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Abstract: Swallowing sounds from cervical auscultation include information related to the
swallowing function. Several studies have been conducted on the screening tests of dysphagia.
The literature shows a significant difference between the characteristics of swallowing sounds
obtained from different subjects (e.g., healthy and dysphagic subjects; young and old adults).
These studies demonstrate the usefulness of swallowing sounds during dysphagic screening.
However, the degree of classification for dysphagia based on swallowing sounds has not been
thoroughly studied. In this study, we investigate the use of machine learning for classifying
swallowing sounds into various types, such as normal swallowing or mild, moderate, and severe
dysphagia. In particular, swallowing sounds were recorded from patients with dysphagia.
Support vector machines (SVMs) were trained using some features extracted from the obtained
swallowing sounds. Moreover, the accuracy of the classification of swallowing sounds using the
trained SVMs was evaluated via cross-validation techniques. In the two-class scenario, wherein the
swallowing sounds were divided into two categories (viz. normal and dysphagic subjects),
the maximum F-measure was 78.9%. In the four-class scenario, where the swallowing sounds
were divided into four categories (viz. normal subject, and mild, moderate, and severe dysphagic
subjects), the F-measure values for the classes were 65.6%, 53.1%, 51.1%, and 37.1%, respectively.

Keywords: dysphagia; swallowing sound; machine learning; support vector machine (SVM)

1. Introduction

Dysphagia assessment is a clinically paramount task for detecting dysphagia and presbyphagia
in patients, as well as preventing or reducing some diseases caused by a swallowing disorder.
For example, pulmonary aspiration due to dysphagia is one of the most common causes of pneumonia,
which is the third leading cause of death following malignant neoplasms and heart disease in Japan.
Previous research has demonstrated that the death rate caused by pneumonia increases with age [1].
Aspiration pneumonia is the primary type of pneumonia that occurs in older people. Based on clinical
research, more than 70% of people with pneumonia appear to have aspiration pneumonia [2].

Currently, the video fluoroscopic (VF) swallowing test is the golden standard for assessing
dysphagia [3]. However, the equipment for the VF test is expensive, and the medical attendants
performing the test may be exposed to radiation. The video endoscopic (VE) swallowing test is a
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common test in clinics and hospitals [4]. Because the equipment for the VE test is small, VE can
be performed at the patient’s bedside. Nevertheless, the disadvantage of both tests is that they
require trained clinicians to perform them. In particular, these tests cannot be performed by nurses,
speech-language pathologists, or care helpers.

Alternatively, cervical auscultation is one of the most useful methods for dysphagic assessment [5].
The usefulness of cervical auscultation has been demonstrated throughout the literature. For example,
Zenner et al. reported that the results obtained by performing a dysphagia examination with cervical
auscultation had a high level of agreement with those obtained from the VF test in patients under
long-term care [6]. However, to perform cervical auscultation, trained clinicians or speech-language
pathologists are required. Nurses and care helpers in clinics or rehabilitation centers cannot perform
cervical auscultation. For overcoming such a situation, an easily operable system for cervical
auscultation is expected.

To design such a system, one of the key issues is developing a processing method for the signal
obtained from cervical auscultation [7].

In the literature, several researchers have proposed different types of signal processing methods
for cervical auscultation. Dudik et al. reviewed several past approaches of signal processing for
auscultation [8]. Initially, Takahashi et al. demonstrated the possibility of dysphagic screening using
a microphone and accelerometer [9]. In addition, automated classification of abnormal swallowing
has been investigated in several studies [10–15]. The relation between swallowing sounds and the
mechanism of swallowing [16], as well as the differences in swallowing sounds among various
categories of subjects, such as the young, old, normal, or abnormal subjects [17], have been studied
previously. Recently, Dudik et al. demonstrated the performance of a deep brief neural network for
distinguishing normal swallowing from that in unhealthy patients [18]. The majority of the proposed
methods have been applied to two-class problems. However, a conclusive method for automatically
classifying swallowing signals based on multiple dysphagic levels has not been realized.

In this study, the support vector machine (SVM)— a machine learning framework— has
been applied to swallowing sounds for classifying the subjects into different dysphagic categories.
The classification results were compared with the categories based on the dysphagic assessment
performed by clinicians. Subsequently, we evaluated the accuracy of the resulting SVM model in
classifying the subjects into different dysphagia categories.

2. Method

Healthy subjects, 17 men and 10 women (age range: 21–47, mean: 22.4) with no dysphagic
diseases were recruited. Between 2015 and 2017, 78 male patients and 65 female patients (age range:
25–102, mean: 83.3) hospitalized in Kusatsu General Hospital were recruited as dysphagic subjects.
The following study protocol received the approval from the ethics committee at the University of
Shiga Prefecture and Kusatsu General Hospital.

According to the modified water swallowing test, multiple 3 mL samples of water were given
to the subjects. Acoustic sounds were subsequently recorded using a neck-mounted microphone
connected to a laptop computer. We used an SH-12iK microphone (Nanzu Musen, Shizuoka, Japan)
with a frequency range of 200–3000 Hz. The computer recording software used was Audacity;
the sampling rate was set to 8000 Hz, while the recording gain was 0.7. The segment of the swallowing
sound was extracted from the successively recorded sound. As the typical swallowing period is known
to be about 700 ms in a healthy person [16], a sound segment of a duration of 800 ms was obtained
to sufficiently cover most of the swallowing sound. The center of the sound segment corresponded
to the position of the peak intensity of the swallowing sound. The total number of segments for the
swallowing sound was 170.

Furthermore, clinicians assessed all the healthy subjects and patients according to the VE scoring
method proposed by Hyodo et al. [19]. Accordingly, they were categorized into four groups, as listed
in Table 1. Category A included healthy subjects. The swallowing sound segments for each subject
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were also categorized; these results are also listed in Table 1, along with the number of categorized
sound segments.

Table 1. Definition of dysphagia classification categories derived from scoring based on the method
proposed by Hyodo et al. [19] using the VE swallowing test.

Category Total Score Range Dysphagic Level Number of Sounds

A 0 normal 104
B 1–4 mild 66
C 5–9 moderate 214
D 10–12 severe 37

2.1. Preprocessing

The preprocessing of the obtained sounds consisted of three steps: noise suppression [20],
compensation, and sensitivity of the used microphone. In addition, a filter was applied for the
frequency band limit.

In the first step, as the noise profile of the microphone was required for noise suppression,
the output sounds obtained from the recording system with no input signals were recorded beforehand
in an anechoic chamber. By applying fast Fourier transform (FFT) on the output sounds, the frequency
characteristics of the noise was obtained. By subtracting the noise characteristic from the swallowing
sound segments in the frequency domain, the silent swallowing sounds were generated.

In the second step, as the sensitivity of the used microphone is required, the amplitude of the
recorded signal was measured using the Audacity software. At the beginning, each input had a
sinusoidal wave with pressure of 0.1 Pa and a frequency range between 50 Hz–10 kHz in steps of 50 Hz.
Fitting a polynomial curve to the variation of the measured amplitude produced the sensitivity level of
the microphone, K0[ f ]. The relative sensitivity, K[ f ] was derived from the division of K0[ f ] using the
maximum value of K0[ f ]. The obtained example of K[ f ] is demonstrated in Figure 1. By multiplying
the inverse of K[ f ] by the magnitude spectrum of the swallowing sounds, the compensated swallowing
sounds were obtained.

Finally, the spectral range of the swallowing sounds was restricted from 200 Hz–3 kHz because of
the microphone’s acoustic restriction. Furthermore, applying the inverse FFT to the resulting spectrum
yielded the final preprocessed swallowing signals. Figure 2 shows an example of the preprocessed
swallowing signal.
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Figure 1. Example of the sensitivity calculation of a microphone.
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Figure 2. Example of a preprocessed swallowing signal.

2.2. Features

In this subsection, we describe the definitions of the various features that were used for the
machine learning process. For extracting the features from the frequency and time-frequency domains
of the preprocessed sound signal x[n] n = 0, 1, 2, . . . N− 1, we applied the discrete time Fourier series
and a short time Fourier transform to x[n]. The definitions for both transforms are given as follows:

X[k] =
N−1

∑
n=0

x[n]ej 2πk
N n (1)

Xw[m, k] =
L−1

∑
n=0

xm[n]ej 2πk
L n, (2)

where xm[n] denotes the windowed signal by applying the window function w[n−mS] with a window
size L, frame number m, and skip width S to x[n]. The maximum frame number is defined by M = N/S.
A spectrogram defined as |Xw[m, k]| from (2) is used in the following Section 2.2.2. An example of the
spectrogram is shown in Figure 3a.
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Figure 3. Example of a spectrogram (a) and its threshold version (b).

2.2.1. Frequency Domain Features

The following conventional features associated with X[k] were used.
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• Maximum magnitude of spectra [13] Amax ≡ max
k=0...N/2

|X[k]|.

• Peak frequency [13] fmax ≡
Fs

N
arg max

k=0,...,N/2
|X[k]|, where Fs denotes the sampling frequency.

• Frequency average [17]

f̄ ≡
N/2

∑
k=0

fk |X[k]|
∑N/2

l |X[l]|

where fk = kFs/N.
• Standard deviation of frequency

σf ≡

√√√√N/2

∑
k=0

( fk − f̄ )2 |X[k]|
∑N/2

l |X[l]|
.

• Frequency median and quartile ratio
By considering the magnitude of the spectra |X[k]| as part of a frequency distribution, the quartiles
k1, k2, k3 can be calculated, where k2 corresponds to the median, and the median frequency is
given by Q2 = k2Fs/N. Other indices can also be translated into the frequency Qi = kiFs/N.
Consequently, the quartile ratio is defined as Qr1 ≡ Q1/Q2, Qr3 ≡ Q3/Q2.

• Total energy

E =
1

N2

N−1

∑
k=0
|X[k]|2

2.2.2. Time-Frequency Domain Features

In this study, we propose some features derived from the spectrogram |Xw[m, k]| based on
which a binary image Xth[m, k] is obtained via thresholding. These obtained features describe some
characteristics of the time-frequency domain signal, including statistical variation, peak locations,
and dispersion of peak values.

First, some features associated with the spectrogram in the time-frequency domain are restricted
by the indices shown in Figure 4, which are defined as follows.

• Maximum magnitude of the spectrogram Aw ≡ max
m, k
|Xw[m, k]|.

• Peak location of the spectrogram (mw, kw) ≡ arg max
m, k
|Xw[m, k]|.

• Relative distances of the peak location from the center of the spectrogram

D ≡
√

D2
H + D2

V

DH ≡ mw −M/2, DV ≡ kw − L/4.

• Total energy of the spectrogram Es ≡ ∑m ∑k |Xw[m, k]|2.

Furthermore, to describe the time variation of the statistics with respect to the spectrogram,
the spectrogram is divided into B-blocks along the m axis, as displayed in Figure 4; subsequently,
the following features are defined in each block. The quartile kb1, kb2, kb3 for each block is derived
from the histogram Hb[k] of the b-th block given by

Hb[k] ≡
M/B−1

∑
m′=0

∣∣Xw
[
(M/B)b + m′, k

]∣∣ .
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The frequencies for the corresponding quartiles were calculated as Qbi = kbiFs/L. The quartile
ratio can be similarly defined by Qrb1 ≡ Qb1/Qb2, Qrb3 ≡ Qb3/Qb2. Each block energy is derived from
the square sum of the spectrogram, including each block, as

Eb =
M/B−1

∑
m′=0

L/2

∑
k=0

∣∣Xw
[
(M/B)b + m′, k

]∣∣2 .

In the later experiments, B = 15 is used. This means that each block length is approximately 0.05 s
under the current sampling rate. The width of the envelope of each peak in the preprocessed signal
shown in Figure 2 can be affordably dropped into the block length. Hence, each block holds sufficient
information of the difference signal among the other blocks.

Finally, to describe the effects of multiple spectral peaks and the spread of each peak, we propose
the following features with respect to the threshold spectrogram Xth[m, k] defined as

Xth[m, k] ≡
{

1 Xw[m, k] ≥ εt

0 otherwise
,

where εt ≡ κAw is a threshold level related to the above peak value Aw in the spectrogram and the
scale κ. In the following experiments, we used κ = 0.5. From Figure 3a, there are some local peaks in
the spectrogram, except a central main peak. Applying a higher threshold level to the spectrogram
may remove the positions of the other spectral peaks. In the case of a lower threshold level, many peak
locations, including noisy level spectral peaks, appear. Preliminary experiments determine that κ = 0.5
could give the appropriate peak location shown in Figure 3b.

• Area of the threshold spectrogram:

Ath ≡
M−1

∑
k=0

L/2

∑
k=0

Xth[m, k]

• Ratio of the area of the threshold spectrogram to the complete area of the spectrogram:

Rth ≡ Ath/ (ML/2)

• Average distance from the center of the spectrogram:

D̄h =
1

Ath

M−1

∑
k=0

L/2

∑
k=0

Xth[m, k]
(

m− M
2

)

D̄v =
1

Ath

M−1

∑
k=0

L/2

∑
k=0

Xth[m, k]
(

k− L
4

)

D̄ =
1

Ath

M−1

∑
k=0

L/2

∑
k=0

Xth[m, k]

√(
m− M

2

)2
+

(
k− L

4

)2

• Average distance from the peak location of the spectrogram:

D̄ph =
1

Ath

M−1

∑
k=0

L/2

∑
k=0

Xth[m, k] (m−ms)

D̄pv =
1

Ath

M−1

∑
k=0

L/2

∑
k=0

Xth[m, k] (k− ks)

D̄p =
1

Ath

M−1

∑
k=0

L/2

∑
k=0

Xth[m, k]
√
(m−mw)

2 + (k− kw)
2
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Figure 4. Definition of blocks in the time-space domain.

2.3. Machine Learning

In this subsection, we describe the data set conditions and size adjustments for training the SVMs.
Generally, the choice of machine learning method depends on the size of the data set. Deep learning
requires vast training data for constructing proper models. For example, the CIFAR-10 data set consists
of 60,000 images in 10 classes, with 6000 images per class [21]. It is difficult to collect such a large
number of swallowing sounds of patients in a clinical setting. It is experimentally well-known that the
SVMs have the advantage of operating with relatively small data sets [22,23]. Therefore, the SVMs were
employed in this study. We used the LIBSVM library [24], which is commonly used for implementing
SVMs. The efficiency of an SVM with a radial basis function (RBF) kernel depends on the cost and RBF
kernel parameter; therefore, these parameters are optimized using the grid-search tool included in
the LIBSVM library. The number of swallowing sounds belonging to each category are not always
equal to each other. The number of samples from each category used for training should be adjusted
to obtain consistent results from the SVM, such that they are almost equal to each other. For example,
in the two-class problem, the swallowing sound segments belonging to category A are classified
as normal swallowing, and those belonging to categories B, C, and D were classified as abnormal
swallowing. Table 1 lists a higher number of sound segments for abnormal swallowing than those for
normal swallowing. The number of sound segments that were used was restricted to 104 randomly
selected segments. Overall, segments from both groups were divided into 84 training data samples
and 20 test data samples. Five different sets of the training and testing data samples were obtained,
and all the classified results were averaged to obtain the final classification accuracy. In the four-class
problem, the smallest number of the available sound segments was 37 for category D; hence, 37 sound
segments were randomly selected from categories A, B, and C. These 37 sound segments were divided
into 27 training data samples and 10 test data samples. The remaining process was similar to the
two-class problem.

2.4. Choice of Features

When parameter B is set to 15, a total of 83 features can be obtained. These features can create
various combinations of features, which require large computational costs for machine learning.
For reducing the number of feature combinations for the computational cost, the following restriction,
which is a type of filtering method [25], was introduced. The correlation coefficients between the VE
scoring and each feature value were calculated beforehand, and they were sorted into the descending
order of the absolute value of the correlation coefficients. This variation of the sorted correlation
coefficients is shown in Figure 5. Figure 5 shows that the magnitude of the correlation coefficients
rapidly decreases, and the decrease is almost linear after the 10th feature. Therefore, the first nine
features were used as the candidate features for the machine learning experiments. The classification
accuracy for using the top k features of all the 83 features are plotted in Figure 6. The graph is saturated
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at approximately four features in the two-class problem, and six features in the four-class problem.
Therefore, the feature combinations 9C4 and 9C6 were studied in these experiments.
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Figure 5. The variation of the correlation coefficients for the total VE scoring performed by the clinicians.
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Figure 6. Variation in classification accuracy by using top k features in (a) the two-class problem and
(b) four-class problem.

3. Results

Table 2 lists the classification accuracy in the two-class problem, where the swallowing sounds
of group A are classified as normal, whereas those of groups B, C, and D are classified as abnormal.
In this Table, the list has been sorted in descending order of accuracy. The highest value of the accuracy
is 0.780, and the highest F-measure is 0.789.

Table 3 summarizes the result of the classification accuracy for the four-class problem. The list is
sorted in descending order of total accuracy. The highest total accuracy is 0.460 with features D̄v, f̄ ,
Aw, Q2, D̄h, and Qr1. The F-measures for all feature combinations in each class are plotted in Figure 7.
The x-axis and y-axis in those figures indicate the combination number and the F-measure value,
respectively.
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Table 2. Accuracy, precision, recall, and F-measure for each feature combination in the two-class
problem. The list is sorted in descending order of accuracy.

Comb. # Used Features Accuracy Precision Recall F-Measure

8 D̄v D̄ Aw Q2 0.780 0.787 0.790 0.781
18 D̄v D̄ Q2 Q8,2 0.780 0.804 0.750 0.771
54 D̄v Q2 D̄h Q8,2 0.780 0.831 0.710 0.760
48 D̄v Amax Q2 Qr1 0.775 0.811 0.720 0.762
113 Aw Amax Q2 Qr1 0.770 0.763 0.790 0.773
34 D̄v f̄ D̄h Qr1 0.770 0.752 0.820 0.781
46 D̄v Aw Qr1 Q8,2 0.770 0.737 0.870 0.789
53 D̄v Q2 D̄h Qr1 0.770 0.750 0.810 0.779
19 D̄v D̄ D̄h Qr1 0.755 0.717 0.870 0.780
17 D̄v D̄ Q2 Qr1 0.750 0.808 0.670 0.722

Table 3. Accuracy and F-measures of classes A, B, C, and D for each feature combination in the
four-class problem. The list has been sorted in descending order of accuracy.

Comb. # Used Features

42 D̄v f̄ Aw Q2 D̄h Qr1
3 D̄v D̄ f̄ Aw Amax Qr1
29 D̄v D̄ Aw Q2 Qr1 Q8,2
17 D̄v D̄ f̄ Q2 D̄h Qr1
6 D̄v D̄ f̄ Aw Q2 Qr1
46 D̄v f̄ Amax Q2 D̄h Qr1
9 D̄v D̄ f̄ Aw D̄h Q8,2
45 D̄v f̄ Aw D̄h Qr1 Q8,2
11 D̄v D̄ f̄ Amax Q2 D̄h
75 D̄ Aw Amax D̄h Qr1 Q8,2

Comb. # Accuracy F-Measure (A) F-Measure (B) F-Measure(C) F-Measure(D)

42 0.460 0.602 0.468 0.511 0.145
3 0.420 0.495 0.427 0.500 0.133

29 0.420 0.579 0.407 0.313 0.338
17 0.415 0.521 0.457 0.456 0.095
6 0.410 0.598 0.481 0.279 0.174

46 0.410 0.625 0.360 0.333 0.208
9 0.405 0.571 0.492 0.259 0.141

45 0.400 0.562 0.256 0.400 0.256
11 0.390 0.626 0.288 0.396 0.143
75 0.385 0.385 0.431 0.355 0.356
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Figure 7. Cont.
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Figure 7. F-measure for each feature combination in classes A, B, C, and D. (a) Class A, (b) Class B,
(c) Class C, (d) Class D.

4. Discussion

The accuracy in the two-class problem shows similar performance compared to the previous
results reported by Mérey et al. [26]. They applied the SVM with an RBF kernel to the dual
accelerometry data and demonstrated that the accuracy is 0.806 by using simple feature combination.
Based on the feature combination listed in Table 2, the average distance from the center of the
spectrogram in the frequency direction, D̄v, as well as in the quartile-related features, such as Qr1 and
Q8,2, are commonly used for obtaining higher accuracy, which suggests that combining these features
is useful for increasing the precision of the classification performance. All of these features depend on
the position of the frequency peaks or the spectrum bias. As Lee pointed out in [13], the presence of
vallecular residue and pyriform sinus residue may change the pharyngeal air space volume, which may
cause a change in the acoustic vibration characteristics of the airflow in the pharynx. The feature value
of the above features reflects this change.

In the four-class problem, the feature D̄v and quartile-related features are also included in the
combination of the features from Table 3. Although combination #42 yields the highest accuracy and
holds a relatively high F-measure for classes A, B, and C, its F-measure in class D is less than 0.15 from
Figure 7. Combination #70 indicates the highest F-measure of 0.371 within class D (see Figure 7d).
Similarly, combinations #61 and #75 hold the second and third highest F-measures of 0.362 and 0.356,
respectively. These feature combinations commonly include D̄h rather than D̄v, which is included in
the feature combinations with high accuracy. These results suggest the following:

1. The characteristic of swallowing sounds for class D is different from that of the other classes.
2. The feature D̄h relates to the area position with a higher magnitude along the time direction in the

spectrograms. Robbins et al. reported that the total duration of oropharyngeal swallowing was
significantly longer in the oldest group than in any other younger counterparts [27]. Borr et al.,
also reported that the duration of the onset time, and deglutition apnea of auscultation for the
dysphagic group, was significantly longer than that of the nondysphagic group [28]. These
duration variances caused a temporal bias in the spectrogram.

3. When classifying the swallowing sounds into four categories, multiple classifiers or a combination
of these might be useful due to the different characteristics of each class.

5. Conclusions

The accuracy of classifying swallowing sounds into two classes and four classes by using
SVMs was examined. Although the F-measure reached 78.9% in the two-class scenario, the overall
classification accuracy of the four-class scenario was still insufficient when using the classifier as a
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stand-alone method for the diagnosis. Conversely, this study revealed that the variation of some
feature combinations can serve as useful classifiers for individual categories.

Although these results demonstrate the potential of using a classifier constructed by the SVM,
some problems and limitations remain in their use as a practical classifier. The results of the trained
SVM relied on the category defined by the total score obtained by Hyodo’s VE scoring. The scoring
method consisted of four tests. The segmented swallowing sounds may not correspond to the results
of the total score of the four tests. To solve this problem, an improved model for considering each test
in the scoring should be created. For selecting the features for the SVMs, a filter-based method was
used in the experiments and the restriction on the feature combination was introduced. The resulting
feature combination may not be optimal. Other types of selection methods, such as wrapper methods
or embedded methods, should also be applied and the resulting classifier performances should be
compared with each other. It will also be useful to employ other types of machine learning for
increasing the classification performance. Deep neural networks is one such option, provided many
data sets can be obtained. We are currently working on constructing an improved classifier for
considering each test based on Hyodo’s VE scoring by using deep neural networks combined with
data augmentation. We will report the results of this research in the future.
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