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Abstract: The study of artificial neural networks (ANN) has undergone a tremendous revolution
in recent years, boosted by deep learning tools. The presence of a greater number of learning tools
and their applications, in particular, favors this revolution. However, there is a significant need
to deal with the issue of implementing a systematic method during the development phase of the
ANN to increase its performance. A multilayer feedforward neural network (FNN) was proposed
in this paper to predict the cell migration assay on cisplatin-sensitive and cisplatin-resistant (CisR)
ovarian cancer (OC) cell lines via scratch wound healing assay. An FNN training algorithm model
was generated using the MATLAB fitting function in a MATLAB script to accomplish this task.
The input parameters were types of cell lines, times, and wound area, and outputs were relative
wound area, percentage of wound closure, and wound healing speed. In addition, we tested and
compared the initial accuracy of various supervised learning classifier and support vector regression
(SVR) algorithms. The proposed ANN model achieved good agreement with the experimental
data and minimized error between the estimated and experimental values. The conclusions drawn
demonstrate that the developed ANN model is a useful, accurate, fast, and inexpensive method to
predict cancerous cell migration characteristics evaluated via scratch wound healing assay.

Keywords: artificial neural network; cell migration assay; scratch wound healing assay; ovarian
cancer; cisplatin-resistant

1. Introduction

Cell migration is a vital process in which cells need to adjust and achieve their correct
location in a given environment to perform their work [1]. It is possible to deregulate cell
migration, which leads to many pathological processes, such as inflammation and cancer
metastasis [2–4]. Approaches to studying cell migration are particularly interesting in
physiology and oncology, as cell migration is relevant to phenotypes when looking into
the effects of novel therapeutic drugs and chemoattractants during metastatic progres-
sion [5]. The scratch wound healing assay is the most common in vitro biological assay to
investigate the mechanisms regulating cancer cell migration or test the efficacy of potential
therapeutic drugs. The wound healing assay creates a defined area across which cells mi-
grate. The scratch wound healing assay has been commonly utilized to study the effects of
a number of experimental conditions on mammalian cell migration and proliferation, such
as gene knockdown or chemical exposure [6]. However, current methods are not efficient
enough for in vitro high-throughput screening of small molecules or characterization of the
molecular metastatic cascade complex. Most studies on cell migration have the limitation
of being based on endpoint assays.

Deep learning-based algorithms, which are based on artificial neural networks (ANN),
offer significant promise in extracting features and discovering patterns from large volume
data. A highly simplified biological network structure model is the ANN, which learns
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from examples and recognizes patterns in a series of input and output data without any
prior assumptions of their nature and interrelationships. It does not need any mathematical
model. The science of neural networks has seen a significant revolution in recent years,
aided by deep learning methodologies. The following are some of the advantages of the
ANN model: ease of optimization, low cost, flexible nonlinear modeling of large databases,
accuracy of predictive implication, and potential to support clinical judgment [7]. By
providing an explanation, such as using an extraction rule or sensitivity analysis, the ANN
model can make knowledge dissemination easier [8].

Traditional statistical prediction methods such as regression models (e.g., regression
splines, projection pursuit regression, penalized regression) involve fitting a model to data,
evaluating the fit, and estimating parameters that are later used in a predictive equation [9].
In terms of utility, ANNs are competitive with conventional modeling based on polynomial,
linear regression and statistical models [10,11]. Neural networks, discriminant functions,
linear classifiers, and support vector classifiers and machines are some other examples of
deep learning algorithms. Despite the fact that ANNs provide a more effective, efficient,
and successful way to manage both complex and noncomplex data, there is a growing need
to address the issue of using a systematic approach during the development phase of ANNs
to improve their performance. Many different statistical, probabilistic, and optimization
techniques can be implemented including decision trees, discriminant analysis, naïve Bayes,
ensemble, support vector machines (SVM), K-nearest neighbor (KNN), and neural network
(NN) classifiers, which segment a data set sequentially depending on the correlations
between predictor value and an outcome value [12,13]. Meanwhile, a feedforward neural
network (FNN) is a machine learning algorithm composed of layers that are relatively
simpler to implement and organized similarly to human neuron processing units. There
is no feedback between layers when NN operates normally, that is, when it acts as a
predictor [14]. It features a straightforward architecture, excellent learning capabilities, and
the ability to solve complicated issues. This simple architecture belongs to the shallow
network group and is useful for classifying a small number of classes [15]. The ability
of the ANN to predict data results in high accuracy of cancer survival prediction [16]. A
machine learning-based model identified highly motile cells and nonmotile cells based on
microscope image features that determined cell migration ability [17]. Only a few studies
have suggested that ANNs achieved optimum accuracy for cell movement direction and
speed prediction [18]. However, due to the limitations of conventional marker-based
approaches to identify cell migration, we aimed to establish an ANN model to predict
cell migration. This paper presents the design, training, and testing of a feedforward
ANN to predict the migration capacity of cisplatin-resistant ovarian cancer (OC) cells
that makes adequate use of scratch wound healing data from our previously published
experimental data.

2. Materials and Methods
2.1. Assembling Scratch Wound Healing Migration Assay Data for the ANN Model
2.1.1. Cell Culture

For training the ANN model, we used experimental data from our previous publica-
tion [19]. The metastasis properties of the different OC cell lines were determined using a
scratch wound healing migration assay. The human serous OC cell line OV-90 and human
epithelial OC cell line SKOV-3 were cultured at 37 ◦C with 5% CO2 saturated humidity.
The OV-90 was cultivated in a 1:1 mixture of MCDB 105 (LM016-01) and Medium 199
(#GIB-11150-059, Gibco, Life Technologies, Grand Island, NY, USA), while SKOV-3 was
cultured in McCoy’s 5A modified (#GIB-16600082, Gibco). All media were supplemented
with 10% fetal bovine serum (FBS, #GIB-16000-044, Gibco) and 1% penicillin-streptomycin
(#P4333, Sigma Aldrich, St. Louis, MO, USA). We used a constant higher dose (100 µM) of
cisplatin for pulse treatment (termed as CisR1), and we started from a lower dose (10, 20,
40, 80, to 100) of cisplatin for intermittent incremental treatment (termed as CisR2) methods
to generate CisR OC cells. A total of four sublines were generated from two OC cell lines
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(OV-90/Parental and SKOV-3/Parental), two from each cell line, including OV-90/CisR1,
OV-90/CisR2, SKOV-3/CisR1, and SKOV-3/CisR2.

2.1.2. Scratch Wound Healing Migration Assay

Cell migration was assessed using a scratch wound healing assay following our
previous publication [19]. In brief, the parental and CisR cells were cultured in six-well
plates for 24 h and then treated with 50 µM cisplatin for another 24 h. Cells were re-
suspended and again, 2 × 105 cells were seeded into six-well plates and cultured to
monolayers, which were then wounded using sterile 1 mL pipette tips. Cells were washed
with PBS to remove any debris. Photos were captured at 0, 12, and 24 h after wounding
(Figure 1). The gap distance can be quantitatively evaluated using software such as ImageJ
(National Institutes of Health). The equations for calculation of the relative wound area
(Equation (1)), percentage (%) of wound closure (Equation (2)), and wound healing speed
(Equation (3)) are given below.

Relative wound area = Wt/W0 (1)

Wound closure (%) = ((W0 − Wt)/W0)× 100 (2)

Healing speed (µm2/ h) = (W0 − Wt)/∆T (3)

W0 = Wound area at 0 h (µm2)
Wt = Wound area at ∆h (µm2)
∆T = Duration of wound measured (h)
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Figure 1. Representative images of scratch wound healing assay at 0, 12, and 24 h.

2.2. Modeling Approach
2.2.1. Automated Analysis by Machine Learning Toolbox

We tested the initial accuracy of various supervised learning algorithm methods, such
as decision trees, discriminant analysis, naïve Bayes, ensemble, support vector machines
(SVM), K-nearest neighbor (KNN), and neural network (NN) classifiers by using the
MATLAB (R2021a) “Classification Learner App”. We applied 5-fold cross-validation to
protect against overfitting by partitioning the data set into folds and estimating accuracy on
each fold. We used our experimental data set (n = 90) for measuring accuracy to select the
complex decision tree algorithm. The SVM and NN methods scored the highest accuracy
compared with other algorithms (Table 1). The narrow NN algorithm showed the highest
accuracy of 86.7% with 5-fold cross validation (Appendix A, Figure A1).
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Table 1. The accuracy of different machines learning algorithms in Classification Learner App.

Classifier Accuracy (%) Classifier Accuracy (%) Classifier Accuracy (%)

Decision
Tree

Fine Tree 38.9

Support
Vector

Machines
(SVMs)

Linear SVM 67.8

Neural
Network

(NN)

Narrow NN 86.7

Medium Tree 38.9 Quadratic
SVM 70.0 Medium NN 85.6

Coarse Tree 24.4
Fine

Gaussian
SVM

75.6 Wider NN 83.3

Discriminant
Analysis

Linear
Discriminant 67.8 Medium

SVM 70.0 Bilayered
NN 82.2

Quadratic
Discriminant Failed Coarse

SVM 72.2
Trilayered

NN 78.9

Naive
Bayes

Gaussian 25.6
Kernel 27.8

K-Nearest
Neighbor

(KNN)

Fine KNN 73.3

Ensemble

Boosted
Tree 53.3 Medium

KNN 28.9

Bagged Tree 57.8 Coarse KNN 16.7
Subspace

Discriminant 65.6 Cosine KNN 30.0

Subspace
KNN 42.2 Cubic KNN 31.1

RUS Boosted
Tree 51.1 Weighted

KNN 66.7

% = percentage; SVM = support vector machine; KNN = K-nearest neighbor; NN = neural network.

2.2.2. Support Vector Regression (SVR)

Support vector regression (SVR) is an application of the SVM learning algorithm that is
highly effective for predicting and recognizing patterns in large numerical datasets [20,21].
We generalized SVR in MATLAB (R2021a) “Regression Learner App” to justify prediction
capability of different SVMs, including linear, quadratic, cubic, fine Gaussian, medium
Gaussian, and coarse Gaussian SVMs. We could view model statistics in the Current
Model Summary pane after training regression models in Regression Learner, and we used
these data to assess and compare models. We applied cross-validation to protect against
overfitting by partitioning the data set in to folds and estimates accuracy on each fold. We
used our experimental data set (n = 90) for justifying the prediction capability of different
SVMs. We checked the models window after training a model in Regression Learner to
find which model had the best overall score. The best RMSE (Validation) is underlined; the
root mean square error (RMSE) on the validation set was used to obtain this score (Table 2).
This score estimates the trained model’s performance on new testing data.

Table 2. The performance of different SVM learning algorithms in Regression Learner App.

SVM Machines

Relative Wound Area Wound Closure Healing Speed

Training Testing Training Testing Training Testing

MAE RSME MAE RSME MAE RSME MAE RSME MAE RSME MAE RSME

Linear SVM 0.028 0.033 0.028 0.033 3.830 5.495 4.204 6.564 12809 16937 1.1 × 104 1.5 × 104

Quadratic SVM 0.028 0.032 0.0278 0.031 3.068 3.586 3.04 4.089 6557.5 8227.3 5.7 × 103 8.1 × 103

Cubic SVM 0.000 0.030 0.0281 0.031 3.491 4.129 3.14 4.309 4052.6 4983 4.1 × 103 4.7 × 103

Fine Gaussian SVM 0.004 0.063 0.0293 0.033 5.208 7.628 1.536 2.553 5949.5 8136.3 4.2 × 103 4.9 × 103

Medium Gaussian SVM 0.027 0.034 0.0262 0.030 2.906 3.610 2.483 3.104 15488 4360.1 3.4 × 103 3.7 × 103

Coarse Gaussian SVM 0.037 0.044 0.0354 0.041 4.281 5.408 4.040 5.275 3676.7 17028 1.1 × 104 1.4 × 104

SVM = support vector machine; MAE = mean absolute error; RMSE = root mean square error.

2.2.3. Multilayer Feedforward Neural Network (FNN)

Computational modeling, mainly using an ANN, can perform precise prediction,
processing, and data representation. We utilized an ANN model to predict the migration
properties of parental and CisR OC cells based on an in vitro scratch wound healing assay.
Figure 2 shows a simplified version of the multilayer feedforward neural network (FNN)
model, which includes an input layer, an output layer, and at least one hidden layer in
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between them [22]. The input layer receives x signal externally, and this information
is weighted with various synaptic weights (wij) and feedforwarded to the hidden layer.
Before transmitting the weighted inputs to the output layer, each neuron in the hidden
layer integrates them together and applies a nonlinear transfer activation function, f(a).

f (a) = 1/
(
1 + e−a) (4)
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The hidden layer neurons do an identical algorithm with synaptic weight (wkj) and
provide the neural network’s output value, o. The hidden and output neurons’ output can
be expressed as follows:

pj = fh (∑
i

xi..wji + bj) (5)

ok = fo (∑
i

pj.wkj + bk) (6)

where fh and fo are the activation functions, and bj and bk are the bias, of the hidden and
output layer, respectively.

The ANN used a feedforward backpropagation model, created using the MATLAB
fitting function in a MATLAB script for analyzing the Bayesian regularization algorithm
for training and using the mean square error (MSE) method for performance assess-
ment [23–25]. Each network was created with three inputs (cell lines, hours, and area)
and three outputs (relative wound area, percentage of wound closure, and healing speed).
A number of neurons in the hidden layer was selected that could produce better results
without overfitting the network. To accomplish this, we trained the network with three
input neurons, one hidden layer (~5 to 25 neurons), and three output neurons. For training,
validating, and testing the neural networks, the MATLAB script randomly selected 62
(70%) of the samples for the training subset, 14 (15%) for the validation subset and 14 (15%)
for the test subset. The obtained error for the proposed ANN model was evaluated using
the mean absolute error percentage (MAE%), and the root mean square error (RMSE), and
the following equations were used to calculate these data:

MAE% = 100 × 1/N
N

∑
i=1

[Xi(Exp)− Xi(Pred)] (7)

RMSE =

[
∑N

i=1[ Xi(Exp)− Xi(Pred)]2

N

]0.5

(8)
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MSE = 1/N
N

∑
i=1

[Xi(Exp)− Xi(Pred)]2 (9)

where N is the number of data and X(Exp) and X(Pred) are experimental and predicted
(ANN) values, respectively.

2.2.4. ANN Modeling via System Identification

Neuromodeling for the prediction of migration ability of cisplatin-resistant ovarian
cancer cells was performed via learning of a neural network (NN) [26]. For this, the relative
wound area, percentage of wound closure, and wound healing speed were measured
using in vitro scratch wound healing assay. Initially, the assay was performed to determine
wound area after scratching on two OC cell lines (OV-90/Parental and SKOV-3/Parental),
and two sublines from each cell line, including OV-90/CisR1, OV-90/CisR2, SKOV-3/CisR1,
and SKOV-3/CisR2, for 0, 12, and 24 h. A total of 92 data points were measured and used
to train the NN model. Out of 92 data, 70% of the samples for the training subset, 15% for
the validation subset, and 15% for the test subset were randomly chosen. The cell lines,
hour (h), and wound area were the primary inputs to NN, and the targets to be learned
were the corresponding data of relative wound area, percentage of wound closure, and
wound healing speed. The six cell lines, OV-90/Parental, OV-90/CisR1, OV-90/CisR2,
SKOV-3/Parental, SKOV-3/CisR1, and SKOV-3/CisR2, were encoded as integers 1, 2, 3, 4,
5, and 6, respectively, and the three time points (0, 12, and 24 h) were encoded as 0, 1, and
2, respectively. The input wound area, output relative wound area, percentage of wound
closure, and wound healing speed were expressed with real numbers. As a result, the NN
included three input and three output nodes. The number of hidden nodes necessary to
learn the system was determined via trial and error. The number of hidden nodes in each
hidden layer was steadily increased, starting with five in the first hidden layer. The network
was trained on the training dataset for a fixed 1000 epochs using the FNN algorithm with a
learning rate of 0.05, and its performance was evaluated by MSE. Table 3 summarizes the
findings for different ANN structures. On the training dataset, the networks with eighteen
and twenty-one hidden nodes produced the lowest error. Then, although the first hidden
layer’s number of nodes was kept at eighteen, a second hidden layer was created to test the
network. Starting with two hidden nodes, the second hidden layer’s nodes were gradually
increased. The network was then trained and tested as described earlier. Table 4 shows
that the NN with ten hidden nodes in the second hidden layer produced the lowest error
in both training and testing dataset, but was not superior to the NN with only one hidden
layer of eighteen hidden nodes. Therefore, a three-layered NN with three input nodes,
eighteen hidden nodes, and three output nodes, namely, a 3-18-3 network, was chosen as
optimal network to training and testing wound healing dataset.

Table 3. The comparison of different ANN structures’ performance with one, two, and three hidden
layers by changing the number of neurons in the hidden layer(s).

ANN Structure

Performance (Average MSE)

Training Function Algorithm

TrainBR TrainLIM TrainRPROP

3-5-3 5.010 9.71 × 104 1.158 × 106

3-7-3 3.140 9.35 × 108 2.01 × 106

3-10-3 2.798 4.21 × 108 3.23 × 108

3-12-3 1.4089 1.75 × 106 7.68 × 108

3-15-3 3.472 8.21 × 108 3.24 × 106

3-18-3 0.058 7.00 × 108 7.32 × 106

3-20-3 0.561 1.82 × 106 7.90 × 108

3-21-3 0.4964 1.65 × 106 7.54 × 108

3-22-3 1.0627 1.25 × 106 7.69 × 108

3-24-3 5.1836 8.65 × 104 1.02 × 106
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Table 3. Cont.

ANN Structure

Performance (Average MSE)

Training Function Algorithm

TrainBR TrainLIM TrainRPROP

3-5-5-3 7.460 6.96 × 104 3.21 × 106

3-5-10-3 1.030 1.28 × 109 6.43 × 106

3-10-5-3 0.606 4.78 × 103 1.88 × 106

3-5-5-5-3 70.00 7.53 × 104 7.13 × 106

3-10-5-5-3 1.292 1.66 × 105 2.18 × 107

3-10-10-5-3 1.428 8.38 × 104 6.06 × 106

ANN = artificial neural network; MSE = mean square error; TrainBR = Bayesian regularization; TrainLIM =
Levenberg–Marquardt optimization, TrainRPROP = resilient backpropagation algorithm (RPROP).

Table 4. The performance comparison of a two-hidden-layer ANN with various numbers of neurons
in the second hidden layer.

ANN Structure
Performance (Average MSE)

Training Testing

3-18-3 0.058 0.012
3-18-2-3 0.460 0.262
3-18-4-3 0.306 0.174
3-18-6-3 0.635 0.345
3-18-8-3 0.752 0.428
3-18-10-3 0.292 0.183
3-18-12-3 1.321 0.752
3-18-15-3 1.024 0.266
3-18-18-3 0.428 0.243
3-18-20-3 0.792 0.451
3-18-22-3 1.428 0.813

ANN = artificial neural network; MSE = mean square error.

3. Results

Table 1 depicts the accuracy of different machine learning classifiers algorithms, where
SVM and NN classifiers showed the highest scores for classification accuracy. Table 2
shows the performance of different SVR algorithms, where capability of prediction in terms
of MAE and RSME was highest in the case of relative wound area, while wound closure
and healing speed were very poorly predicted.

Different ANN structures were evaluated and adjusted in this study to find the optimal
ANN configuration using the MATLAB (R2019b) NN tool. We tried various architectures
with one, two, and three hidden layers, each with a different number of neurons. Table 3
showed the comparison between these structures, where the performance of the NN was
expressed as MSE. The Bayesian regularization (BR) algorithm was more efficient than
Levenberg–Marquardt optimization and the resilient backpropagation algorithm (RPROP).
Table 4 shows that the ANN model with a 3-18-3 structure (e.g., three neurons in the input
layer, eighteen neurons in the hidden layer, and three neurons in the output layer) had the
lowest MSE. As a result, we chose this structure for our study.

We employed the ANN to create and predict a model in order to determine which
factors, including cell lines, hours, and wound area, were most important during cell
migration. The performance comparisons of learning rate gradient descent (LEARNGD)
versus gradient descent with momentum (LEARNGDM) and activation functions log-
sigmoid (Logsig) versus tangent-sigmoid (Transig) are shown in Table 5.
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Table 5. The performance comparison of ANN structure with 3-18-3 based on learning and activation functions.

Neural
Network

Adaption Learning
Function

Training
Function

Activation
Function

Performance (MSE)

Training Testing

Average
(All

Outputs)

Relative
Wound

Area

Wound
Closure

(%)

Healing
Speed

(µm2/H)

Relative
Wound

Area

Wound
Closure

(%)

Healing Speed
(µm2/H)

3-18-3
LEARNGD TrainBR

Logsig 0.0670 0.0036 0.1544 0.4211 0.0029 0.2041 0.5308
Transig 0.1350 0.0029 0.6259 0.986 0.0041 0.8610 0.5417

LEARNGDM TrainBR
Logsig 0.0335 0.0023 0.1113 0.8140 0.0036 0.4536 0.4182
Transig 0.0319 0.0030 0.1161 0.3014 0.0037 0.6376 0.5299

MSE = mean square error; LEARNGD = learning rate gradient descent; LEARNGDM = learning rate gradient descent with momentum.

Figure 3 illustrates the proposed ANN model with the network’s performance for test-
ing data versus the number of neurons in the hidden layer using a Bayesian regularization
algorithm. After repeated trials, it was found that a network with eighteen neurons in a
hidden layer could produce better performance without under- or overfitting (Figure 4).
Figure 5 illustrates the MATLAB script of the eighteen neurons, where 70% of the samples
for the training subset, 15% for the validation subset, and 15% for the test subset were
randomly selected.

Healthcare 2021, 9, x 9 of 15 
 

 

Figure 3 illustrates the proposed ANN model with the network’s performance for 
testing data versus the number of neurons in the hidden layer using a Bayesian regulari-
zation algorithm. After repeated trials, it was found that a network with eighteen neurons 
in a hidden layer could produce better performance without under- or overfitting (Figure 
4). Figure 5 illustrates the MATLAB script of the eighteen neurons, where 70% of the sam-
ples for the training subset, 15% for the validation subset, and 15% for the test subset were 
randomly selected. 

 
Figure 3. The proposed multilayer feedforward perception (MLP) network consisting of three inputs, one hidden layer 
with eighteen neurons, and three outputs. r.u.: relative unit, %: percentage; h = hour. 

 
Figure 4. The performance of the network at different hidden neurons using a Bayesian regulariza-
tion algorithm. 

Figure 3. The proposed multilayer feedforward perception (MLP) network consisting of three inputs, one hidden layer with
eighteen neurons, and three outputs. r.u.: relative unit, %: percentage; h = hour.

Healthcare 2021, 9, x 9 of 15 
 

 

Figure 3 illustrates the proposed ANN model with the network’s performance for 
testing data versus the number of neurons in the hidden layer using a Bayesian regulari-
zation algorithm. After repeated trials, it was found that a network with eighteen neurons 
in a hidden layer could produce better performance without under- or overfitting (Figure 
4). Figure 5 illustrates the MATLAB script of the eighteen neurons, where 70% of the sam-
ples for the training subset, 15% for the validation subset, and 15% for the test subset were 
randomly selected. 

 
Figure 3. The proposed multilayer feedforward perception (MLP) network consisting of three inputs, one hidden layer 
with eighteen neurons, and three outputs. r.u.: relative unit, %: percentage; h = hour. 

 
Figure 4. The performance of the network at different hidden neurons using a Bayesian regulariza-
tion algorithm. 

Figure 4. The performance of the network at different hidden neurons using a Bayesian regularization
algorithm.



Healthcare 2021, 9, 911 9 of 14Healthcare 2021, 9, x 10 of 15 
 

 

 
Figure 5. MATLAB script of eighteen neurons. 

Table 6 shows the obtained errors for the proposed ANN model, including the MAE 
and RMSE values for linear regression between the ANN-predicted and experimental re-
sults for the training and testing datasets of each variable. 

Table 6. The average MAE and RSME for outputs for training and testing data. 

Output 
MAE  RMSE 

Training Testing Training Testing 
Relative wound area 0.0767 0.0528 0.0856 0.0609 
Wound closure (%) 0.2090 0.0913 0.2920 0.1220 

Healing speed (µm2/h) 0.1817 0.0797 0.1060 0.0724 
MAE = mean absolute error; RMSE = root mean square error. 

The testing results for the proposed ANN model in comparison with the experi-
mental results are shown in Table 7. To evaluate the metastasis of acquired CisR OC cells, 
we generalized an ANN model to predict the migration capability of different sublines 
based on our in vitro scratch wound healing assays. Metastasis is considered the most 
critical indicator of cancer recurrence and strongly correlates with a low survival rate 
[27,28]. Through ANN modeling, we predicted the relative wound area, percentage of 
wound healing, and wound healing speed at different time points (0, 12, and 24 h) in 

Figure 5. MATLAB script of eighteen neurons.

Table 6 shows the obtained errors for the proposed ANN model, including the MAE
and RMSE values for linear regression between the ANN-predicted and experimental
results for the training and testing datasets of each variable.

Table 6. The average MAE and RSME for outputs for training and testing data.

Output
MAE RMSE

Training Testing Training Testing

Relative wound area 0.0767 0.0528 0.0856 0.0609
Wound closure (%) 0.2090 0.0913 0.2920 0.1220

Healing speed (µm2/h) 0.1817 0.0797 0.1060 0.0724
MAE = mean absolute error; RMSE = root mean square error.
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The testing results for the proposed ANN model in comparison with the experimental
results are shown in Table 7. To evaluate the metastasis of acquired CisR OC cells, we
generalized an ANN model to predict the migration capability of different sublines based
on our in vitro scratch wound healing assays. Metastasis is considered the most critical
indicator of cancer recurrence and strongly correlates with a low survival rate [27,28].
Through ANN modeling, we predicted the relative wound area, percentage of wound
healing, and wound healing speed at different time points (0, 12, and 24 h) in which higher
metastasis of CisR cells was observed. The relative wound area was significantly reduced in
CisR cells compared to that in parental OC cells (Appendix A, Figure A2A). The percentage
of wound closure and healing speed were higher in CisR OC cells than in parental OC
cells (Appendix A, Figure A2B,C). Consistent with our in vitro laboratory results, the
ANN learned to predict the migration capability with high accuracy, approximating the
experimental data with minimal error.

Table 7. The comparison between experimental and predicted ANN results for testing data.

Experiment ANN

Cell Lines Hour
Relative

Wound Area
(r.u.)

Wound
Closure (%)

Healing
Speed

(µm2/H)

Relative
Wound Area

(r.u.)

Wound
Closure (%)

Healing
Speed

(µm2/H)

OV-90/Parental 12 0.752 24.809 43,232.7 0.721 24.877 43,232.5
24 0.643 35.663 31,073.9 0.527 35.685 31,073.9

OV-90/CisR1 12 0.546 45.388 75,302.5 0.569 45.369 75,302.4
24 0.365 63.537 52,706.2 0.386 63.685 52,706.2

OV-90/CisR2 12 0.501 49.904 87,289.2 0.529 49.846 87,289.1
24 0.317 68.321 59,750.6 0.387 68.251 59,750.7

SKOV-3/Parental 12 0.896 10.408 16,036.8 0.845 10.682 16,036.7
24 0.669 33.145 25,535.0 0.532 33.312 25,534.8

SKOV-3/CisR1 12 0.590 40.954 60,884.5 0.551 41.057 60,884.5
24 0.296 71.981 56,505.4 0.342 71.885 56,505.4

SKOV-3/CisR2 12 0.551 44.942 70,823.7 0.561 44.915 70,823.6
24 0.368 74.543 59,811.7 0.360 75.845 59,801.7

CisR1 = cisplatin-resistant subline 1; CisR2 = cisplatin-resistant subline 2.

4. Discussion

The purpose of a cancer cell migration monitoring system is to track the metastasis
potential of cancer cells so that treatment can be more effective. To be widely used, an
experimental technique should not be costly or invasive [29]. For the present study, ANN
analysis of cell migration in cisplatin-resistant OC cells was investigated. The MAE and
RMSE were used as the error function. To develop an ANN model, the number of layers, the
number of neurons in the hidden layer, the learning speeds, and the number of iterations for
model training must be carefully considered. For instance, if there are not enough neurons
in the hidden layer, the ANN will not detect nonlinear behavior in the training data. On
the other hand, if there are too many neurons, the ANN will have an overfitting problem,
resulting in a lack of applicability. In this study, we used a trial-and-error approach for this
analysis, which is considered the most efficient method for evaluating the required number
of neurons, learning rate, and early stopping technique to hinder overfitting [30,31].

In this study, we predicted three parameters of cell migration, including the relative
wound area, wound healing capacity, and wound healing speed at 12 and 24 h in four
OC cell lines. We found the different extent of migration capacity that represents cancer
cell metastasis among these cell types. The CisR cells exhibited higher metastasis ability
compared to parental OC cells.

5. State of the Art Comparison

Machine learning-based analysis involves the organization and processing of data into
input formats that machine learning algorithms can understand. For this, using ImageJ
software, the wound area (gap distance) was measured (quantified) from captured images.
Then, the machine learning parameters, relative wound area, percentage of wound closure,
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and healing speed were calculated using Equations (1), (2), and (3), respectively. A dataset
(n = 90) of six parameters for each cell line was created and used for training of machine
learning algorithms.

First, the MATLAB “Classification Learner App” was applied to find the initial ac-
curacy of different classification algorithms, including decision trees (fine, medium, and
coarse trees), discriminant analysis (linear and quadratic discriminant), naïve Bayes (Gaus-
sian and Kernel), ensemble (boosted tree, bagged tree, subspace discriminant, subspace
KNN, and RUS boosted tree), SVM (linear SVM, quadratic SVM, fine Gaussian SVM,
medium SVM, and coarse SVM), KNN (fine KNN, medium, coarse, cosine, cubic, and
weighted KNN), and NN (narrow, medium, wider, bilayered, and trilayered NN) classi-
fiers [32]. The predicting accuracy of classifiers was not satisfactory, as presented in Table 1
and Appendix A Figure A1. More effective learning method are needed for predicting
experimental data correctly.

Second, the MATLAB “Regression Learner App” was used to compare several SVR
algorithms (linear, quadratic, cubic, fine Gaussian, medium Gaussian, and coarse Gaussian)
for predicting data. For both training and testing data, all the SVM regression algorithms
predicted the relative wound area data with minimum error (MAE and RSME), but poor
outcomes were produced in the cases of wound closure and healing speed. In the statis-
tical sciences and the scientific community, classical statistical regression approaches for
predictive modeling are accepted but have limited flexibility in the case of a high number
of complex datasets. To overcome this limitation, machine learning regression algorithms
could be a better approach, but they are also not a full answer because they must be
weighed against the limits of the data utilized in the research [33].

Finally, considering all of the above approaches, we implemented an FNN model to
predict the data. The MATLAB ANN tool was used to evaluate different network structures
and algorithms to optimize configuration for data prediction. The 3-18-3 structure with
a BR algorithm effectively predicted both training and testing data. The optimization of
FNN architecture is crucial for its better accuracy and faster convergence. For assessing
the BR strategy for training and the MSE method for performance assessment, the ANN
employed a FNN model developed with the MATLAB fitting function in a MATLAB script.
We are convinced that our implementation of MATLAB scripts using FNN is well-suited to
match the requirements of the analysis of the migration ability of cisplatin-resistant ovarian
cancer cell lines (Table 7, Appendix A Figure A2).

6. Conclusions

In conclusion, our ANN model can predict the ability of cisplatin-resistant cancer
cells to migrate during the metastasis process. The proposed ANN model obtained good
correlation with experimental data with minimum error, and it could do so better than
traditional statistical methods or other machine learning algorithms. This approach creates
a newer, faster, and more efficient method with a very low cost and high accuracy. Through
careful selection of the training algorithm, the ANN predictions for obtaining prognostic
information on tumor cell migration capacity were improved. The establishment of this
approach could allow researchers to use neural network modeling to identify the best
therapeutic efficacy for different cancer cells without having to repeat the process in vitro.
However, to determine migratory potential in parental and cisplatin-resistant OC cells via
ANN modeling, considerably more research is needed.
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