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Abstract: Measuring the U.S.’s COVID-19 response performance is an extremely important challenge
for health care policymakers. This study integrates Data Envelopment Analysis (DEA) with four
different machine learning (ML) techniques to assess the efficiency and evaluate the U.S.’s COVID-19
response performance. First, DEA is applied to measure the efficiency of fifty U.S. states considering
four inputs: number of tested, public funding, number of health care employees, number of hospital
beds. Then, number of recovered from COVID-19 as a desirable output and number of confirmed
COVID-19 cases as a undesirable output are considered. In the second stage, Classification and
Regression Tree (CART), Boosted Tree (BT), Random Forest (RF), and Logistic Regression (LR) were
applied to predict the COVID-19 response performance based on fifteen environmental factors,
which were classified into social distancing, health policy, and socioeconomic measures. The results
showed that 23 states were efficient with an average efficiency score of 0.97. Furthermore, BT and
RF models produced the best prediction results and CART performed better than LR. Lastly, urban,
physical inactivity, number of tested per population, population density, and total hospital beds per
population were the most influential factors on efficiency.

Keywords: COVID-19; DEA; classification and regression tree; logistic regression; machine learning

1. Introduction

On 11 February 2020, the United States was the next in a series of countries to acknowl-
edge community spread of a deadly virus which would eventually be named COVID-19.
The first COVID-19 patient was reported in the USA was in Washington State, and then
the coronavirus quickly spread throughout the entire state. COVID-19 has since resulted
in a high number of deaths and the confirmed cases in the United States. People and gov-
ernments in the USA have been challenged by COVID-19 and its consequences [1]. Social
distancing and personal protective measures, including handwashing, wearing masks and
gloves became the primary means of controlling the spread of COVID-19. There are many
questions, such as “What will be the short-term and long-term consequences of COVID-19?”
“How efficiently have U.S. governments responded to the COVID-19 pandemic?” And
more importantly, “what factors might impact efficiency?” Efficiency measures require
thoughtful consideration of the factors that affect the fast spread of COVID-19. Singh and
Adhikari [2] and Liu, Chen, Lin, and Han [3] found that population density and percentage
of elderly significantly affect the spread of COVID-19. It is imperative to control the spread
of the COVID-19 with aggressive action in the U.S. Every state must plan for faster access
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to existing or newer testing centers and allocate enough health care employees for people
who need emergent treatment.

The degree of infection varies from country to country, and the way to control infec-
tions varies according to national conditions. How the global pandemic s contained is the
most concerning problem worldwide. Therefore, it is of striking significance to predict the
pandemic trends of infection worldwide. The U.S. government has taken several actions
to respond to the COVID-19 pandemic, such as social distancing measures, including
stay-at-home duration, non-essential business closures, and bans on large gatherings. The
second directive is health policy actions, including mask mandates, public funding, ex-
panded access to telehealth services, vaccine given status, etc. The third mitigation measure
includes health care provider capacity, such as health care employees and hospital beds [4].
There are significant challenges due to unprecedented disease outbreaks, which negatively
affect society as a whole and the efficiency of the COVID-19 response management in each
state. Therefore, it is critical to predict the efficiency of pandemic response in the USA.

According to Correia et al. [5], the 1918 Flu had substantial variation among U.S. states in
terms of the speed and aggressiveness of its spread. The study found a direct linkage between
the speed and aggressiveness of interventions and containment of the virus and death rates.
However, different results were found by Eichenbaum et al. [6]. They argued that there was
a linkage between the virus spread and interactions with various economic decisions. The
more people refrained from social contact, the higher impact it had on the pandemic.

It is important that every state health system put an upper boundary on the number
of patients who can receive treatment. According to Gourinchas, [7] “with a two percent
case fatality rate baseline for overwhelmed health systems and 50 percent of the world
population infected, 76 million people or one percent of the world population would die.”

Measuring the efficiency of decision-making units (DMUs) such as hospitals, depart-
ments, and states using multiple inputs and producing multiple outputs is a complex
part of the performance measure study. Banker et al. [8] introduced a non-parametric
method to measure the technical efficiency of a set of multiple comparable DMUs, called
data envelopment analysis (DEA). DEA has been used widely to analyze efficiency in the
health care sector. We found several papers that used DEA to measure the health system’s
efficiency in the midst of the COVID-19 pandemic, although many papers evaluate the
health care system within countries and between counties [9–12].

Jouzdani et al. [10] are the first authors to perform an exploratory analysis of the global
fight against COVID-19. This study used statistical analysis and visualization techniques to
distinguish the temporal confirmed case, death, and recovered cases. Multiple countries are
compared and the United States had significantly higher spread of COVID-19 than other
countries. Another study by Shirouyehzad et al. [11] performed DEA analysis to measure
countries’ efficiency affected by COVID-19. They used population density and health
care infrastructure datasets to perform DEA analysis. Two-step analyses are performed
to estimate efficiency. In the first step, technical efficiency scores are estimated based on
the number of confirmed cases. In the second step, the total number of confirmed cases,
the death rates, and recovered cases are considered to measure the countries’ efficiency of
medical treatment.

Literature reviews analyzed the efficiency based on the ratio of a measure of some
quality of life for output variable and health care resources or health care expenditure for
input variables. This research study is similar to those, but considers different aspects using
the undesirable output variable. Previous studies have primarily focused on identifying
efficiency and lacked a scientific measure to evaluate the performance of COVID-19 when
both the number of confirmed and the number of recovered are considered output together.
In addition, existing studies do not address the impact of environmental factors on ef-
ficiency, ignoring the impact of social distancing, health care policy, and socioeconomic
factors in the various states. Previous studies regarding efficiency have focused on input
contraction or output expansion when the operational efficiency level improves. However,
it is inefficient when there is an undesirable output because efficiency measures should
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account for the simultaneous production of undesirable and desirable output, and DEA
itself cannot determine the factors related to the efficiency. The combination of DEA and
Classification and Regression Tree (CART) can resolve this problem by predicting the
efficiency and uncovering the determinants of the various U.S. states’ efficiency under the
COVID-19 pandemic scenario.

To analyze the factors that classify the efficiency and inefficiency of DMUs, the CART
is the most transparent and comprehensible data-driven method. Breiman et al. [12] first
introduced the CART algorithm as a hierarchical arrangement of decision nodes. A general
classifier is constructed in the form of several splits on factors that separate a dataset
into subgroups. The CART is good at detecting and accommodating interaction effects of
different variables; however, it does not perform well in handling linear relations between
variables. Therefore, researchers working on CART usually combine the results from
Logistic Regression (LR) to overcome CART’s drawbacks. LR is a highly popular and
powerful classification approach. It is an extension of linear regression as the outcome
variable is categorical. The CART and LR have been applied in data analysis in many
research studies [13–16].

Therefore, this paper will use DEA, CART, and LR to predict state COVID-19 response
performance. Besides, Boosted Tree (BT) and Random Forest (RF) were applied to com-
pare the model performance and to evaluate the importance of variables. The combined
approach of CART, LR, BT, and RF will be henceforth referred to as machine learning (ML).

The rest of the paper is organized as follows: Section 2 deals with the methodology,
Section 3 with results, Section 4 concludes.

2. Methodology
2.1. Data Description

Based on the availability of the dataset, the responsive performance of the U.S States
COVID-19 was measured as an efficiency score. Fifty states were considered in this study.
As a first step, referring to the literature, four inputs including the number of tested, public
funding, number of healthcare employee, number of hospital beds, and the number of
confirmed as an undesirable output, and number of recovered as a desirable output were
collected for DEA analysis (see Table 1). The number of tested is the most important,
affecting the country’s COVID-19 case [17]. The number of COVID-19 confirmed case is
directly related to the number of tested. Public funding, health care employees and capacity
of hospital beds are an essential input variable to measure performance because they are
directly related to the number of recovered. The number of tested indicates the number of
people tested for COVID-19, the number of confirmed indicates the number of COVID-19
positive cases, and the number of recovered indicates the patients recovered from COVID-
19 were collected from Worldometer [18], where provide real-time Coronavirus updates.
The number of confirmed, the number of recovered, and the number of tested starts in
1 March 2020 and last until 31 January 2021. There was a limitation to find the population
density and health care employee during the COVID-19 period, we used the 2019 data for
health care employee and hospital beds [4].

Table 1. Input and output variables used in DEA analysis.

Input/Output Variable

Undesirable Output Number_of_confirmed (in person)

Desirable Output Number_of_Recovered (in person)

Input

Number_of_Tested (in person)
Health_care_employee (in person)
Total_Public_Funding (in dollar)

Total_Hospital_Beds (in unit)
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In the next stage, various COVID-19 related environmental factors were collected. To
date, the United States has taken several actions to mitigate the COVID-19 and reduce
barriers to testing and treatment for those affected. Based on the data providing state-level
information in Kaiser Family Foundation (KFF) [19] and American Hospital Directory
(AHD) [20], and Financial Industry Regulation Authority (FINRA) [21], this paper creates
criteria for a different type of measure that affects states’ responsive performance. Table 2
shows three criteria measures and input abbreviation used in the ML analysis. We used
the social distancing measure, including Population Density (PD), Large Gathering Ban
(LGB), Non-Essential Business Closures (NEBC), Stayhome Duration (SHD), and Urban.
PD, Urban, and SHD are quantitative variables. LGB and NEBC are categorical variables.
With social distancing requirements in place for several weeks, U.S states have begun to
roll back some social distancing policy by allowing some or all non-essential businesses to
reopen, canceling stay at home orders and/or easing large gathering bans. Some levels of
categorical variables for non-essential business closure ban were modified, including all
with reduced capacity, some with reduced capacity, and no action. Large gathering bans
were classified into three levels: lifted, below 25, and above 25. For the health policy mea-
sure, Expands Access to Telehealth Services (EATS), Mask Mandates (MASKM), Number of
Tested per Population (NTP), Number of Vaccine Given per Population (NVGP), Total Hos-
pital Beds per Population (THBP), and Public Funding per Population (PF) were collected.
NTP, NVGP, THBP, and PF are quantitative variables, and EATS, MASKM are categorical
variable that is indicated as Yes and No. Lastly, the socio-economic measure includes GDP,
Health Care Employee per Population (HCEP), Physical Inactivity (PI), and Region (REG).
GDP, HCEP, and PI are quantitative variables and REG is categorical variable.

Table 2. Three Input Criteria and Input Abbreviation used in the ML Analysis.

Criteria Input Variable Input Abbreviation

Social Distancing Measure

Pop_Density a PD
Large_Gatherings_Ban LGB

Non_Essential_Business_Closures NEBC
Stayhome_Duration b SHD

Urban c Urban

Health Policy Measure

Expands_Access_Telehealth_Services EATS
Mask_Mandates MASKM

Number_of_Tested/Pop d NTP
Number_of_Vaccine_Given/Pop e NVGP

Total_Hospital_Beds/Pop f THBP
Public_Funding/Pop g PF

Socioeconomic Measure

GDP GDP
Health_Care_Employee/Pop h HCEP

Physical_Inact i PI
Region REG

a Measured by people per square mile in each state. b Stay Home Duration is calculated based on order date
and order expiration date for each state (in day). c Urban is the percent of the U.S. population living within
urban areas. d Total number of COVID-19 tested in each state is divided by total population. e The percentage of
COVID-19 vaccine given in each state. f Total number of hospital beds available in each state is divided by total
population. g The state and federal dollars allocated to public health and states per person (in dollar). h Total
number of health care employees is divided by total population in each state. i The percentage of adults who
have done no physical activity other than their regular job in the past 30 days.

2.2. The Hybrid Methodology of DEA and ML Frameworks

This research applies a combined DEA, CART, and LR approach to uncover the deter-
minants of efficiency of U.S. states under the COVID-19 situation so that our study reveals
the impacts of different environmental factors on efficiency. All quantitative variables are
normalized before running the model to deal with parameters of different units and scales
in the first stage. In the second stage, authors apply DEA computation of the U.S. state’s
performance and the efficiency scores obtained after running DEA with four inputs and
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one desirable output and one undesirable output. Each state is classified according to an
efficient state (efficiency score of 1) and an inefficient state (efficiency score of less than one).
Efficiency states are assigned as 1 and inefficient states are assigned as 0. They are used as
a target for ML analysis. Fifteen environmental (exploratory) variables are used as inputs
for Machine Learning. All computation is conducted in RStudio. Several packages are
used such as “deaR” package for DEA, and “rpart”, “adabag”, “randomForest” are used
for generating tree models, and “pROC”, “caret”, “e1071”, “recipes”, and “gains” are used
for performance evaluations. “rpart.plot” and “RColorBrewer” are used for visualization.
Figure 1 depicts our proposed hybrid model framework. In the following paragraphs, we
explain the DEA and ML techniques used in our study.
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2.3. Data Envelopment Analysis with Undesirable Output

As the COVID-19 pandemic creates both desirable and undesirable outputs, we must
consider the impact of an undesirable output on the evaluation of the performance in
terms of efficiency score. Seiford and Zhu [22] treated both desirable and undesirable
outputs, providing a suitable tool for this research to evaluate COVID-19 efficiency with
undesirable output. This research formulates a constant return to scale (CRS) DEA with
undesirable output. The constraints of variable returns to scale (VRS) DEA with undesirable
outputs [15]. Suppose the data matrix in DEA is expressed as:

[
Y
−X

]
=

 Yg

Yb

−X

 (1)

where Yg is the desired output and Yb is the undesirable output. State wishes to increase
Yg (e.g., Number of recovered from COVID-19) and to decrease Yb (e.g., confirmed cases of
COVID-19) to improve performance. For our study, the DEA model developed by Charnes,
Cooper, and Rhodes (CCR) [23] cannot be applied because CCR-DEA does not consider
the undesirable output at all. Practically, we hope that our undesirable output decreases
when the desirable output increases. Seiford and Zhu [22] modify the CCR-DEA model
into a non-linear programming problem by still preserving the DEA model’s linearity and
convexity. The monotone decreasing transformation method is used to treat the linearity
by multiplying each undesirable output by −1. Then, they find a proper translation vector
w to treat all negative values of undesirable output to be positive values. Therefore, the
data matrix of (1) becomes as follows:

[
Y
−X

]
=

 Yg

Yb

−X

 (2)
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where the jth column of undesirable output is yb
j = −yb

j + w > 0. Therefore, model (2)
now becomes the following linear programming model:

Max θ

s.t.
n
∑

j=1
zjy

g
j ≥ hyg

o

n
∑

j=1
zjyb

j ≥ hyb
o

n
∑
j=1

zjxj ≤ xo

zj ≥ 0, j = 1, . . . , n

(3)

We solve the above linear programming model to obtain the state efficiency score of
the CCR-DEA framework. Equation (3) provides the results of our main estimates that this
study will use to combine with data mining techniques to predict the efficiency.

2.4. Classification and Regression Tree (CART)

In the second step, this study develops a CART where the independent variables
represent the characteristics of observation and three measures described in Table 1. CART
is known as non-parametric statistical method for predicting a dependent variable using
some independent variable. This approach’s major goal is to uncover the predictive
structure of COVID-19 efficiency in the U.S., thereby to create an accurate dataset. Therefore,
the algorithm of CART permits, by binary recursive partitioning, to find all value of
predictors, which minimize the weighted variance [24]. In CART, a root node includes
all the observation and can be split into several child nodes. At the end, there are some
terminals known as leaves. A set of observations is included in each leaf and an average
of the dependent variable characterizes each leaf. Thus, the final tree is characterized by
the dependent variable that is used for predicting independent variables. In the CART
procedure, the same independent variable can be used on different levels of the tree. Once
creating the tree, a pruning process is usually recommended to increase the predictive
accuracy.

2.5. Logistic Regression

In our LR model, the dependent variable is in a categorical form and has two levels.
Independent variables are in both numerical and categorical form. The following Equation
(4) shows the binary multiple LR model [25].

g(x) = ln
[

π(x)
1− π(x)

]
= ln

[
P(y = 1|x)
P(y = 0|x)

]
= β0 +

p

∑
i=1

βixi (4)

Therefore, the log-likelihood function is used to estimate coefficients ((β)i) in the
model, which are calculated by iterative methods. The model’s odds ratio reflects the effect
of the environmental factor on the COVID-19 efficiency.

2.6. Random Forest

RF is one of the multi-tree approaches that has been applied in various fields of study
for classification [26,27]. The RF has been proven as a stable and effective classifier. It
combines several decision trees and chooses the classification with the highest number of
votes in the trees. Each different tree depends on the sampled random vector value from
the same distribution for all trees in the forest. In RF, the margin of error depends on the
strength of the trees’ different trees and the correlation between each tree.



Healthcare 2021, 9, 268 7 of 16

2.7. Boosted Tree

Like RF, BT is a popular multi-tree approach that combines many decision trees to
generate a robust classifier [28]. It builds a sequence of fitted trees so that each successive
tree concentrates on correcting misclassified records from the preceding tree to reduce the
misclassifications. The BT uses weighted votes to construct a final classifier, with higher
weights given to later trees.

2.8. Performance Evaluation

This research uses multiple methods to evaluate the performance of ML model, which
include confusion matrix, receiver operating characteristics (ROC) curves, lift chart, and
area under the curve (AUC). A binary classifier is simply a classification model where
the response has just two outcomes (efficient/inefficient state). Predictions made by a
classification model give a probability from 1.0 to 0.0. However, the expected values
recorded for each sample are binary (1 = efficient, 0 = inefficient). To convert the probability
into binary class labels, the authors choose 0.5 to be the cutoff point for ML model [13]. In
Table 3, four scenarios then described the difference between predicted and true binary
outcomes as a confusion matrix which includes, True Positives (TP), False Positives (FP),
False Negatives (FN), and True Negatives (TN). Sum of TP, FP, FN, and TN indicates the
total number of samples (N).

Table 3. The Confusion Matrix of ML model.

Count True Efficient State True Inefficient State

Predicted efficient state TP FP

Predicted inefficient state FN TN

The authors use the standard performance metrics to evaluate the accuracy of each ML
model [29]. Correct classi f ication rate (c) = (TP+TN)

N defines the proportion of correctly
identified samples of both binary classes. Then, the ROC curve is plotted to visualize the
accuracy of predictions for a whole range of cutoff point. Two ratios such as sensitivity (or
true positive rate), se = TP

(TP+FN)
and specificity (or true negative rate), sp = TN

(TN+FP) are
derived. A better model is when the ROC curve is closely plotted to the upper left corner.
Moreover, the AUC value obtained from a ROC curve can be used to evaluate the model
performance. AUC of 1.0 on the unit ROC space indicates a perfect prediction. Lastly, the
lift chart is used to evaluate the performance of ML models. The lift chart helps to find the
best predictive model among different models [30]. A better model results when the area
between the lift curve and the baseline is greater.

3. Results
3.1. Descriptive Statistics

Table 4 display the descriptive statistics of variables, which are used in DEA analysis.
For the undesirable output, the mean number of confirmed is found to be 503,330, while
the mean number of recovered, a desirable output, is found to be 301,832. From the sample
statistics, New York and New Jersey have the highest number of COVID-19 confirmed
cases and Montana and Alaska have the lowest number of COVID-19 confirmed cases.
In the case of the number of recovered, New York and Massachusetts have the highest
number of COVID-19 recovered cases, and Alaska and Montana have the lowest number of
COVID-19 recovered cases. The mean of input variables is also displayed in Table 4. From
the sample data, New York and California have the highest number of tested and Wyoming
and Vermont have the lowest number of tested. California and Texas have the highest
number of healthcare employees, and Wyoming and Alaska have the lowest healthcare
employees. California and Texas also have the highest hospital beds, while Vermont and
Alaska have the lowest hospital beds. Lastly, a high amount of public funding related
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to health is allocated to California and Florida, while a lower amount of public funding
is allocated to Vermont and Rhode Island. In the second stage of analysis, this paper
examined potential determinants (environmental factors) of efficiency through ML analysis.
Descriptive statistics of environmental factors are displayed in Table 5. Ten numerical and
five categorical variables are considered to perform ML analysis.

Table 4. Descriptive Statistics of the Dataset used in DEA.

Variable Mean Std.dev Min Max Sum

Undesirable Output Number_of_confirmed (in person) 503,330 583,039 11,165 3,199,895 25,166,517

Desirable Output Number_of_Recovered (in person) 301,832 366,394 5901 1,859,898 15,091,582

Input

Number_of_Tested (in person) 5,956,730 7,628,919 390,763 40,688,908 297,836,475
Health_care_employee (in person) 334,719 354,014 25,410 1,670,370 16,735,960
Total_Public_Funding (in dollar) 571,088,722 747,072,557 63,506,800 4,552,873,746 28,554,436,123

Total_Hospital_Beds (in unit) 14,951 15,608 1046 74,286 747,572

Table 5. Descriptive Statistics of Environmental Factors used in ML Analysis.

Numerical Variables Mean Std.dev Min Max Sum

Public_Funding/Pop 99.16 44.57 46.00 281.00 4958.00
Health_Care_Employee/Pop 0.052 0.008 0.034 0.070 2.615

Physical_Inact 24.08 3.84 16.40 32.40 1204.00
GDP 61,880.34 11,605.49 40,464.00 90,043.00 3,094,017.00

Urban 73.59 14.57 38.70 95.00 3679.30
Stayhome_Duration 35.72 18.33 - 71.00 1786.00

Total_Hospital_Beds/Pop 0.002 0.001 0.001 0.004 0.121
Number_of_Tested/Pop 0.29 0.41 0.02 2.16 14.50

Pop_Density 203.90 267.36 1.00 1215.00 10,195.00
Number_of_Vaccine_Given/Pop 0.069 0.016 0.050 0.132 3.470

Categorical Variables Levels of Category Description

Region 4 South, West, Northeast, and Midwest
Non-Essential Business Closures 3 All with Reduced Capacity, Some with Reduced Capacity, and No action

Large Gatherings Ban 3 Lifted, Below 25, and Above 25
Expands Access Telehealth Services 2 Yes or No

Mask Mandates 2 Yes or No

3.2. DEA Results

Table 6 shows the summary of state efficiency scores. The results show that 23 states
are efficient (efficiency score of 1), indicating that 46% of states are efficient in responding
to COVID-19. The inefficient states’ efficiency scores ranged from 0.896 to 0.999, with
Arkansas ranking first and Rhode Island ranking last among the inefficient states. The
overall average efficiency score of inefficient state is 0.97, indicating that the states could
produce, on average, 3% higher output with the same level of inputs. Based on the DEA
efficiency score, states were divided into two groups for subsequent classification tree
analysis: efficient (if efficiency score is equal to 1 and inefficient (if efficiency score is less
than 1). We define this variable as state efficiency. State efficiency will be used as the
outcome variable in the ML analysis.

Figure 2 depicts the distribution of efficient and inefficient states. As we can see, the
dark blue color indicates efficient states and the light blue color indicates inefficient states.
Efficient states are mainly located in the South, some in West and Midwest region. The
result indicates that there may exist a potential relationship between region and efficiency.
Thus, we add region as one of the environmental factors in the analysis.



Healthcare 2021, 9, 268 9 of 16

Table 6. Summary of state efficiency scores.

State Efficiency
Score State Efficiency

Score State Efficiency
Score

Alabama 1 Ohio 1 Michigan 0.948
Arizona 1 Tennessee 1 Nebraska 0.946

California 1 Texas 1 South Dakota 0.944
Colorado 1 Utah 1 North Dakota 0.942

Connecticut 1 Virginia 1 North Carolina 0.941
Florida 1 Washington 1 Montana 0.941
Georgia 1 Arkansas 0.999 New Hampshire 0.933
Indiana 1 Illinois 0.991 Wyoming 0.931

Iowa 1 Wisconsin 0.990 Maine 0.929
Kentucky 1 Oklahoma 0.990 Kansas 0.926
Louisiana 1 Oregon 0.988 Vermont 0.924
Maryland 1 Mississippi 0.987 Idaho 0.922
Minnesota 1 Hawaii 0.978 Alaska 0.918
Missouri 1 Massachusetts 0.968 Delaware 0.911

New Jersey 1 West Virginia 0.968 Pennsylvania 0.899
New Mexico 1 South Carolina 0.950 Rhode Island 0.896

New York 1 Nevada 0.950
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3.3. Comparison of CART and LR

We use state efficiency as the outcome variable. As mentioned previously, input variables
are PD, LGB, NEBC, SHD, Urban, EATS, MASKM, NTP, NVGP, THBP, PF, GDP, HCEP,
PI, and REG. By using Bootstrap sampling method, the original dataset was increased to
220 records [31]. Then, we randomly partitioned the dataset into training (70% of records) and
validation (30% of records). The training dataset is used to construct the CART and LR model.

Figure 3 shows the classification tree with 10 splits for the states’ COVID-19 efficiency.
The top node includes all the records in the training data, of which 45% of states are
efficient, and 55% of states are inefficient. The “0” in the top node’s rectangle denotes the
majority group is inefficient (0 = inefficient). The first split is on Urban. A state with Urban
percentage less than 4.4 will go to the left child node and a state with Urban percentage
greater than or equal to 4.4 will go to the right child node.

The next split is on PI for states with Urban percentage less than 4.4 and Urban
percentage for state with Urban percentage greater than equal to 4.4. The terminal node
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shows the final classification for states. Among the 11 terminal nodes, five lead to the
classification of “efficient” and six lead to “inefficient” classification. From the classification
tree the most important variable for efficiency is the Urban. State with Urban percentage
less 4.4, PI less than 5.8, and NTP greater than or equal to 0.35 are considered as inefficient
states. If Urban percentage is less than 5.5 but greater than or equal to 4.4 and THBP is less
than 2.9, then state is considered as efficient. In overall, Urban, PI, NTP, PD, THBP, and PF
directly affect the classification of the states.

Figure 4 shows the importance of predictor variables generated from the RF model. As
can be seen in the figure, PI has the highest mean decrease accuracy score (22.5), followed
by THBP (22.1), Urban (22.0), NTP (21.7), which are the most important variables for
predicting state efficiency. It shows similar findings in Classification Tree (Figure 3) in that
Urban, PI, THBP, NTP, PD are top priorities in classifying state efficiency levels. On the
other hand, MASKM (6.9) and EATS (7.1) shows the lowest mean decrease accuracy score,
which are the least important variables for predicting state efficiency, meaning that we
might not need to retain all of the environmental factors to create a predictive model.

LR is another method for predicting the efficiency of the categorical outcome variable.
Efficiency is predicted based on a number of environmental factors. Table 7 shows the odds
ratios (OR) and p-value of the different significance levels. For the environmental factor
of NEBC, two dummy variables are added when constructing a LR model, and All with
Reduced Capacity is considered as a reference category. The odds of being efficient for
NEBCNo is 0.0004, which indicates that No action is less likely to be efficient than the All
with Reduced Capacity holding all other variables as constant.
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Figure 3. CART Results for States COVID-19 Responsive Performance.

For the EATS factor, No is considered as a reference category. The odds of being
efficient for Yes is 57.5526, which indicates that Yes increases the likelihood of efficiency
than No. For REG, three dummy variables are added, and the Midwest is considered as a
reference category. The odds of being efficient for REGNortheast is 0.0856, which indicates
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that Northeast is less likely to be efficient than the Midwest. Both South and West Regions
decrease the likelihood of efficiency. Take GDP as an example to explain the quantitative
variable. For one unit increase in GDP, the odds of being classified as an efficient state
increase by a factor of 4.5465.
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Considering the coefficients’ statistical significance (p-value < 0.05), PD, LGBLifted,
NEBCNo, NEBCSome, SHD, Urban, EATSYes, MASKMYes, NTP, NVGP, THBP, GDP, and
PI are statistically significant to predict the efficiency. On the other hand, LGBBelow25,
PF, HCEP, REGNortheast, REGSouth, and REGWest were not related to efficiency. These
factors are consistent with factor importance ranking obtained from RF (see Figure 4).

Among the 15 considered environmental factors, twelve factors (original categorical
variables are considered) affect efficiency significantly in the LR model, and six factors are
effective in constructing an optimal classification tree. Five environmental factors found
significant in the LR model were also found significant in the classification tree.

Table 7. The results of fitting a logistics regression model on efficiency.

Environmental Factors OR p-Value

Social Distancing Measure

PD 0.1595 0.0101 *
LGBBelow25 3.2483 0.1551

LGBLifted 7.5648 0.0354 *
NEBCNo 0.0004 0.0001 ***

NEBCSome 0.0942 0.0094 **
SHD 0.0118 0.0003 ***

Urban 14.4586 0.0116 *

Health Policy Measure

EATSYes 57.5526 0.0015 **
MASKMYes 8.3107 0.0185 *

NTP 0.0607 0.0012 **
NVGP 3.1527 0.0101 *
THBP 0.0407 0.0011 **

PF 1.6053 0.2534

Socio-Economic Measure

GDP 4.5465 0.0355 *
HCEP 1.8354 0.4298

PI 38.5216 0.0002 ***
REGNortheast 0.0856 0.0906

REGSouth 0.6671 0.7627
REGWest 0.2415 0.4932

* p < 0.05, ** p < 0.01, *** p < 0.001.
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3.4. Performance Evaluation

We used a confusion matrix to evaluate the performance of different models. Table 8
summarizes the correct and incorrect classifications for four different models using training
and validation data.

For the classification tree, out of 154 cases of training data, 69 cases are predicted
to be efficient with an accuracy of 99% and 83 cases are predicted to be inefficient with
an accuracy of 98.81%. The overall accuracy is 98.70%. For the validation data, 66 cases
are considered in which 27 cases are correctly classified as efficient and 33 cases are
correctly classified as inefficient. The efficiency accuracy rate is found to be 96.43% and the
inefficiency accuracy rate is found to be 86.84%. The classification tree’s overall accuracy
level is 90.91%, which indicates a relatively high level of confidence.

For BT and RF, the training data has an estimated accuracy rate of 100%. The accuracy
rate reduces to 95.45% for the validation data. The efficiency and inefficiency accuracy
rates are 100% and 92% respectively, which indicates that these two models are good at
classifying efficient and inefficient states.

From the result by LR model, out of 154 cases of training data, 55 cases are predicted
to be efficient with an accuracy of 78.57% and 74 cases are predicted to be inefficient with
an accuracy of 88.10%. The overall accuracy is 83.77%. For the validation data, 66 cases are
considered in which 22 cases are correctly classified as efficient and 32 cases are correctly
classified as inefficient. The efficiency accuracy rate is found to be 78.57% and inefficiency
accuracy rate is found to be 84.21%. The overall accuracy level for the LR is 81.82%.

Table 8. The accuracy results for the four different methods.

Training Data Validation Data

Efficiency Inefficiency Efficiency Inefficiency

Classification Tree Accuracy rate 99% 98.81% 96.43% 86.84%
Average 98.70% 90.91%

Boosted Tree Accuracy rate 100% 100% 100.00% 92%
Average 100% 95.45%

Random Forest Accuracy rate 100% 100% 100.00% 92%
Average 100% 95.45%

Logistic Regression Accuracy rate 78.57% 88.10% 78.57% 84.21%
Average 83.77% 81.82%

Figure 5 shows the ROC curves for the four different models. The ROC curve plots
the different pairs of specificity and sensitivity as the cutoff value decreases from 1 to 0.
Area under the curve (AUC), which ranges from 1 (perfect prediction) to 0.5 (random
coin flipping), is used to measure the model’s performance. AUC is found to be 0.9164
for CART, 0.9605 for BT, 0.9605 for RF, and 0.8994 for LR. From this measure, BR and RF
are better methods to predict the efficiency than CART and LR. However, CART is better
than LR. Meanwhile, BT and RF are combined from the results of multiple trees and they
allow for better consistency of results and robustness of predictions. They usually perform
better than a single tree. However, their result cannot be displayed in a tree-like diagram.
An RF and BT aka “black-box model” is less interpretable than a single classification tree.
Therefore, we only compared lift chart for classification tree and logistic regression in
Figure 6.
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The lift chart helps visualize for measuring model performance, which is the ratio
between results obtained from the predictive and random classification models. The greater
the area between the baseline and the lift curve, the better the model.

As it can be seen from Figure 6, if the top 30 records are selected, CART can correctly
classify 25 records (83%) and the LR model can correctly classify 23 records (77%). If the
top 40 records are selected, CART can correctly classify 27 records (68%) and the LR model
can correctly classify 25 records (63%). From the analysis result, CART performs better
than LR and these two models are much better than random classification.
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4. Conclusions

The application of DEA, CART, and LR on measuring the COVID-19 response per-
formance of states gives a new angle to fight against the Coronavirus outbreak. From
DEA analysis, the finding indicated that 23 out of 50 states were efficient in responding to
COVID-19. As a second stage, CART and LR are used to find the associated relationship
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between efficiency and 15 environmental variables. Variables are categorized into three
measurement groups: social distancing measure, health policy measure, and socioeconomic
measure to run four ML models.

CART identified the six key predictors: Urban, PI, NTP, PD, THBP, and PF. RF and BT
were extensions of a single classification tree to improve the classification tool’s robustness.
RF produced variable importance scores, which show the measure of relative contribution
of the different environmental factors. From the importance of predictor variable analysis,
using RF, PI, THBP, Urban, NTP, and NVGP were among the top 5 priorities in classifying
the efficiency. Lastly, researchers used the LR approach to predict the efficiency for com-
parison with our other proposed models. Five environmental factors such as Urban, PI,
NTP, PD, and THBP being found significantly in LR model were also found significantly
in CART.

Our study is well justified by assessing the performance of different model’s confusion
matrix, ROC curve, and lift chart. BT and RF were better predictive models because of
higher accuracy rate and higher AUC value. Moreover, CART performed better than LR.
Although DEA can explain the efficiency scores, but it cannot explain the environmental
factors related to the inefficiency of the DMUs. Therefore, the CART and LR approaches
help explain the efficiency results obtained by DEA by observing the environmental factors
associated with efficiency and inefficiency.

This study’s results may be of interest to health care decision-makers who are in-
volved in COVID-19 response management planning and wish to maximize the statewide
performance.

First, health care decision-makers in government and industry need to incorporate the
results of this study, which focus on social distancing measures, health policy measures, and
socioeconomic measures in addition to experimental results. The functioning of the COVID-
19 pandemic may be encumbered by increasing health care provider capacity that may be
difficult to expand based on current capacity level. COVID-19 spreads rapidly to urban
areas, where higher population density exists. Moreover, states with high populations tend
to be efficient; thus, paying attention to the rural areas with states with lower populations
is important to improve the efficiency. States could allocate additional health care resources
such as a health care employee and hospital bed by establishing a resource consortium
program between states for effective utilization of health care resource. States should also
establish effective vaccine allocation program to maximize the vaccine supply. Knowing
the factor affecting the efficiency will be very important for health care policy makers to
establish the COVID-19 responding policy for each state. Our results might be the set
of rules that can be used for health care policymakers to improve statewide pandemic
response performance.

Secondly, health care decision-makers can supplement our study results by conducting
window analysis of states’ operational efficiency. One limitation of this study is that
detailed panel data for some of the variables, such as number of health care employees,
population density, GDP, and public funding, were not publicly available. Usually, they
were aggregated into one year. The limitation of the study can be overcome if disaggregated
monthly or weekly data is available. These are important parameters that health care
decision-makers should include when modeling the determinants of efficiency in COVID-
19 or similar unprecedented pandemic situation in the future. Our study has taken one step
towards evaluating the proper mechanisms that can help U.S. governments improve their
efficiency regarding COVID-19. Future research should find out which measure would
work best in this context. Moreover, this study used a bootstrapping sampling method to
tackle our issue. We think that use of county-level to predict the efficiency would be a good
idea, but this is beyond the scope of this paper.

Author Contributions: Conceptualization, Y.S.P., and J.D.P.; methodology, Y.X.; Project administra-
tion, Y.S.P., and J.D.P.; Supervising, Y.S.P., and J.D.P.; software, Y.X., and Y.S.P.; visualization, Y.X.;
writing-original draft, Y.X., Y.S.P., and J.D.P.; writing-review& editing, Y.S.P., and J.D.P. All authors
have read and agreed to the published version of the manuscript.



Healthcare 2021, 9, 268 15 of 16

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The excel datasets generated during and/or analyzed during the
current study are available from the corresponding author on reasonable request.

Acknowledgments: The authors thank the anonymous reviewers of this paper for the time and effort
they put into reviewing the paper to improve its quality.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bashir, M.F.; Ma, B.; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic

in New York, USA. Sci. Total Environ. 2020, 728, 138835. [CrossRef] [PubMed]
2. Singh, R.; Adhikari, R. Age-structured impact of social distancing on the COVID-19 epidemic in India. arXiv Prepr. 2020,

arXiv:2003.12055.
3. Liu, K.; Chen, Y.; Lin, R.; Han, K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged

patients. J. Infect. 2020, 80, e14–e18. [CrossRef]
4. KFF. State Data and Policy Actions to Address Coronavirus. 2020. Available online: https://www.kff.org/coronavirus-covid-19

/issue-brief/state-data-and-policy-actions-to-address-coronavirus/#policyactions (accessed on 30 January 2021).
5. Correia, S.; Luck, S.; Verner, E. Pandemics Depress the Economy, Public Health Interventions Do Not: Evidence from the 1918 Flu.

SSRN Electron. J. 2020. [CrossRef]
6. Eichenbaum, M.; Rebelo, S.; Trabandt, M. The Macroeconomics of Epidemics. Natl. Bur. Econ. Res. 2020. [CrossRef]
7. Gourinchas, P.-O. Flattening the pandemic and recession curves. In Mitigating the COVID Economic Crisis: Act Fast and Do Whatever

It Takes; CEPR Press: London, UK, 2020.
8. Banker, R.; Charnes, A.; Cooper, W. Some models for estimating technical and scale inefficiencies in data envelopment analysis.

Manag. Sci. 1984, 30, 1078–1092. [CrossRef]
9. Frogner, B.K.; Frech, H.E.; Parente, S.T. Comparing efficiency of health systems across industrialized countries: A panel analysis.

BMC Health Serv. Res. 2015, 15, 415. [CrossRef]
10. Jouzdani, J. Fight against COVID-19: A global outbreak response management performance view. J. Project Manag. 2020.

[CrossRef]
11. Shirouyehzad, H.; Jouzdani, J.; Khodadadi Karimvand, M. Fight against COVID-19: A global efficiency evaluation based on

contagion control and medical treatment. J. Appl. Res. Ind. Eng. 2020, 7, 109–120. [CrossRef]
12. Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Wadsworth-Monterey: Pacific Grove, CA, USA,

1984.
13. Chen, M.Y. Predicting corporate financial distress based on integration of decision tree classification and logistic regression.

Expert Syst. Appl. 2011, 38, 11261–11272. [CrossRef]
14. Chang, M.; Maguire, M.; Sun, Y. Stochastic modeling of bridge deterioration using classification tree and logistic regression. J.

Infrastruct. Syst. 2019, 25, 04018041. [CrossRef]
15. Lou, J.; Jing, L.; Yang, H.; Qin, F.; Long, W.; Shi, R. Risk factors for diabetic nephropathy complications in community patients

with type 2 diabetes mellitus in Shanghai: Logistic regression and classification tree model analysis. Int. J. Health Plan. Manag.
2019, 34, 1013–1024. [CrossRef]

16. Imafuku, A.; Sawa, N.; Kawada, M.; Hiramatsu, R.; Hasegawa, E.; Yamanouchi, M.; Hoshino, J.; Ubara, Y.; Takaichi, K. Incidence
and risk factors of new-onset hypertrophic pachymeningitis in patients with anti-neutrophil antibody-associated vasculitis: Using
logistic regression and classification tree analysis. Clin. Rheumatol. 2019, 38, 1039–1046. [CrossRef]

17. Sun, Z.; Zhang, H.; Yang, Y.; Wan, H.; Wang, Y. Impacts of geographic factors and population density on the COVID-19 spreading
under the lockdown policies of China. Sci. Total Environ. 2020, 746, 141347. [CrossRef]

18. Worldometer. COVID-19 Coronavirus Pandemic. 2020. Available online: https://www.worldometers.info/coronavirus/
(accessed on 30 January 2021).

19. KFF. Corona Virus (COVID-19). 2021. Available online: https://www.kff.org/coronavirus-covid-19/ (accessed on 30 January
2021).

20. AHD. Hospital Statistics by State. 2021. Available online: https://www.ahd.com/state_statistics.html (accessed on 5 December
2020).

21. FINRA. COVID-19/Corona Virus. 2021. Available online: https://www.finra.org/rules-guidance/key-topics/covid-19 (accessed
on 30 January 2021).

22. Seiford, L.; Zhu, J. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2020.138835
http://www.ncbi.nlm.nih.gov/pubmed/32334162
http://doi.org/10.1016/j.jinf.2020.03.005
https://www.kff.org/coronavirus-covid-19/issue-brief/state-data-and-policy-actions-to-address-coronavirus/#policyactions
https://www.kff.org/coronavirus-covid-19/issue-brief/state-data-and-policy-actions-to-address-coronavirus/#policyactions
http://doi.org/10.2139/ssrn.3561560
http://doi.org/10.3386/w26882
http://doi.org/10.1287/mnsc.30.9.1078
http://doi.org/10.1186/s12913-015-1084-9
http://doi.org/10.5267/j.jpm.2020.3.001
http://doi.org/10.22105/jarie.2020.225087.1146
http://doi.org/10.1016/j.eswa.2011.02.173
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000466
http://doi.org/10.1002/hpm.2871
http://doi.org/10.1007/s10067-018-4372-z
http://doi.org/10.1016/j.scitotenv.2020.141347
https://www.worldometers.info/coronavirus/
https://www.kff.org/coronavirus-covid-19/
https://www.ahd.com/state_statistics.html
https://www.finra.org/rules-guidance/key-topics/covid-19
http://doi.org/10.1016/S0377-2217(01)00293-4


Healthcare 2021, 9, 268 16 of 16

23. Charnes, A.; Cooper, W.W.; Rhodes, E. Evaluating program and managerial efficiency: An application of data envelopment
analysis to program follow through. Manag. Sci. 1981, 27, 668–697. [CrossRef]

24. Razi, M.A.; Athappilly, K. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification
and regression tree (CART) models. Expert Syst. Appl. 2005. [CrossRef]

25. Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume
398.

26. Shi, T.; Horvath, S. Unsupervised learning with random forest predictors. J. Comput. Graph. Stat. 2006, 15, 118–138. [CrossRef]
27. García, M.N.M.; Herráez, J.C.B.; Barba, M.S.; Hernández, F.S. Random forest based ensemble classifiers for predicting healthcare-

associated infections in intensive care units. In Distributed Computing and Artificial Intelligence, 13th International Conference;
Springer: Cham, Switzerland, 2016; pp. 303–311.

28. Selvi, R.T.; Muthulakshmi, I. Modelling the map reduce based optimal gradient boosted tree classification algorithm for diabetes
mellitus diagnosis system. J. Ambient Intell. Humaniz. Comput. 2020, 1–14. [CrossRef]

29. Shaikhina, T.; Lowe, D.; Daga, S.; Briggs, D.; Higgins, R.; Khovanova, N. Decision tree and random forest models for outcome
prediction in antibody incompatible kidney transplantation. Biomed. Signal Process. Control 2019, 52, 456–462. [CrossRef]
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