LR Precision: 87%
LR Accuracy: 83%

LR Recall: 82%
LR Specificity: 84%
RF F1-Score: 85%
RF Precision: 86%
RF Accuracy: 82%

LR Recall: 83%
RF Specificity: 83%

Sense O’Clock smartwatch,
(Custom-made device,

Australia) [94]

SVM, k-NN, XGBoost,
Support Vector Regression

RF Accuracy: 99%
k-NN Accuracy: 99.3%

XGBoost Accuracy: 98.56%

IoT-enabled WPM devices [95]

Decision Tree,
One-dimensional convolutional

neural network-long
short-term memory(1D CNN-LSTM)

PPG-BP dataset
DT Accuracy: 99.5%

PPG-DaLiA
CNN Accuracy: 97.56%

Polar H7 heart rate monitor,
(Polar Electro Inc.,

Bethpage, NY, USA),
Actigraph data,

ACTi Graph wGT3X-BT,
(ACTi Graph LLC, Pensacola,

FL, USA) [96]

Linear Regression,
SVM, k-NN, LSTM,

Decision Tree,
Random Forest

k-NN regressor and
LSTM performed the worst,

with SI scores
of 41.36% and 34.15%,

respectively

MOYO mobile platform,
(Custom-made platform),

Omron M7 (OMRON Industrial
Automation, Kyoto, Japan),

Jawbone UP3, (Jawbone Health,
San Francisco, CA, USA) [97]

Electronic cohort study,
HealthTech Events

The research team
collected 13 prototypes,
consisting of 297 screens

ECG sensor, temperature sensor
Electroencephalagram sensor,

electromyography sensor,
oxygen level sensor,

respiration rate sensor,
glucose level [99]

Deep Learning

Accuracy: 89.98%
Precision: 88.8%

Specificity: 89.72%
Recall: 89.72%

F1-Score: 89.96%

AD8232 SparkFun Single Lead
Heart Rate Monitor, (SparkFun
Electronics, Niwot, CO, USA),

Arduino Uno,
(Arduino,

Scarmagno, Italy) [100]

Random Forest

Accuracy: 88.10%
Precision: 93.75%

Recall: 78.95%
F1-Score: 85.71%

On-sensor, (Custom-made,
Buffalo, NY, USA) [101]

Mixed-signal neural
network and

reservoir-computation (RC-NN)

Heart Disease
Accuracy: 86.8%
Sensitivity: 83%
Specificity: 89%

ESP8266 NodeMCU
Wi-Fi Devkit,

(Arduino,
Scarmagno, Italy),
MAX30102 board,

(DFRobot, Shanghai, China),
DS18b20 sensor,

(DFRobot, Shanghai, China),
DHT22 sensor,

(DFRobot, Shanghai, China),
AD8232 ECG sensor

(DFRobot, Shanghai, China) [102]

Portable IoT-based
health monitoring system

Error percentage
Body temperature: 2.67%

Heart rate: 2.04%
SpO2: 1.58%

Server nodes,
smartphone nodes [103]

Adaptive multiple dictionary
learning-based joint
compressive sensing

for MECG compression

Percent root
mean-squared

difference: 3.942

Medtonic sensor,
(Medtronic, Minneapolis, USA),

Heartbeat sensor,
(Sunrom Electronics, Ahmedabad, Gujarat) [104]

Healthcare monitoring system
based on IoMT and

cloud-fog environment

Accuracy: 97.32%
Recall: 97.58%

Precision: 97.16%
F1-Score: 97.37%

Specificity: 96.87%
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Table 10. Cont.

Wearable/Smart/Medical Device Approach Results

ECG electrodes, Microcontroller
PIC24FJ64GB002

(Microchip Technology Inc.,
Chandler, AZ, USA) [105]

Probabilistic Neural Network

Heart disease
Accuracy: 60.98%
Precision: 58.32%
Sensitivity: 68%

Specificity: 55.1%

Holter monitor [106] Bi-directional Short
Term Memory Network

Accuracy: 98.7%
Precision: 99.1%

Recall: 99.9%

Ballistocardiogram sensor,
(Custom-made, Wuhan, China),
Polysomnography equipment

(SOMNO medics GmbH,
Randersacker, Germany) [107]

Ballistocardiogram
(BCG)-based system Median error of 4.4 ms

Pulse Express Pulse-Ox,
& Heart Rate Sensor

(ProtoCentral Electronics Pvt Ltd.,
Bengaluru, Karnataka, India),

Arduino 1010 WIFI MKR,
(Arduino,

Scarmagno, Italy) [108]

Automatic multiscale-based
peak algorithm Accuracy: 98.7%

ECG sensor, (Custom-made) [109] Residual Convolutional
Neural Network

Accuracy: 99.58%
Precision: 98.5%

Recall: 99%
AUC: 99.8%

SmartCardia INYU, (SmartCardia Inc.,
Lausanne, Switzerland) [110] Convolutional Neural Network (CNN)

Accuracy: 99.2%
Precision: 99.5%

Specificity: 99.4%
Sensitivity: 99.2%

1 Systolic rate. 2 Diastolic rate.

4.6. Others

In this subsection, we group the proposals that focused on other diseases of lesser
frequency (i.e., chronic heart failure, myocardial infarction, coronary artery disease, carotid
artery, saturated oxygen, stroke disease, ECG abnormalities, and ECG noise). In Table 11,
we list the proposals that correspond to different diseases using IoT/IoMT.

Two proposals corresponded to chronic heart failure: those of Aranki et al. [111]
and Hanumantharaju et al. [112]. Meanwhile, Sopic et al. [113] and Tozlu et al. [114]
focused on myocardial infarction detection. Verma et al. [115] detected coronary artery
disease. The study of Yu et al. [118] was the only proposal to classify stroke, while only
Rodriguez et al. [117] classified saturated oxygen and Sahani et al. [119] focused on carotid
disease. Ying et al. [116], Sivapalan et al. [121], and Rahman et al. [120] focused on ECG
abnormalities and ECG noise.

The best performance in accuracy (99.8%) was achieved by Yu et al. [118], using a deep
neural network. The worst was 97.74%, achieved by Aranki et al. [111] in combination
with an SVM classifier. The rest of the proposals reported precision, sensitivity, specificity,
recall, F1-score, and root mean square in combination with classifiers such as SVM, random
forest, long short-term memory, deep neural network, artificial neural network, an R-peak
detection algorithm, and ResNet-9 semi-supervised learning. Sahani et al. [119] reported
a reduction of the data dropout rate (21.09%) and an increment in the number of R-peak
detections (15.33%).

The devices used to detect CVD diseases included sensors (e.g., ECG, EEG, EMG,
humidity sensor, electrochemical gas sensor, temperature sensor, motion sensor) and Rasp-
berry Pi (Raspberry Pi Foundation, Cambridge, UK), ARM M4F (Nordic semiconductor,
Trondheim, Norway), 12C master (Custom-built device) microcontrollers. Hanuman-
tharaju et al. [112] used a different set of unspecified sensors, and Rodriguez et al. [117]
used a custom-built signal acquisition device.
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Table 11. IoT/IoMT-based detection of different diseases.

Wearable/Smart/Medical Device Machine Learning Approach Results

Smartphone Samsung Galaxy Young
(Samsung Electronics Co.,

Yeongtong-gu, Suwon-si, South Korea.) [111]
SVM Accuracy: 97.74%,

Precision: 92.21%

EEG sensors, ECG sensors, accelerometer,
gateway module [112] Random Forest

Accuracy: 83.35%,
Precision: 91.32%

Recall: 91.32%, F1-Score: 65%

SmartCardia INYU, (SmartCardia Inc., Lausanne,
Switzerland) [113] Random Forest Sensitivity: 87.95%,

Specificity: 78.82%

Electronic nose: 1 humidity sensor
18 electrochemical gas sensors [114] SVM

Accuracy: 97.19%,
Sensitivity: 93.37%
Specificity: 99.07%

Network on body-area sensor (BAS)
Raspberry Pi 3B+,

(Raspberry Pi Foundation,
Cambridge, UK) [115]

Deep Neural Network (DNN) Accuracy: 90%

Smart device sensors [116] ResNet-9, federated
semi-supervised learning (FSSL) Accuracy: 95.9%

Photoplethysmography sensor,
temperature sensor,

accelerometer
12C slave sensor,

microcontroller 12C master , (Custom-made, Miami,
USA) [117]

Long Short-Term Memory (LSTM) Root mean square: 0.07%
Accuracy: 99.5%

Motion sensor, ECG sensor
EMG sensor, Foot sensor [118] Long Short-Term Memory (LSTM) Accuracy: 98.99%

Raspberry Pi 3B, (Raspberry Pi
Foundation, Cambridge, UK )

NVidia Jetson Nano, (NVidia, Santa Clara, CA, USA) [119]
Deep Neural Network (DNN) Accuracy: 99.8%

ECG sensors [120] R-peak detection algorithm

Reduction of the data
dropout rate, by average of 21.09%

Number of R-peak detections
increased by 15.33% compared to
the existing classification system

NRF52 cortex ARM M4F microcontroller (NRF52DK),
(Nordic semiconductor, Trondheim, Norway) [121] Artificial Neural Network (ANN)

INCART Accuracy: 93%
INCART Sensitivity: 88%
INCART Specificity: 94%
INCART Precision: 67%

5. Examples of CVD Detection Utilizing Machine Learning

This section lists the articles that used machine learning exclusively to detect, predict,
or monitor CVD. The papers were classified in terms of the following: abnormality de-
tection, arrhythmia or atrial fibrillation, blood pressure or hypertension, cardiovascular
disease, heart disease or heart failure, myocardial infarction, coronary heart disease or
coronary artery disease, and other kinds of disease related to CVD. We provide a sum-
mary of the data sets used, the machine learning techniques applied, and the results
obtained according to the evaluation metrics (accuracy, sensitivity, specificity, F1-score).
Table 12 shows a summary of the disease classification, which led to the determination
of what type of machine learning techniques have been used to detect, predict, or moni-
tor CVD.

Table 12. Types of disease detected in selected proposals by applying machine learning techniques.

A 1 B 2 C 3 D 4 E 5 F 6 Number of Proposals

[38,40,42,44,129–157] 33 (39.28%)
[158–167] 10 (11.90%)

[37,45,46,168–188] 25 (28.57%)
[189–194] 6 (7.14%)

[195–198] 4 (4.76%)
[199–205] 7 (8.33%)

1 Abnormality detection/arrhythmia/atrial fibrillation. 2 Blood pressure/hypertension. 3 CVD/Heart disease.
4 Myocardial infarction. 5 Coronary heart/Coronary artery disease. 6 Others.

The most commonly detected conditions were arrhythmia (38.82%) and cardiovascular
disease (29.41%). Conversely, the fewest were cardiomyopathy (including hypertrophic car-
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diomyopathy), ischemic heart disease, valvular heart disease, left ventricular hypertrophy,
chronic heart failure, and stroke, classified in the 8.23% of other diseases.

5.1. Abnormality Detection and Arrhythmia

Table 13 summarizes the abnormality and arrhythmia detection proposals using only
machine learning approaches. There were 33 proposals, 26 of which used the MIT-BIH or
PhysioNet data sets. Other data sets used were privately provided by hospitals or health
centers. On the other hand, the machine learning approaches that were most frequently
used were neural networks such as convolutional neural networks, long short-term memory,
deep neural networks, bidirectional long short-term memory, lead convolutional neural
networks, deep residual neural networks, densely connected convolutional networks, multi-
scale fusion convolutional neural networks, and one-dimensional neural networks. Other
techniques included SVM, kNN, random forest, genetic algorithms, bacterial-foraging
optimization, and particle swarm optimization.

In terms of evaluation metrics, some of the higher values reported were achieved
with neural networks. Haleem et al. [142], for example, achieved 100% accuracy for
congestive heart failure events and sudden cardiac deaths. The rest of the proposals
reported accuracy in the range of 98–99%. Other metrics reported included F1-score,
precision, recall/sensitivity, specificity, AUC, positive productivity, and positive predictive
value. Focusing on sensitivity and specificity values, the best performance for the former
was 99.8%, obtained by Ma et al. [155], while the best specificity was 99.7%, obtained by
Tung et al. [149]; both proposals used convolutional neural networks.

In general, the results ranged between 81% and 99%. However, Dias et al. [141] and
Li, Qian, and Li [151] reported lower precision values: 36.8% and 65.88%, respectively.
Li, Qian, and Li [151] also reported a lower sensitivity (35.22%). Both proposals achieved
lower results in these metrics for supraventricular segment or ectopic beat.

Table 13. Abnormality and arrhythmia detection using machine learning techniques.

Data Set Approach Results

MIT-BIH (MLII) [38] Convolutional Neural Network (CNN) Accuracy: 91.33%

MIT-BIH Arrhythmia [40] Deep Neural Network
Accuracy: 99.68%,
Sensitivity: 99.48%,
Specificity: 99.83%

MIT-BIH [42] Long Short-Term Memory (LSTM) Accuracy: 99%

MIT-BIH Arrhythmia [44] Convolutional Neural Network (CNN)

Intra-patient
Accuracy: 99.79%,

Positive productivity: 97.71%,
Sensitivity: 94.65%,
Specificity: 99.36%

Inter-patient
Accuracy: 88.34%%,

Positive productivity: 48.25%,
Sensitivity: 90.90%,
Specificity: 88.51%

MIT-BIH Arrhythmia [129] SVM
Accuracy (Gaussian linear,

Polynomial kernel):
91.69%, 88.14%, 88.74%

MIT-BIH Arrhythmia,
Robust Detection of

Heart Beats in
Multimodal Data (RDHBMD) [130]

Linear-Kernel SVM

Supraventricular ectopic
beat (SVEB)

F1-score: 83%,
Sensitivity: 79.3%,
Specificity: 99.6%,

Positive predictive value: 88.3%
Ventricular ectopic beat (VEB)

F1-score: 92%,
Sensitivity: 92.8%,
Specificity: 99.4%

MIT-BIH MITDBA, MIT-BIH FVADB,
Ventricular Tachyarrhythmia from

Creighton University (VTADB) [131]
SVM

Accuracy: 98.9%,
Sensitivity: 99.08%,
Specificity: 97.11%
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Table 13. Cont.

Data Set Approach Results

MIT-BIH Atrial Fibrillation,
MIT-BIH Arrhythmia [132]

Wavelet Transform,
Bacterial-Foraging

Optimization (BFO),
Particle Swarm

Optimization (PSO)

AFib 1-WT 2 accuracy: 99.1%,
MI 3-SVM accuracy: 98.9%,
BBB 4-SVM accuracy: 99.3%

MIT-BIH Arrhythmia [133] Multi-scale Fusion-Convolutional
Neural Network

Accuracy; 98%,
Sensitivity: 96.17%,
Specificity: 96.38%

CPSC_2018, PhysioNet/CinC_2017 [134]
End-to-End Deep Multi-Scale
Fusion Convolutional Neural

Network (DMSFNet)

F1-score CPSC: 82.8%,
F1-score CinC: 84.01%,
Accuracy CPSC: 83%,
Accuracy CinC: 85%

MIT-BIH Atrial Fibrillation
Database (AFDB) [135]

Lead Convolutional
Neural Network (LCNN)

AUC: 93.17%,
Sensitivity: 98.51%,
Specificity: 98.26%

PhysioNet Atrial Fibrillation [136] Long Short-Term
Memory (LSMT) Accuracy: 98.15%

MIT-BIH [137] Long Short-Term
Memory (LSMT)

Accuracy: 94%,
AUC: 96.58%,

Precision: 95%,
Sensitivity: 95%

MIT-BIH Atrial Fibrillation [138]
Linear regression, k-NN,

CART, SVM,
Random Forest, XGBoost

Random Forest
Accuracy: 95.47%,
Sensitivity: 94.54%,
Specificity: 96.40%,
Precision: 96.55%,
F1-score: 95.56%

Long-Term Atrial Fibrillation
Database (LTAFDB) [139] Random Forest

AUC/AP (Average Precision):
50% compression: 91%, 90%,
75% compression: 92%, 91%,
95% compression: 82%, 91%

MIT-BIH Arrhythmia [140]
Genetic Algorithm,

Deep Neural Network,
k-NN

Accuracy: 98%

MIT-BIH Arrhythmia [141] Linear Discriminant Analysis

Normal
Sensitivity: 93.7%
Precision: 99.2%

Supraventricular ectopic beat
Sensitivity: 89.7%
Precision: 36.8%

Entricular ectopic beat
Sensitivity: 87.9%
Precision: 93.9%

MIT-BIH Arrhythmia,
The European Society

of Cardiology ST-T,
Boston’s Beth Israel Deaconess

Medical Center [142]

Convolutional Bidirectional
Long Short-Term Memory

Neural Networks
Time adaptive

Convolutional Neural
Networks

Congestive heart failure events
Accuracy: 100%

Arrhtythmia events
Accuracy: 97.9%

Sudden cardiac deaths
Accuracy: 100%

MIT-BIH Arrhythmia,
Creighton University

Ventricular Tachyarrhythmia,
MIT-BIH Atrial Fibrillation,

MIT-BIH Malignant Ventricular
Ectopy [143]

Convolutional Neural Network (CNN)
(AlexNet, VGG16, VGG19)

First stage
Accuracy: 98.41%

Second stage
Accuracy: 95.3%

PhysioNet 2017 [144] Convolutional Neural Network (CNN),
SVM

F1-Score: 84.19%
Precision: 81.65%

Recall: 75.88%

ECG Rhythm [145]

Deep Neural Network,
k-NN, SVM,

Random Forest,
Naive Bayes,

GBoost, AdaBoost,
Decision Tree,

Multilayer Perceptron

RF Accuracy: 98%
RF Sensitivity: 97.69%
RF Specificity: 99.34%
RF Precision: 97.77%
RF F1-Score: 97.72%

MIT-BIH, MIT-BIH NSR,
BIDMC [146] Hybrid Deep CNN

Accuracy: 98.75%
Specificity: 99%

Sensitivity: 98.18%
Time: 0.15 seg
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Table 13. Cont.

Data set Approach Results

MIT-BIH Arrhythmia [147] One-Dimensional Neural
Network (1D-CNN)

Accuracy: 98.35%
Precision: 99.36%

Sensitivity: 98.18%

MIT-BIH Arrhythmia [148] Convolutional Neural Network (CNN)

Accuracy: 98.82%
Sensitivity: 93.14%
Specificity: 94.73%
F1-Score: 93.52%

MIT-BIH Arrhythmia [149] Convolutional Neural Network (CNN)

Accuracy: 99.4%
Precision: 97.6%

Specificity: 99.7%
Sensitivity: 97.1%

MIT-BIH Arrhythmia
PTB Diagnostic ECG [150]

Deep Learning and
fuzzy clustering (Fuzz-ClustNet)

Accuracy: 98.66%
Precision: 98.92%

Recall: 93.88%
F1-Score: 96.34%

MIT-BIH Arrhythmia [151] Deep Residual Convolutional
Neural Network

Normal segments
Sensitivity: 94.54%
Precision: 93.33%

Specificity: 80.80%
Supraventricular segment

Sensitivity: 35.22%
Precision: 65.88%

Specificity: 98.83%

MIT-BIH Arrhythmia [152] Feedforward and recurrent
deep neural networks

Accuracy: 99.46%
Specificity: 99.57%
Sensitivity: 99.46%
Precision: 98.26%
F1-Score: 97.63%

MIT-BIH Arrhythmia [153] Sequential Artificial Features
F1-Score: 98.96%
Precision: 98.93%
Sensitivity: 99%

CinC2017, ICBEB2018 [154] Densely Connected
Convolutional Network

CinC2017 F1-Score: 83.10%
ICBEB2018: 82.60%

PLA General Hospital,
CPSC 2018,

MIT-BIH Arrhythmia [155]
Convolutional Neural Network (CNN)

F1-Score: 99.57%
Accuracy: 99.89%
Precision: 99.28%

Specificity: 99.93%
Sensitivity: 99.86%

MIT-BIH Arrhythmia [156] Convolutional Neural Network (CNN)
Accuracy: 99.01%
Sensitivity: 99.11%
Precision: 99.02%

Atrial Fibrillation
Prediction PyshioNet [157] SVM, k-NN

Sensitivity: 98.8%
Specificity: 96.7%
Accuracy: 97.7%

1 Atrial fibrillation. 2 Wavelet transform. 3 Myocardial infarction. 4 Bundle branch block.

5.2. Blood Pressure and Hypertension

Table 14 shows a summary of the proposals for blood pressure and hypertension
detection using only machine learning approaches. Ten proposals were analyzed in this
category for detecting blood pressure or hypertension. Nine proposals used the MIT-BIH
data set, while only one proposal used the UCI data set. The more frequently used machine
learning techniques included recurrent neural networks, convolutional neural networks,
bi-directional long short-term memory, long short-term memory, multi-scale fusion neural
networks, deep learning, artificial neural networks, and decision trees. In terms of results,
only three proposals included accuracy as a metric: Alkhodari et al. [158], Zhang et al. [163],
and Kim et al. [167]. Alkhodari et al. [158] and Kim et al. [167] reported an accuracy
above 91%, while Zhang et al. [80] reported an accuracy for systolic blood pressure in
normal, atrial fibrillation, and coronary arteriosclerosis subjects. Other proposals focused
on MAE, RMSE, and mean absolute error or standard deviation metrics. The majority
reported results for systolic and diastolic blood pressure, but Alkhodari et al. [158]; Landry,
Peterson, and Arami [159]; Saleh et al. [160]; and Mahmud et al. [166] reported only
general results. In terms of accuracy, precision, F1-score, sensitivity, and specificity metrics,
Alkhodari et al. [158] obtained a better accuracy (97.08%) than Kim et al. [167] (91.44%
and 94.66% for systolic and diastolic BP); however, Kim et al. [167] achieved a better



Healthcare 2023, 11, 2240 25 of 50

performance in terms of sensitivity and specificity (above 94% for specificity and above
70.17%for sensitivity).

Table 14. Detection of blood pressure and high blood pressure using machine learning techniques.

Data Set Approach Results

PhysioNet [158] ANOVA, Chi-squared, Decision Tree,
Random Undersampling Boosting (RUSBOOST)

Accuracy: 97.08%,
Precision: 81.25%,
F1-score: 86.67%

MIMIC-II Database [159]
Nonlinear Auto-regressive Model

with Exogenous Input (NARX),
ANN Perceptron

Mean Absolute Error (MAE) 10 beat
ECG: 3.91 ± 4.90,
PPG: 2.59 ± 3.21,

ECG+PPG: 3.05 ± 3.81

MIMIC-II Database [160]

Recurrent Neural Network (RNN),
Long Short-Term Memory (LSTM),

Bidirectional Long Short-Term Memory (BI-LSTM),
Grated Recurrent Units (GRU)

Averages using 1, 2, and
3 hidden layers (RMSE)
RNN: 3.025, 3.065, 3.055
LSTM: 3.106, 3.074, 3.06

BI-LSTM: 3.101, 3.069, 2.840
GRU: 3.077, 3.084, 3.061

MIMIC-II Database [161] Convolutional Neural Network (CNN)

Large db MAE
Systolic BP: 3.70
Diastolic BP: 2.81

Small db MAE
Systolic BP: 1.37

Diastolic BP: 0.93

UCI Machine Learning
Repository [162]

Multi-scale fusion neural
networks and multi-task

learning

Mean and std
Systolic BP: 0.97 ± 8.87

Diastolic BP: 0.55 ± 4.23

MIMIC-II Database [163] Deep Learning (BiLSTM-At)

Classification: 92.19%
Normal Subjects

Accuracy Systolic BP:
2.815 mmHG and 1.876 mmHG

AF Subjects
Accuracy Systolic BP:

3.024 mmHG and 1.334 mmHG
CA Subjects

Accuracy Systolic BP:
4.444 mmHG and 2.549 mmHG

MIMIC-II Database [164] Deep Learning

Diastolic BP
Root mean square error: 1.17

Mean absolute error: 1.04
Systolic BP

Root mean square error: 1.06
Mean absolute error: 1.02

MIMIC-II Database [165] Recurrent Neural Network
with bidirectional connections

Systolic BP
7-feature set 2.9 ± 3.94

Diastolic BP
1.31 ± 1.76

MIMIC-III Database [166] BiConvLSTM MAE: 2.29
Mean: 0.075

MIMIC-II Database [167] Deep Learning

Systolic BP
Accuracy: 91.44%
Sensitivity: 70.17%
Specificity: 94.20%

F1-Score:70.07%
Diastolic BP

Accuracy: 94.66%
Sensitivity: 83.10%
Specificity: 94.88%
F1-Score: 84.67%

5.3. Cardiovascular Disease/Heart Disease

In Table 15, we list the proposals that classified a common disease (cardiovascular
disease or heart rate disease) using only machine learning approaches. There were 25 pro-
posals, 14 of which used the PhysioNet and MIT-BIH data sets, 12 used the UCI data set,
5 used private data sets, and 2 used the Framingham data set. Many machine learning
approaches were used to classify cardiovascular disease, including SVM, Naïve Bayes, ran-
dom forest, multi-layer perceptron, hybrid random forest, XGBoost, convolutional neural
network, long short-term memory, particle swarm optimization, neuro-fuzzy inference
system, deep neural network, beetle swarm optimization, twin SVM, deep neural net-
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work, neural network, artificial neural network, decision tree, bidirectional long short-term
memory, sine cosine kNN, gradient boost, deep learning, growing multi-layer network,
and other approaches for big data processing, ensemble-based feature selection, and recur-
sive feature elimination.

The most common metrics used for evaluation were accuracy, precision, recall, F1-score,
sensitivity, specificity, AUC, MAE, and RMSE. The positive predictive value, the estimation
error, and the equal rate of error was also used to evaluate the proposals. The best accuracy
achieved was 99.45%, in combination with a modified salp swarm optimization–adaptative
neuro fuzzy inference system proposed by Khan and Algarni [45]; they also achieved
good precision (96.54%). Deepika and Balaji [182] used a multi-layer perceptron to obtain
good performance in terms of accuracy, sensitivity, F1-score, specificity, and Kappa (all of
them above 96.40%). The two proposals which reported lower performance were those of
Theerthagiri [181] and Stankovic et al. [185], achieving a performance above 83% but lower
than 89% in accuracy, precision, F1-score, and recall. Theerthagiri [181] also obtained lower
performance in AUC, MSE, and RMSE, compared to other proposals.

Table 15. Detecting cardiovascular and heart disease using machine learning techniques.

Data set Approach Results

Cleveland, Hungarian,
Long-beach VA, Switzerland (UCI) [168]

SVM, Naive Bayes,
Random Forest,

Multilayer Perceptron
Accuracy: 98%

Cleveland (UCI) [37] Hybrid Random Forest
with a Linear Model Accuracy: 95.87%

Hungarian HD (UCI) [169] Deep Learning Modified
Neural Network (DLMNN) Security: 95.87%

Statlog Cleveland (UCI) [170]
Density-Based Spatial Clustering

of Application with Noise
(DBSCAN)/SMOTE-ENN/XGBoost

STATLOG dataset
Accuracy: 95.90 ± 5.55,
Precision: 97.14 ± 5.71,

Sensitivity: 94.67 ± 11.08,
Cleveland dataset

Accuracy: 98.40 ± 3.21,
Precision: 98.57 ± 4.29,
Sensitivity: 98.33 ± 5.00

Cleveland (UCI) [45]

Modified Salp-Swarm
Optimization-Adaptative

Neuro-Fuzzy Inference
System (MSSO-ANFIS)

Accuracy: 99.45%,
Precision: 96.54%

PTB Diagnostic ECG, Fantasia Database,
St. Petersburg Institute of Cardiological
Technics 12-lead Arrhythmia Database,

PTB Diagnostic ECG Database,
BIDMC Congestive Heart

Failure Database [46]

Convolutional Neural Network (CNN),
Long Short-Term Memory (LSTM)

Accuracy: 98.51%,
Specificity: 97.89%,
Sensitivity: 99.30%,

Positive predictive value: 97.33%

PhysioNet [171] Particle Swarm Optimization (PSO),
Twin Support Vector Machine (TSVM) Accuracy: 96.68%

Framingham and Hungarian Kaggle,
Health Dataset USA Health site [172]

Beetle Swarm Optimization-Adaptive
Neuro-fuzzy inference
system (BSO-ANFIS)

BSO-ANFIS of heart
disease classification

Accuracy: 99.1%,
Precision: 99.37%,
Specificity: 99.4%,
Sensitivity: 99.21%

BSO-ANFIS of
multi-disease identification

Accuracy: 96.08%,
Precision: 98.63%

MIT-BIH Arrhythmia,
BIDMC Congestive Heart Failure,
MIT-BIH Normal Sinus Rhythm

Deep Neural Network Accuracy: 99%

Cleveland, South Africa,
Z-Alizadeh Sani, Framingham,

Statlog [173]
Deep Belief Network

Cleveland Accuracy: 89.2%
South Africa Accuracy: 89.5%

Z-Alizadeh Sani Accuracy: 89.7%
Framingham Accuracy: 90.2%

Statlog cardiac disease Accuracy: 91.2%

Computing in Cardiology Challenge [174] Neural Network Accuracy: 97%
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Table 15. Cont.

Data set Approach Results

UCI Machine Learning Repository [175] Artificial Neural Network (ANN)

Accuracy: 95.78%
Precision: 95.2%

Recall: 95.2%
Equal rate of error: 4.32%

Dalian Medical University
and Northeastern University [176]

Three Decision Tree-based
multilabel learning methods

F1-score: 86.73%
AUC: 90.80%

Accuracy: 92.72%

Statlog, Cleveland, Hungary [177]

Deep Bidirectional
Long Short-Term Memory

with Elliptic Curve
Cryptography dependent
Diffi-Huffman algorithm

Accuracy: 97.53%
Sensitivity: 97.93%
Specificity: 97.52%

F1-Score: 7.65%

Cleveland [178]
Big data processing

Apache Spark
Apache Kafka

Accuracy: 92.05%
Sensitivity: 88.10%
Specificity: 95.65%

UCI public repository [179] Sine Cosine Weighted k-NN

Accuracy: 92.13%
Precision: 88.21%

Recall: 93.27%
F1-Score: 90.60%

RMSE: 0.1115

MAHNOB-HCI, MMSE-HR,
UBFC-Rppg, VIPL-HR [180] Convolutional Neural Network (CNN)

VIPL-HR
Accuracy: 90%

MAE: 5.23
RMSE: 7.21

Kaggle repository [181] Recursive feature elimination
based Gradient Boosting (RFE-GB)

Accuracy: 88.8%
Precision: 88.8%

Recall: 85%
F1-score: 83%

AUC: 84%
MSE: 0.20

RMSE: 0.44

Cleveland [182]
Multi-layer Perceptron

for Enhanced Brownian Motion
based on Dragonfly Algorithm

Accuracy: 97.47%
Sensitivity: 98.92%
F1-score: 96.45%

Specificity: 96.47%
Kappa: 96.75%

Chapman University and
Shaoxing People’s Hospital,

China Physiological Signal Challenge [183]
Deep Learning System

F1-score: 97.18%
Precision: 97.36%

Recall: 97.03%
Accuracy: 98.73%

UCI Heart Disease [184] Stacking Classifiers Model

Accuracy: 91.8%
Precision: 92.6%

Sensitivity: 92.6%
Specificity: 91%

Breast Cancer,
Heart Disease,

Pima of UCI repository [185]
Multi-layer Perceptron

Heart Disease prediction
with MLP-AOA-AE

Accuracy: 83.90%
Precision: 84.69%
F1-score: 83.84%
Recall: 83.90%

Pulsewatch, UMMC Simband
Stanford University’s PPG,

MIMIC-III [186]
Ensemble based feature selection

MIMIC-III
Accuracy: 99%
Sensitivity: 83%
Specificity: 98%

UMMC
Accuracy: 94%
Sensitivity: 95%
Specificity: 91%

CapnoBase, MIMIC-II [187] Growing Multilayer Network

CapnoBase
Sensitivity: 98.49%
Precision: 98.60%
F1-score: 98.55%

MIMIC-II
Sensitivity: 96.01%
Precision: 98.35%
F1-score: 97.17%

Mindray,
MIMIC [188] Knowledge Distillation Strategies

Estimation error
Systolic BP: 0.02 ± 5.93 mmHG
Diastolic BP: 0.01 ± 3.87 mmHG
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5.4. Myocardial Infarction

A myocardial infarction (MI) is characterized by a typical rise and/or fall in cardiac
troponin, with at least one value above the upper reference limit of the assay, and at least
one other characteristic associated with ischemia. Also known as myocardial infarction, it
occurs when the flow of oxygenated blood to a segment of the heart muscle is suddenly
interrupted and the heart is deprived of oxygen. The segment of heart muscle begins to die
if blood flow is not immediately restored [206].

Table 16 lists the six proposals that classified myocardial infarction using only machine
learning approaches. Three of them used convolutional neural networks, one a long short-term
memory, and two used traditional approaches: SVM and random forest. The most-used data
sets were the Physikalisch-Technische Bundesanstal and PhysioNet data sets. Xiao et al. [192]
used medical records retrieved from a hospital, but obtained lower performance in terms
of accuracy and AUC (82% and 85%, respectively). The best performance was obtained by
Fatimah et al. [193] in combination with kNN, where the accuracy, sensitivity, and specificity
obtained were all above 99.94%. Meanwhile, Deng et al. [190] used a convolutional neural
network and achieved good performance (above 98.1%), and Ibrahim; et al. [191] obtained a
performance above 93.4% with an XGBoost classifier.

Table 16. Detecting myocardial infarction using machine learning techniques.

Data Set Machine Learning Approach Results

Physikalisch-Technische Bundesanstalt
(PTB) diagnostic ECG,

AF Classification [PhysioNet] [189]

Convolutional Neural Network–Long
Short-term memory (CNN-LSTM)

Sensitivity: 92.4%,
Specificity: 97.7%,

PPV 1: 97.2%,
F1-score: 94.6%

Physikalisch-Technische Bundesanstalt [190] Convolutional Neural Network
Accuracy: 98.13%,
Sensitivity: 98.19%,
Specificity: 98.09%

MIT-BIH, Electrocardiogram Vigilance
with Electronic data Warehouse (ECG-ViEW II) [191]

Convolutional Neural Network (CNN),
Recurrent Neural Network, XGBoost

Accuracy: 89.8%, 84.6%, 97.5%,
Sensitivity: 93.2%, 78%, 93.5%,

Specificity: 88.1%, 87.8%, 99.4%,
F1-score: 89%, 82.8%, 97.1%,

AUROC: 90.7%, 82.9%, 96.5%

Medical records from the hospital
information system [192] Random Forest AUC: 85%, Accuracy: 82%

MIT PhysioNet PTB
diagnostic ECG [193] k-NN

Accuracy: 99.96%
Sensitivity: 99.96%
Specificity: 99.95%

Physikalisch-Technische
Bundesanstalt diagnostic ECG [194] Long Short-Term Memory (LSTM)

Accuracy: 89.56%
Recall: 91.88%

Specificity: 80.81%
1 Positive predictive value.

5.5. Coronary Artery Disease/Coronary Heart Disease

Coronary heart disease is a condition in which the heart muscle—or myocardium—
does not receive enough oxygen as the coronary arteries do not have an adequate blood sup-
ply. Coronary artery obstruction occurs when the arteries become stiff and narrow due to
the build-up of fatty deposits (plaques). These fatty deposits are mainly composed of choles-
terol and fibrin and, when these deposits predominate, it is called atherosclerosis [207].

Table 17 summarized the proposals for coronary heart disease detection using only ma-
chine learning approaches. There were four proposals, each of which considered different
approaches: logistic regression, elastic net, SVM, random forest, XGBoost, multi-layer per-
ceptron, k-NN, bagging, binary logistic classification, Naïve Bayes, boosting, and random
forest. The data sets also were from different sources, including Framingham, PhysioNet,
and a cardiovascular disease data set. In terms of evaluation metrics, the most used were
AUC, accuracy, sensitivity, and specificity. The best performance in terms of sensitivity was
100%, obtained by Dash et al. [198]. Meanwhile, Masih, Naz, and Ahuja [196] achieved
better accuracy and specificity: 96.50% and 98.28%, respectively.
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Table 17. Detecting coronary artery disease and coronary heart disease using machine learning
techniques.

Data Set/Study Machine Learning Approach Results

——— [195] Logistic regression, Elastic Net,
SVM, Random Forest, XGBoost

AUC CAD 1 classification
LR: 0.79 ± 0.03,
EN: 0.90 ± 0.03,

SVM: 0.82 ± 0.03,
RF: 0.83 ± 0.03,

XGBoost: 0.85 ± 0.03
AUC LVEDP 2 classification

LR: 0.77 ± 0.05,
EN: 0.89 ± 0.03,

SVM: 0.76 ± 0.04,
RF: 0.73 ± 0.05,

XGBoost: 0.81 ± 0.04,
Sensitivity CAD EN: 80%,
Specificity CAD EN: 80%,

Sensitivity LVEDP EN: 91%,
Specificity LVEDP EN: 81%

Framingham Heart Study [196] Multilayer Perceptron
Accuracy: 96.50%,
Sensitivity: 91.90%,
Specificity: 98.28%

Cardiovascular Disease Dataset [197]
k-NN, Bagging,

Binary Logistic Classification,
Naive Bayes, Boosting

Bagged Decision
Accuracy: 73.9%

Gradient Boosting
Recall: 73.39%

Neural Network
F1-score: 72%

XGB
AUC: 73%
AdaBoost

Precision: 77.8%

MIMIC-II [198] Random Forest
Accuracy: 96%

Sensitivity: 100%
Specificity: 85%

1 Coronary artery disease; 2 Left ventricular end-diastolic pressure.

5.6. Others

In this section, diverse proposals from different diseases are grouped into the same
table (Table 18), for a total of seven proposals. For example, Dai, Hwang, and Tseng [202] fo-
cused on classifying cardiomyopathy; Smole et al. [204] considered hypertrophic cardiomy-
opathy; Elias et al. [200] considered valvular heart disease; Duffy et al. [201] considered
left ventricular hypertrophy; Loeffler and Starobin [203] considered ischemic heart disease;
Li et al. [199] considered chronic heart disease; and Pathan et al. [205] considered stroke.

The most-used machine learning techniques were convolutional neural networks (1D,
3D, deep convolutional). Other proposals used more traditional techniques, such as random
forest, SVM, and boosted trees. Elias et al. [200] used AUC-ROC as an evaluation metric,
obtaining 88% for detecting aortic stenosis. Meanwhile, Duffy et al. [201] reported an
AUC of 98% for hypertrophic cardiomyopathy. Dai, Hwang, and Tseng [202] achieved
99.84% accuracy—the highest of the seven proposals. Pathan et al. [205] used a support
vector machine classifier and obtained the precision, sensitivity, F1 score, and accuracy of
each attribute in the Mckinsey data set (i.e., gender, age, hypertension, heart disease, ever
married, work type, residence, glucose level, BMI, and smoking status).
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Table 18. Detecting other diseases using machine learning techniques.

Data Set/Study Machine Learning Approach Results

MIT-BIH RR Interval [199] Convolutional Neural Network (CNN) Accuracy: 81.85%

Data Hospital ECG
echocardiographic dataset at

New York Presbyterian Lawrence
Hospital [200]

Convolutional Neural Network (CNN)
Aortic stenosis AUC-ROC: 88%

Aortic regurgitation AUC-ROC: 77%
Mitral regurgitation AUC-ROC: 83%

Physician-curated cohorts Stanford [201] 3D Convolutional Neural Network

Cardiac amyloidosis
AUC: 83%

Hypertrophic cardiomyopathy AUC: 98%

Physiobank [202] Deep Convolutional
Neural Network (ResNet)

Three-seconds ECGsignals
Accuracy: 99.84%
Sensitivity: 99.52%
Specificity: 99.95%

In-silico ECGs [203] 1D Convolutional Neural Network MSE: 0.2404

Careggi University Hospital [204]

Random Forest, SVM,
Boosted Trees, Neural Networks,

Bayesian Optimization,
Random Search

Boosted Trees
Accuracy: 75%
F1-score: 82%

AUC: 82%
Neural Networks
Specificity: 79%
Precision: 79%

Electronic Health Record
(EHR) by McKinsey Company [205] SVM

Gender precision: 50%,
Gender sensitivity: 32%,
Gender F1-score: 30%,
Gender accuracy: 50%,

Age precision: 56%,
Age sensitivity: 43%,
Age F1-score: 49%,
Age accuracy: 55%,

Hypertension precision: 51%,
Hypertension sensitivity: 52%,
Hypertension F1-score: 49%,
Hypertension accuracy: 51%,
Heart disease precision: 49%,

Heart disease sensitivity: 50%,
Heart disease F1-score: 37%,
Heart disease accuracy: 49%,
Ever married precision: 63%,
Ever married sensitivity: 6%,
Ever married F1-score: 11%,
Ever married accuracy: 51%,

Work type precision: 52%,
Work type sensitivity: 76%,
Work type F1-score: 62%,
Work type accuracy: 53%,

Residence type precision: 51%,
Residence type sensitivity: 84%,
Residence type F1-score: 63%,
Residence type accuracy: 51%,
Glucose level precision: 51%,

Glucose level sensitivity: 51%,
Glucose level F1-score: 48%,
Glucose level accuracy: 50%,

BMI precision: 52%,
BMI sensitivity: 38%,
BMI F1-score: 34%,
BMI accuracy: 50%,

Smoking status precision: 49%,
Smoking status sensitivity: 39%,
Smoking status F1-score: 32%,
Smoking status accuracy: 49%

6. Results and Discussion

As a result of this systematic review, 162 articles were analyzed and classified into
two categories: those using IoT/IoMT technologies and those applying machine learning
techniques. We obtained 78 proposals for the first category and 84 for the second. In each of
these categories, we evaluated the articles according to six parameters: Study area, disease,
data set used, wearable device/smart device/medical device, approach, and outcomes. We
utilized these categories to answer the research questions presented in Section 3.1. For RQ1,
we collected information about wearable devices/smart devices/medical devices; for RQ2,
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we considered the data set used, approach, and results; and, finally, for RQ3, we focused
on the predicted disease.

Our reading of the 162 papers revealed that several devices have been used to monitor
or detect CVD, including smartphones, microcontroller boards with sensors, and even
experimental devices built specifically for CVD. We also found that neural networks were
one of the most commonly used machine learning approaches, including convolutional
neural networks, long short-term memory, bidirectional long short-term memory, multi-
layer perceptrons, and deep neural networks.

Unlike other works, our comprehensive review details the machine learning meth-
ods used in conjunction with wearable/smart devices/medical devices and data sets for
the detection, prediction, and/or monitoring of CVD, including the most-researched dis-
ease types (i.e., abnormality detection/arrhythmia, aortic stenosis, arterial stiffness, atrial
fibrillation, blood pressure/hypertension, heart disease in general, chronic heart failure,
myocardial infarction, coronary heart disease and stroke), in a single work. We place focus
on the technology used, presented in the form of wearable devices/smart devices/medical
devices and machine learning approaches for the classification of CVD, rather than a spe-
cific disease. Our results indicate that CVD/heart disease in general was the disease most
commonly captured by wearable devices/smart devices/medical devices. In contrast,
abnormality detection/arrhythmia was the disease most focused on when applying ma-
chine learning methods, thanks to the public MIT-BIH data set. We found that there is a
need for more public CVD data sets, as the MIT-BIH and Cleveland-UCI public data sets
were the most widely used. On the other hand, we also found that neural networks were
the most-used approach, while other approaches included traditional machine learning
methods, statistical approaches, and optimization techniques.

We now summarize the main results presented in Sections 4 and 5, with the aim of
answering the research questions introduced in Section 3. The discussion is divided into
three parts, related to the detection, prediction, or monitoring of CVD using IoT/IoMT
technology or machine learning techniques.

6.1. Research Question 1

RQ1: What types of devices with IoT and IoMT technologies have been used to detect
and predict cardiovascular disease using machine learning? was focused on discovering
the technologies and wearable devices/smart devices/medical devices used to detect or
monitor CVD in real-time as preventive care.

The technologies discovered in the systematic review included medical devices, smart-
phones, microcontroller boards, sensors, smartwatches, radar, and wearable devices. These
technologies were combined with frameworks, applications, and systems to monitor or
detect CVD. Some technologies used the cloud to store and process the data obtained from
the devices. In these cases, data privacy and security are also important, considering the
importance of patient confidentiality. The devices and the system need to be secure and
reliable, as they manage medical and physiological data. Preferably, the devices must be
FDA-approved to avoid significant measurement errors; however, in monitoring cases,
some patients may not be able to afford medical devices and a framework including com-
mercial wearable devices needs to be developed. This is especially important for rural
communities which, in some cases, do not have easy access to health services. In this case,
the systems must be responsive to end-user requests for data extraction, downloading,
and consultation. They must also be non-intrusive and easy to wear (body placement).

After analyzing the 162 papers selected as relevant, we observed an increase in relevant
research output starting around 2019. These proposals started to use IoT/IoMT devices
more frequently for the monitoring of chronic diseases in real-time, with promising results
obtained after the COVID pandemic. Some of the proposals included in the review used
IoT/IoMT technologies in combination with clinical decision support systems. The use of
these systems can help clinicians to assess the risk of heart disease and provide treatments
to further manage risk. Implementing models into decision support systems can improve
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preventive care, allow for the collection and analysis of data in real-time, and reduce the
likelihood of misdiagnosis. The proposed models uncovered in this systematic review were
developed to provide high-performance predictions of the presence or absence of heart
disease, given the current condition of the participants.

Other proposals used frameworks in combination with IoT/IoMT technologies.
Khan [43] proposed modules in a prediction system that integrates hardware devices,
microcontrollers, and LoRa communication hardware to transmit data to the cloud system.
Forkan et al. [78] presented a generalized framework for personalized healthcare connected
to a personal cloud server. The local server only collects low-level data (e.g., ECG data,
blood pressure monitor data, accelerometer data) from the ambient assisted living system,
then forwards them directly to the context aggregator or the personal cloud server.

Microcontrollers were one of the most common devices used for the detection or pre-
diction of CVD. The two most common microcontrollers were Arduino and Raspberry Pi,
in combination with various sensors (e.g., photopleytmography, ECG, heart rate, tempera-
ture, electroencephalagram, SpO2, respiration, EMG). Some authors have also developed
healthcare monitoring systems presenting good results in the evaluation metrics. In such
instances, the medical devices performed well in the evaluation process, such as Holter de-
vices, biomedical sensors, and Omron, achieving an accuracy of over 94%. To the contrary,
sensors and microcontroller boards only achieved an accuracy above 72%. Other devices,
such as the Lenovo Smart ECG Vest, achieved an accuracy above 86%. In terms of speci-
ficity, the Kardiamobile and SmartCardia devices achieved 74.9% and 78.82%, respectively.
The Zigbee device achieved an accuracy of 92.11%, while the SmartCardia NYU device
achieved accuracy, precision, specificity, F1-score, and sensitivity values above 90%.

The most convenient device we detected for the monitoring of CVD were smartphones,
being a non-intrusive device that most of people have access to. Unfortunately, these
devices do not provide good measurements, when compared to medical devices, and wrong
measurements can lead to mortally serious outcomes. Ideally, only medical-grade devices
should be used to monitor chronic diseases such as CVD, precisely due to the importance
of acting in a timely manner in the event of an emergency. People who monitor their
health on a daily basis can survive if the system alerts them (or their caregivers) to an
impending stroke or heart attack. Devices that use sensors or microcontrollers provide
a good solution for an unobtrusive device, but a huge amount of testing is necessary
to approve the reliability of their measurements. The goal of any device that monitors a
chronic disease is to prevent an incoming emergency and send alerts to a caregiver, relatives,
and even hospitals, in order to prevent a loss of life.

6.2. Research Question 2

RQ2: What machine learning techniques have been applied to detect and predict
cardiovascular disease? was focused on determining the machine learning approaches
used to classify, predict, and/or analyze CVD data, in order to compare the approaches as
well as the evaluation metrics and their results.

Machine learning techniques allow for the exploration of an immense amount of data,
feeding a computer algorithm to analyze the input data. As such, they allow software ap-
plications to predict diseases. As described in Section 5, many machine learning techniques
have been used to detect CVD. Some of the most popular approaches were neural networks
and classifiers such as random forest, XGBoost, k nearest neighbors, or support vector
machine. Other proposals have used a combination of techniques, such as a modified salp
swarm optimization–adaptive neuro-fuzzy inference system (MSSO-ANFIS) and a beetle
swarm optimization–adaptive neuro-fuzzy inference system (BSO-ANFIS). It was found
that the proposals using a combination of machine learning approaches generally obtained
good performance in the accuracy metric, over 96%. Meanwhile, those utilizing neural
networks (deep neural networks, multi-layer perceptrons, convolutional networks, long
short-term memory) obtained accuracy values above 90%. Some recent algorithms have
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been applied to CVD detection; for example, particle swarm optimization has been used in
two proposals—those of Dang et al. [133]—and obtained an accuracy of above 95%.

Other approaches, such as linear-kernel SVM and hybrid random forest with a linear
model, have been used for CVD detection and achieved good performance in terms of eval-
uation metrics. Linear kernel SVM achieved specificity and sensitivity of 99.6% and 79.3%,
respectively, while the hybrid random forest achieved an accuracy of 88.7%. The proposals
that used an SVM as a machine learning classifier obtained an accuracy above 88%.

We noticed that the best performance in evaluation metrics was obtained with a
combination of techniques and neural networks. The most popular classifiers (Random
Forest, SVM, XGBoost) achieved good performance. Some of the neural networks used
included deep neural networks, convolutional neural networks, long short-term memory,
multi-scale fusion convolutional neural networks, end-to-end deep multi-scale fusion
convolutional neural networks, lead convolutional neural networks, recurrent neural
networks, bidirectional long short-term memory, deep learning-modified neural networks,
and convolutional neural network–long short-term memory. The most widely used neural
networks were the convolutional neural network and long short-term memory.

In general, deep learning using neural networks, as some of the most-used techniques
in the state-of-the-art, obtained good results. However, some of the proposals solely focused
on the accuracy metric, describing how the model performs across all classes without focus-
ing on other metrics such as sensitivity, specificity, precision, or F1-score. Some algorithms
based on the behavior of animals were used to detect or predict CVD, such as the dragonfly
algorithm used by Deepika and Bajaji [182], which obtained 97.47% accuracy, 98.92% sensi-
tivity, 96.45% F1-score, 96.47% specificity, and 96.75% kappa. Another example is the study
of Singh et al. [172] who obtained 99.91% accuracy, 99.37% precision, 99.4% specificity,
and 99.21% sensitivity for heart disease classification using a beetle swarm optimization–
adaptive neuro-fuzzy inference system. Raj [171] also used an animal-inspired algorithm
in the modified salp swarm optimization–adaptative neuro-fuzzy inference system to ob-
tain 99.45% accuracy and 96.54% precision. Khan and Algarni [45] used the biologically
inspired particle swarm optimization algorithm to achieve 99% accuracy. Similarly, Kora,
Abraham, and Meenakshi [132] used the particle swarm optimization in addition to a
bacterial-foraging optimization to obtain 99.1% accuracy for atrial fibrillation classification
applying wavelet transform, 98.9% accuracy for myocardial infarction using SVM classifier,
and 99.3% accuracy for bundle branch block using the same classifier.

6.3. Research Question 3

RQ3: What types of diseases have been detected and predicted? was focused on
gathering the cardiovascular diseases that are more reliable to monitor or detect through
the use of devices/wearable devices/smart devices/medical devices. Likewise, we also
aimed to determine the diseases that are hardly monitored using IoT/IoMT technologies,
as an opportunity to develop real-time systems or applications.

The most frequently detected diseases using IoT/IoMT technologies were cardiovas-
cular diseases in general, arrhythmia, and blood pressure/hypertension. On the other
hand, the most common conditions detected by machine learning alone were arrhythmia,
cardiovascular disease in general, and blood pressure. A total of 59 proposals focused
on CVD in terms of arrhythmia, 55 on CVD, 18 on blood pressure/hypertension, 8 on
myocardial infarction, 6 on coronary artery disease, 3 on chronic heart disease, 3 on aortic
stenosis, 3 on arterial disease, 2 on stroke, 2 on cardiomyopathy, 1 on valvular heart disease,
1 on left ventricular hypertrophy, 1 on ischemic heart disease, 1 on saturated oxygen, and 1
on carotid disease.

We noticed that some proposals did not specify the detected disease and considered
cardiovascular disease as a general disease, which was one of the most-detected diseases
using IoT/IoMT technologies and using only machine learning. However, these proposals
utilized public data sets, such as UCI Cleveland and PhysioNet MIT-BIH. The less com-
mon diseases detected included chronic heart disease, myocardial infarction, coronary
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artery disease, stroke, carotid disease, ischemic heart disease, left ventricular hypertrophy,
cardiomyopathy, and valvular heart disease.

A significant number of proposals found, detected, and/or predicted CVD, arrhythmia,
and hypertension, but there is an opportunity to detect specific diseases, such as stroke or
myocardial infarction, that may be useful to predict in the context of healthcare systems.

Other observations from this systematic review are as follows. Most of the data sets
used were from the UCI and PhysioNet sites, while data sets from hospitals and private
companies were included in some cases. The devices used to monitor or diagnose CVD
ranged from medical devices to smart watches and microcontroller cards. Finally, some
devices were developed for specific diseases and evaluated in specific groups (including
control groups).

6.4. Future Trends

Over the past few years, several trends in Internet of Things (IoT) and Internet of Med-
ical Things (IoMT) technologies for CVD classification and prediction have emerged. These
trends include clinical decision support systems, wearable devices, data analytics, data se-
curity, remote patient monitoring, and risk assessment combined with predictive analytics.

A clinical decision support system is a computer-based tool designed to assist health-
care providers in making clinical decisions by providing relevant information, knowledge,
and recommendations at the point of care. One of their benefits is providing healthcare
providers with real-time insights and recommendations for the diagnosis and management
of CVD. These systems require the development of intelligent algorithms and decision
support tools to help healthcare professionals make accurate and timely decisions. They
also integrate patient-specific data from multiple sources, such as electronic health records
(EHRs), medical imaging systems, laboratory results, and IoT/IoMT devices. Such inte-
gration enables the system to easily provide a comprehensive view of a patient’s health
information at any time and provide treatment recommendations based on established
guidelines and individual patient characteristics. It can suggest potential diagnoses, differ-
ential diagnoses, help to rule out certain conditions, and provide appropriate medications,
dosages, treatment plans, and lifestyle changes for the management of CVD by analyzing
patient data and symptoms. The key benefit of such a system is that they can generate
alerts and reminders for healthcare providers, notifying them of critical information such
as abnormal test results, drug interactions, or upcoming preventive screenings. These
reminders help to ensure timely intervention and adherence to clinical guidelines. It can
also help to monitor patient progress and provide follow-up recommendations. Remote
patient monitoring can track vital signs, lab results, and IoT/IoMT data to assess treatment
effectiveness and suggest adjustments as needed. However, the wearable devices, smart
devices, or sensors integrated into microcontroller boards must be reliable and highly
accurate—and preferably FDA-approved—as the vital signs of patients can change rapidly
in the context of chronic disease, and a major change may even lead to death. Future
studies may focus on improving the accuracy and reliability of these devices, as well as
integrating them with IoT/IoMT platforms for real-time data analysis and the development
of early-warning systems.

One of the major benefits of integrating wearable devices into clinical decision support
systems is the ability to monitor patients at home without the need for intrusive medical
devices and hospitalization; however, the main drawback is the amount of data generated
by IoT/IoMT technologies. Researchers need to thoroughly explore the use of advanced
data analytics techniques such as machine learning, deep learning, and artificial intelligence
to analyze the large amounts of data collected from IoT/IoMT devices. In terms of data
analytics, researchers can explore the development of predictive models that use historical
patient data, genetic information, lifestyle factors, and IoT/IoMT data to assess an individ-
ual’s risk of developing CVD. These models could help to identify high-risk individuals
for targeted interventions and preventive measures. As these techniques are expected to
help in identifying patterns, correlations, and predictive models for the early detection
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and accurate classification of CVD, they also involve the collection and transmission of
sensitive patient data. Therefore, future studies should also focus on developing robust
security measures and privacy frameworks to protect data from unauthorized access and
ensure compliance with privacy regulations.

Granular computing based on IoT/IoMT technologies has recently emerged, along
with the advent of machine learning gaining significant attention in medical studies,
with the potential to revolutionize various aspects of healthcare, including the diagnosis,
treatment, and management of CVD. It allows data to be aggregated and grouped into
granules that can be analyzed more efficiently and effectively. Granular computing can
be viewed as a unified framework of theories and methods that utilize granularity in
the problem-solving process. Granularity leads to information compression. Therefore,
computing with granules instead of objects leads to faster computation times, making
granular computing an important aspect of knowledge discovery and data mining [208].

Granular computing enables the representation of complex and heterogeneous CVD-
related data collected from various IoT/IoMT devices, such as wearable sensors, remote
monitoring systems, and health records. It also facilitates the fusion of multiple data sources
in the IoT/IoMT ecosystem, such as physiological parameters, medical history, lifestyle
factors, and environmental data. Granular computing can help to identify hidden patterns,
correlations, and dependencies relevant to CVD through data clustering for medical data
classification. It can provide great support in feature selection and extraction from the
large amounts of data generated, improving the accuracy and efficiency of CVD classifi-
cation and prediction models by reducing the dimensionality of the data and identifying
the most informative features. These techniques support the development of algorithms
that generate rules and decision models based on the extracted granularity, in order to
provide insight into the relationships between CVD risk factors, symptoms, and outcomes.
Granular computing enables continuous monitoring to assess the risk of developing CVD
by analyzing granular data and identifying high-risk individuals. Continuous monitoring
takes into account various factors such as age, gender, genetic markers, lifestyle habits,
and physiological parameters. It provides personalized risk assessments that lead to per-
sonalized treatment and intervention strategies for individuals with CVD, taking into
account individual patient characteristics. This helps to optimize treatment plans, recom-
mend appropriate interventions, and support shared decision-making between patients
and healthcare providers. It also allows for the analysis of large volumes of electronic
health records and the classification of patients into different disease categories. CVD risk
prediction enables targeted interventions and preventive measures to reduce the burden
of CVD based on factors such as demographics, medical history, lifestyle data, genetic
markers, and biomarkers.

In contrast, granular computing has been used in several machine learning approaches,
such as disease diagnosis, risk prediction, treatment adaptation, prognosis detection, image
analysis, decision support, precision medicine, biomarker discovery, and clinical trial
design. Another approach is outlier detection, an important process for dealing with the
outliers in a data set. More importantly, in disease prediction, the outliers are sometimes
the most valuable data, as they indicate the values of those individuals with the disease.

With the continuous growth of technology, it is possible to classify, monitor, and predict
chronic diseases, including CVD, in real-time and with high accuracy through the use of
sensors and devices connected to the cloud. Recent proposals have focused on obtaining
high accuracy with ensembles of algorithms or even new approaches to deal with the
large amount of data generated; however, some of them have not placed an emphasis on
privacy. They can classify and monitor vital signs, predict major risks, and send reminders
or emergency alerts to healthcare providers, but they cannot handle the privacy of the
sensitive and confidential data generated by IoT/IoMT devices in real-time. The data
generated by IoT/IoMT devices contain details about an individual’s medical conditions,
treatments, test results, and other personal identifiers. Privacy ensures that this information
remains confidential and accessible only to authorized individuals. If the clinical decision
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support system can guarantee the privacy and confidentiality of the data generated, it will
be a great tool for improving the remote monitoring of chronic diseases and helping to
reduce the risk of death in even remote areas, where health care is expensive or not easily
accessible, as will highly accurate devices or sensors for the tracking of vital signs.

Limitations of this study: First, we conducted a literature search in only four databases
(PubMed, IEEE, Springer Link, and Science Direct). Second, we excluded studies that were
not written in English, written before January 2016 and after May 2023, and articles other
than JCR.

7. Conclusions

In this study, we examined the IoT/IoMT technologies and machine learning tech-
niques used to detect, predict, or monitor CVD. We also identified several diseases that
have been commonly detected or monitored. We classified 162 proposals obtained from the
IEEE, PubMed, Science Direct, and Springer Link databases into the following categories:
CVD detection using IoT/IoMT and CVD detection applying machine learning techniques.
We found 78 articles in the former category and 84 in the latter. For these two categories, we
extracted the following information: Study area, disease, data set, wearable device/smart
device/medical device, machine learning approach, and results.

We noticed that the technologies and the machine learning approaches used in the pro-
posals are continuously evolving, especially in terms of mobile systems, web applications,
and frameworks. Some of the articles proposed a combination of techniques to achieve
reliable performance in evaluation metrics (i.e., accuracy, precision, sensitivity, specificity,
F1-score). Others used medical devices or commercial devices for the real-time monitoring
of CVD. In these cases, we found that medical devices were a better recommendation for
monitoring or detecting CVD due to their reliability.

Our review also revealed the type of diseases detected by wearable devices/smart
devices/medical devices or machine learning approaches. The most-used wearable de-
vices were medical devices, sensors, and microcontrollers. In some proposals, CVD or
heart failure was detected as a common disease. In others, arrhythmia was the most com-
monly detected disease. The most-used machine learning or deep learning techniques
were neural networks, including long short-term memory, convolutional neural networks,
recurrent neural networks, artificial neural networks, bi-directional long short-term mem-
ory, and deep neural networks. The most used traditional classifiers included kNN, SVM,
and random forest. However, after analyzing the results reported by the authors regarding
the evaluation metrics, it is possible that some of the models were subject to over-fitting,
due to the lack of data used for training and testing. We also identified the data sets
most commonly used to train the models: UCI Cleveland, PhysioNet MIT-BIH, PhysioNet
MIMIC-II, and Framingham. However, other proposals also used private data sets provided
by hospitals.

The most important finding is the lack of public data sets focused on CVD. As more
public CVD data sets become available, relevant machine learning and deep learning mod-
els could gain improved performance metrics, increasing the possibility of timely prediction
of risk situations or even myocardial infarction. For example, after the COVID-19 pandemic,
the demand for IoT/IoMT sensor devices in healthcare increased for the treatment and
monitoring of critical patients, leading to better and more complete systems and frame-
works for remotely monitoring chronic patients. Some commercial devices have recently
begun to add features such as temperature sensing, measuring blood oxygen, and taking
an ECG at any moment, allowing for caregivers to be alerted to any emergency detected.
This leads to more smart options for the tracking of diseases.

From the results collected in this article, it seems clear that the detection and monitoring
of CVD is possible. With the help of IoT/IoMT technology, it has recently become possible
to monitor CVD in real-time and even alert caregivers in the case of an emergency. Thus, it
is possible to triage the condition of the patient, recommend the nearest hospitals in the
case of emergency, and send notifications to doctors and caregivers.
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Finally, as the leading cause of death worldwide, it is of great importance to propose
new machine learning approaches or better methods focused on CVD, in order to achieve
good performance in terms of evaluation metrics and facilitate its real-time prediction.
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Abbreviations
The following abbreviations are used in this manuscript:

CVD Cardiovascular disease
IoT Internet of things
IoMT Internet of medical things
SCG Seismo-cardiography
GCG Gyro-cardiography
PPG Photoplethysmography
AFib Atrial fibrillation
ADHF Acute descompensated heart failure
BPM Beats per minute
SBP Systolic blood pressure
DBP Diastolic blood pressure
SR Systolic rate
DR Diastolic rate
WT Wavelet transform
MI Miocardial infarction
BBB Bundle branch block
BMI Body mass index
FDA Food and Drug Administration

Appendix A

In the Table A1, we present the 68 potential studies that answered the research ques-
tions described in Section 3, sorted by date.

Table A1. Summary of the selected proposals.

Ref. Title Year Cites

[47] Ultra-Low Power, Secure IoT Platform for Predicting Cardiovascular Diseases 2017 66
[40] A deep learning approach for ECG-based heartbeat classification for arrhythmia detection 2018 351
[48] Towards collaborative intelligent IoT eHealth: From device to fog, and cloud 2020 77
[49] Noise Rejection for Wearable ECGs Using Modified Frequency Slice Wavelet 739 Transform

and Convolutional Neural Networks
2019 54

[50] An IoT patient monitoring based on fog computing and data mining: Cardiac
arrhythmia usecase

2020 59

[51] ECG signal processing and KNN classifier-based abnormality detection by VH-doctor for
remote cardiac healthcare monitoring

2020 23
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Ref. Title Year Cites

[52] Designing Very Fast and Accurate Convolutional Neural Networks With Application in ICD
and Smart Electrocardiograph Devices

2023 1

[53] Improving R Peak Detection in ECG Signal Using Dynamic Mode Selected Energy and
Adaptive Window Sizing Algorithm with Decision Tree Algorithm

2021 5

[54] A Self-Contained STFT CNN for ECG Classification and Arrhythmia Detection at the Edge 2022 8
[55] An Adaptive Cognitive Sensor Node for ECG Monitoring in the Internet of Medical Things 2021 9
[56] One-Dimensional CNN Approach for ECG Arrhythmia Analysis in Fog-Cloud Environments 2021 39
[57] Classification and analysis of cardiac arrhythmia based on incremental support vector

regression on IOT platform
2021 9

[41] IoT-based ECG monitoring for arrhythmia classification using Coyote Grey Wolf
optimization-based deep learning CNN classifier

2022 12

[59] Deep Cardiac Telemonitoring for Clinical Cloud Healthcare Applications 2022 -
[60] An IoT enabled secured clinical health care framework for diagnosis of heart diseases 2023 -
[61] Dew-based offline computing architecture for healthcare IoT 2022 8
[62] A novel convolutional neural network structure for differential diagnosis of Wide QRS

Complex Tachycardia
2023 -

[63] Hybrid optimized convolutional neural network for efficient classification of ECG signals in
healthcare monitoring

2022 5

[64] KEdge: Fuzzy-Based Multi-AI Model Coalescence Solution for Mobile Healthcare System 2023 1
[65] Prediction of heart abnormalities using deep learning model and wearabledevices in smart

health homes
2022 6

[66] Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone 2017 130
[67] Using PPG Signals and Wearable Devices for Atrial Fibrillation Screening 2019 49
[68] Accurate detection of atrial fibrillation from 12-lead ECG using deep neural 2020 71
[69] Identification of undiagnosed atrial fibrillation patients using a machine learning risk

predicting algorithm and diagnostic testing (PULsE-AI): Study protocol for a randomised
controlled trial

2020 9

[70] Classification of Atrial Fibrillation and Acute Decompensated Heart Failure Using
Smartphone Mechanocardiography: A Multi-label Learning Approach

2020 16

[71] Hardware implementation of 1D-CNN architecture for ECG arrhythmia classification 2023 -
[67] Classification of Aortic Stenosis Using Timeâ€“Frequency Features From Chest

Cardio-Mechanical Signals
2019 27

[73] Cardiac Output Estimation: Online Implementation for Left Ventricular Assist Device Support 2020 4
[74] Revealing Unforeseen Diagnostic Image Features With Deep Learning by Detecting

Cardiovascular Diseases From Apical 4-Chamber Ultrasounds
2022 -

[75] A Wearable Sensor for Arterial Stiffness Monitoring Based on Machine Learning Algorithms 2018 23
[76] Predicting cardiovascular events with deep learning approach in the context of the

internet of things
2021 24

[77] Bridging Nano and Body Area Networks: A Full Architecture for Cardiovascular Health
Applications

2022 -

[78] BDCaM: Big Data for Context-Aware Monitoringâ€”A Personalized Knowledge Discovery
Framework for Assisted Healthcare

2016* 145

[79] Non-invasive cuffless blood pressure and heart rate monitoring using
impedance cardiography

2022 2

[80] A Machine Learning-Empowered System for Long-Term Motion-Tolerant Wearable
Monitoring of Blood Pressure and Heart Rate With Ear-ECG/PPG

2017 85

[81] Toward Hypertension Prediction Based on PPG-Derived HRV Signals: a Feasibility Study 2018 48
[82] Blind, Cuff-less, Calibration-Free and Continuous Blood Pressure Estimation using Optimized

Inductuve Group Method of Data Handling
2022 31

[83] Pervasive blood pressure monitoring using Photoplethysmogram (PPG) sensor 2017 48
[84] Cuffless Continuous Blood Pressure Estimation From Pulse Morphology of

Photoplethysmograms
2019 30

[85] Continuous blood pressure measurement from one-channel electrocardiogram signal using
deep-learning techniques

2020 72

[86] Resource-Aware Mobile-Based Health Monitoring 2016 25
[87] Smart assisted diagnosis solution with multi-sensor Holter 2017 7
[88] Machine Learning and Mobile Health Monitoring Platforms: A Case Study on Research and

Implementation Challenges
2018 11

[39] HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic
Diagnosis of Heart Diseases in integrated IoT and fog computing environments

2020 432
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[89] Utilizing IoT wearable medical device for heart disease prediction using higher order
Boltzmann model: A classification approach

2019 101

[90] Wireless high-frequency NLOS monitoring system for heart disease combined with hospital
and home

2020 13

[91] Construction and Application of a Medical-Grade Wireless Monitoring System for
Physiological Signals at General Wards

2020 22

[98] Ambient assisted living predictive model for cardiovascular disease prediction using
supervised learning

2021 23

[43] An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier 2020 188
[41] A novel three-tier Internet of Things architecture with machine learning algorithm for early

detection of heart disease
2018 258

[92] Adaptive Multi-Dimensional dual attentive DCNN for detecting Cardiac Morbidities using
Fused ECG-PPG Signals

2022 -

[93] Platform for Healthcare Promotion and Cardiovascular Disease Prevention 2021 6
[94] MedAi: A Smartwatch-Based Application Framework for the Prediction of Common Diseases

Using Machine Learning
2023 1

[95] Detection of Cardiovascular Disease Based on PPG Signals Using Machine Learning with
Cloud Computing

2022 4

[96] A Predictive Analysis of Heart Rates Using Machine Learning Techniques 2022 19
[97] An Open-Source Privacy-Preserving Large-Scale Mobile Framework for Cardiovascular

Health Monitoring and Intervention Planning With an Urban African American Population of
Young Adults: User-Centered Design Approach

2022 2

[98] Ambient assisted living predictive model for cardiovascular disease prediction using
supervised learning

2021 23

[99] An Efcient AlexNet Deep Learning Architecture for Automatic Diagnosis of Cardioâ€‘Vascular
Diseases in Healthcare System

2022 5

[100] Smart wearable model for predicting heart disease using machine learning 2022 3
[101] Toward Real-Time, At-Home Patient Health Monitoring Using Reservoir Computing CMOS IC 2021 2
[102] Portable and Real-Time IoT-Based Healthcare Monitoring System for Daily

Medical Applications
2022 3

[103] Dictionary Learning-Based Multichannel ECG Reconstruction Using Compressive Sensing 2022 2
[104] Real-Time Cloud-Based Patient-Centric Monitoring Using Computational Health Systems 2022 27
[105] A portable medical device for detecting diseases using Probabilistic Neural Network 2022 -
[106] BeatClass: A Sustainable ECG Classification System in IoT-Based eHealth 2021 34
[107] Non-contact Monitoring of Heart Rate Variability Using A Fiber Optic Sensor 2023 -
[108] Remote Health Monitoring System for the Estimation of Blood Pressure, Heart Rate, and Blood

Oxygen Saturation Level
2023 1

[109] iKardo: An Intelligent ECG Device for Automatic Critical Beat Identification for
Smart Healthcare

2021 6

[110] Energy-Efficient Real-Time Heart Monitoring on Edge-Fog-Cloud Internet of Medical Things 2021 15
[111] Real-Time Tele-Monitoring of Patients with Chronic Heart-Failure Using a Smartphone:

Lessons Learned
2016 58

[112] Fog based smart healthcare: a machine learning paradigms for IoT sector 2022 2
[113] Real-Time Event-Driven Classification Technique for Early Detection and Prevention of

Myocardial Infarction on Wearable Systems
2018 75

[114] A High performance electronic nose system for the recognition of myocardial infarction and
coronary artery diseases

2021 24

[115] FETCH: A Deep Learning-Based Fog Computing and IoT Integrated Environment for
Healthcare Monitoring and Diagnosis

2022 32

[116] FedECG: A Federated Semi-supervised Learning Framework for Electrocardiogram
Abnormalities Prediction

2023 -

[117] Development of a PPG Sensor Array as a Wearable Device for Monitoring
Cardiovascular Metrics

2021 17

[118] AI-based stroke prediction system using body motion biosignals during walking 2022 3
[119] A Machine Learning Pipeline for Measurement of Arterial Stiffness in A-Mode Ultrasound 2021 2
[120] A Real-Time Tunable ECG Noise-Aware System for IoT-Enabled Devices 2022 1
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Ref. Title Year Cites

[121] Interpretable Rule Mining for Real-Time ECG Anomaly Detection in IoT Edge Sensors 2023 -
[129] Proposition of novel classification approach and features for improved real-time

arrhythmia monitoring
2016 21

[44] A robust deep convolutional neural network with batch-weighted loss for heartbeat
classification

2019 158

[38] Arrhythmia detection using deep convolutional neural network with long duration
ECG signals

2018 579

[42] A new approach for arrhythmia classification using deep coded features and LSTM networks 2019 256
[130] A Real-Time Arrhythmia Heartbeats Classification Algorithm Using Parallel Delta

Modulations and Rotated Linear-Kernel Support Vector Machines
2019 56

[131] Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based
ECG features

2019 42

[132] Heart disease detection using hybrid of bacterial foraging and particle swarm optimization 2020 23
[133] A Deep Biometric Recognition and Diagnosis Network With Residual Learning for

Arrhythmia Screening Using Electrocardiogram Recordings
2020 3

[134] Deep Multi-Scale Fusion Neural Network for Multi-Class Arrhythmia Detection 2020 74
[135] Intelligent Health Vessel ABC-DE: An Electrocardiogram Cloud Computing Service 2018 17
[136] Improving the safety of atrial fibrillation monitoring systems through human verification 2017 11
[137] Validating the robustness of an internet of things based atrial fibrillation detection system 2020 20
[138] Extracting deep features from short ECG signals for early atrial fibrillation detection 2020 22
[139] Detection of Atrial Fibrillation in Compressively Sensed Electrocardiogram Measurements 2020 15
[140] A Multi-tier Deep Learning Model for Arrhythmia Detection 2020 115
[141] Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm 2021 50
[142] Time adaptive ECG driven cardiovascular disease detector 2021 21
[143] ECG arrhythmia classification by using a recurrence plot and convolutional neural network 2021 91
[144] Stacking segment-based CNN with SVM for recognition of atrial fibrillation from single-lead

ECG recordings
2021 33

[145] Exploring Deep Features and ECG Attributes to Detect Cardiac Rhythm Classes 2021 91
[146] Automated ECG multi-class classification system based on combining deep learning features

with HRV and ECG measures
2022 17

[147] Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia 2021 15
[148] ECG signal classification to detect heart arrhythmia using ELM and CNN 2022 -
[149] Multi-Lead ECG Classification via an Information-Based Attention Convolutional

Neural Network
2020 5

[150] Fuzz-ClustNet: Coupled fuzzy clustering and deep neural networks for Arrhythmia detection
from ECG signals

2023 -

[151] Inter-patient arrhythmia classification with improved deep residual convolutional
neural network

2022 21

[152] DeepArr: An investigative tool for arrhythmia detection using a contextual deep neural
network from electrocardiograms (ECG) signals

2023 -

[153] Two-stage detection method of supraventricular and ventricular ectopic beats based on
sequential artificial features and heartbeats

2023 -

[154] Automatic varied-length ECG classification using a lightweight DenseNet model 2023 -
[155] Arrhythmia detection based on multi-scale fusion of hybrid deep models from single lead

ECG recordings: A multicenter dataset study
2022 2

[151] A deep learning approach to cardiovascular disease classification using empirical mode
decomposition for ECG feature extraction

2023 1

[157] Prediction of paroxysmal atrial fibrillation using new heart rate variability features 2021 23
[158] Predicting Hypertensive Patients With Higher Risk of Developing Vascular Events Using

Heart Rate Variability and Machine Learning
2020 20

[159] Nonlinear Dynamic Modeling of Blood Pressure Waveform: Towards an Accurate Cuffless
Monitoring System

2020 22

[160] Predicting Systolic Blood Pressure in Real-Time Using Streaming Data and Deep Learning 2021 15
[161] Cuffless blood pressure estimation based on composite neural network and graphics

information
2021 10

[162] PPG-based blood pressure estimation can benefit from scalable multi-scale fusion neural
networks and multi-task learning

2022 5
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[163] A Refined Blood Pressure Estimation Model Based on Single Channel Photoplethysmography 2022 4
[164] An advanced LAN model based on optimized feature algorithm: Towards

hypertension interpretability
2021 2

[165] Deep learning models for cuffless blood pressure monitoring from PPG signals using
attention mechanism

2021 51

[166] NABNet: A Nested Attention-guided BiConvLSTM network for a robust prediction of Blood
Pressure components from reconstructed Arterial Blood Pressure waveforms using PPG and

ECG signals

2023 3

[167] DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure
Monitoring Using Photoplethysmography

2022 5

[168] An IoT based efficient hybrid recommender system for cardiovascular disease 2019 75
[37] Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques 2019 888
[169] An efficient IoT based patient monitoring and heart disease prediction system using Deep

learning modified neural network
2020 92

[170] HDPM: An Effective Heart Disease Prediction Model for a Clinical Decision Support System 2020 130
[45] A Healthcare Monitoring System for the Diagnosis of Heart Disease in the IoMT Cloud

Environment Using MSSO-ANFIS
2020 153

[46] Comprenhensive electrocardiographic diagnosis based on deep learning 2020 146
[171] An Efficient IoT-Based Platform for Remote Real-Time Cardiac Activity Monitoring 2020 35
[172] Multi-disease big data analysis using beetle swarm optimization and an adaptive neuro-fuzzy

inference system
2021 17

[173] Cardiac disease detection using cuckoo search enabled deep belief network 2022 2
[174] Automatic diagnosis of cardiovascular disorders by sub images of the ECG signal using

multi-feature extraction methods and randomized neural network
2021 20

[175] An intelligent heart disease prediction system based on swarm artificial neural network 2021 23
[176] A multi-label learning prediction model for heart failure in patients with atrial fibrillation

based on expert knowledge of disease duration
2023 -

[177] WoM-based deep BiLSTM: smart disease prediction model using WoM-based deep
BiLSTM classifier

2023 -

[178] A scalable and real-time system for disease prediction using big data processing 2023 3
[179] A novel blockchain-enabled heart disease prediction mechanism using machine learning 2022 15
[180] Heart rate estimation network from facial videos using spatiotemporal feature image 2022 2
[181] Predictive analysis of cardiovascular disease using gradient boosting based learning and

recursive feature elimination technique
2022 3

[182] Effective heart disease prediction using novel MLP-EBMDA approach 2022 22
[183] LightX3ECG: A Lightweight and eXplainable Deep Learning System for 3-lead

Electrocardiogram Classification
2023 2

[184] Heart Diseases Prediction based on Stacking Classifiers Model 2023 -
[185] Tuning Multi-Layer Perceptron by Hybridized Arithmetic Optimization Algorithm for

Healthcare 4.0
2022 -

[186] Optimized Signal Quality Assessment for Photoplethysmogram Signals Using
Feature Selection

2022 8

[187] Photoplethysmography-Based Heart Action Monitoring Using a Growing Multilayer Network 2022 -
[188] KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based

on Single Photoplethysmography
2022 6

[189] Multiclass classification of myocardial infarction with convolutional and recurrent neural
networks for portable ECG devices

2018 98

[190] ST-Net: Synthetic ECG tracing for diagnosing various cardiovascular diseases 2020 6
[191] Explainable Prediction of Acute Myocardial Infarction Using Machine Learning and

Shapley Values
2020 47

[192] Prognostic Value of Machine Learning in Patients with Acute Myocardial Infarction 2022 8
[193] Efficient detection of myocardial infarction from single lead ECG signal 2021 21
[194] Near real-time single-beat myocardial infarction detection from single-lead electrocardiogram

using Long Short-Term Memory Neural Network
2021 10

[195] Predicting cardiac disease from interactions of simultaneously-acquired hemodynamic and
cardiac signals

2021 8
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[196] Multilayer perceptron based deep neural network for early detection of coronary heart disease 2021 17
[197] Early Detection of Coronary Heart Disease using Ensemble Techniques 2021 37
[198] Non-invasive detection of coronary artery disease from photoplethysmograph using lumped

parameter modelling
2022 2

[199] Combining Convolutional Neural Network and Distance Distribution Matrix for Identification
of Congestive Heart Failure

2018 36

[200] Deep Learning Electrocardiographic Analysis for Detection of Left-Sided Valvular
Heart Disease

2022 10

[201] High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With
Cardiovascular Deep Learning

2022 32

[202] Convolutional neural network based automatic screening tool for cardiovascular diseases
using different intervals of ECG signals

2021 25

[203] Reaction-diffusion informed approach to determine myocardial ischemia using stochastic
in-silico ECGs and CNNs

2021 3

[204] A machine learning-based risk stratification model for ventricular tachycardia and heart
failure in hypertrophic cardiomyopathy

2021 19

[205] Identifying Stroke Indicators Using Rough Sets 2020 18

Appendix B
In the Table A2 we depict the 68 Published articles sorted by journal.

Table A2. Number of articles published, by journal.

Ref. Journal Num. of Papers

[200] Am. J. Cardiol. 1
[176] Appl Intell 1

[79,85,138] Artif Intell Med. 3
[46] Artif Intell Med. 1

[38,68,129,131,150,157,180,203,204] Comput Biol Med. 9
[41,179] Comput Electr Eng 2

[24,33,42,141,151,195,202] Comput Methods Programs Biomed 7
[98] Evol Intel 1

[132] Evol Syst. 1
[44,189] Expert Syst. Appl 2

[39,40,83,90] Future Gener Comput Syst. 4
[196] Health Technol 1
[61] ICT Express 1

[37,43,45,49,52,54–56,80,84,94,115,133,158,169,170,191,199,205] IEEE Access 18
[77,106,107,110,121] IEEE Internet Things J. 5

[66,86,134,163,167,188] IEEE J. Biomed Health Inform 6
[101] IEEE J. Emerg Sel Top Circuits 1

[70,75,103,108,117,120,159,187] IEEE Sens. J. 8
[64] IEEE Syst. J. 1

[171] IEEE T Consum Electr 1
[47] IEEE TCAS-I 1

[111] IEEE Trans. Affect Comput 1
[73,113] IEEE Trans. Biomed Circuits Syst. 2

[72,130,186] IEEE Trans. Biomed Eng 3
[78,135] IEEE Trans. Cloud Comput 2

[102,104] IEEE Trans. Comput Soc Syst. 2
[109] IEEE Trans. Consum 1
[67] IEEE Trans. Ind Electron 1

[139,140] IEEE Trans. Instrum Meas 2
[119] IEEE Trans. Ultrason Ferroelectr 1
[92] IEEE Trans. Artif Intell 1

[197] Inform Med. Unlocked 1
[96] Int. J. Environ. Res. Public Health 1

[50,77,106,107,110,121] Internet Things 6
[74] J. Am Heart Assoc 1

[192] J. Cardiovasc. Dev. Dis. 1
[88] J. Healthcare Inform. Res. 1
[116] J. King Saud Univ. 1

[81,91] J. Med. Syst. 2
[69] J. Res. Health Sci. 1
[149] Shanghai Jiaotong Univ Sci 1
[118] J. Supercomput 1
[201] JAMA Cardiol 1
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Ref. Journal Num. of Papers

[97] JMIR Form Res 1
[145] Knowl Based Syst. 1
[85] Measurement 1
[48] Microprocess Microsyst 1

[160] Mob Netw Appl 1
[28,65,112,148,177,178] Multimed Tools Appl 6
[26,76,146,147,172,175] Neural Comput & Applic 6

[87] Neurocomputing 1
[137] Pattern Recognit. Lett. 1
[168] Peer-to-Peer Netw. Appl. 1
[59] Procedia Comput. Sci.

[136] Saf Sci 1
[23,53,121] Sensors 3

[51] Soft. Comput. 1
[99,100] Wirel. Pers. Commun. 2
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