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Abstract: The COVID-19 global pandemic caused by the widespread transmission of the novel coron-
avirus (SARS-CoV-2) has become one of modern history’s most challenging issues from a healthcare
perspective. At its dawn, still without a vaccine, contagion containment strategies remained most
effective in preventing the disease’s spread. Patient isolation has been primarily driven by the results
of polymerase chain reaction (PCR) testing, but its initial reach was challenged by low availability
and high cost, especially in developing countries. As a means of taking advantage of a preexisting
infrastructure for respiratory disease diagnosis, researchers have proposed COVID-19 patient screen-
ing based on the results of Chest Computerized Tomography (CT) and Chest Radiographs (X-ray).
When paired with artificial-intelligence- and deep-learning-based approaches for analysis, early
studies have achieved a comparatively high accuracy in diagnosing the disease. Considering the
opportunity to further explore these methods, we implement six different Deep Convolutional Neural
Networks (Deep CNN) models—VGG16, MobileNetV2, InceptionResNetV2, ResNet50, ResNet101,
and VGG19—and use a mixed dataset of CT and X-ray images to classify COVID-19 patients. Pre-
liminary results showed that a modified MobileNetV2 model performs best with an accuracy of
95 ± 1.12% (AUC = 0.816). Notably, a high performance was also observed for the VGG16 model,
outperforming several previously proposed models with an accuracy of 98.5 ± 1.19% on the X-ray
dataset. Our findings are supported by recent works in the academic literature, which also uphold
the higher performance of MobileNetV2 when X-ray, CT, and their mixed datasets are considered.
Lastly, we further explain the process of feature extraction using Local Interpretable Model-Agnostic
Explanations (LIME), which contributes to a better understanding of what features in CT/X-ray
images characterize the onset of COVID-19.

Keywords: chest X-ray; CT scan; coronavirus; COVID-19; deep learning; imbalanced data; mixed-
data; SARS-CoV-2; small data; explainable AI

1. Introduction

The novel coronavirus (SARS-CoV-2) global pandemic has represented one of hu-
manity’s greatest challenges in modern history. For most of the now year-and-a-half long
crisis, a vaccine, despite having accelerated development due to the global emergency,
remained unavailable for most people. The advent of the new COVID-19 delta strain
introduced another layer of concern as rates of transmission and resistance to select vac-
cines are notably high. According to recent guidelines from the US Center for Disease
Control and Prevention (CDC), vaccinated individuals should continue to wear masks to
prevent viral transmission and the infection of unvaccinated individuals [1]. Statistically,
the number of affected individuals and casualties are astounding and alarming: 200,237,344
and 4,258,459, respectively, as of 3 August 2021 [2], with an associated mortality rate of
about 2.13 percent. As a measure to reduce the spread of the virus—which transmits
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itself through close contact and respiratory droplets of infected individuals while talking,
coughing, or sneezing—many countries prohibited any social gathering in community,
work, and school, and forced citizens into mandatory lockdowns and quarantining. A
key opportunity to minimize the spread is to correctly diagnose infected individuals;
currently, real-time reverse transcription-polymerase chain reaction (RT-PCR) is used as
a gold-standard test to diagnose the onset of COVID-19 [3,4]. However, the limitations
surrounding the depth of our understanding regarding the nature of the virus, testing
kits may be associated with a high error rate, approaching 30% [2]. Inaccurate testing has
been credited as one of the many contributing factors of ineffective disease containment.
As a result, researchers have proposed alternative approaches, such as chest X-ray- and
CT-scan-based patient diagnosis as options to support the early identification of individuals
potentially carrying the virus. Such techniques can take great advantage of current deep-
learning- and artificial-intelligence (AI)-based methods applied to either small data [5–8]
or large datasets [5,9,10]. For instance, Chen et al. (2020) proposed a UNet++ model using
a small dataset containing 51 COVID-19 and 82 non-COVID-19 patients and achieved an
accuracy of around 98.5% [6]. Similarly, Ardakani et al. (2020), used a small dataset of 108
COVID-19 and 86 non-COVID-19 patients to test ten different deep learning models and
obtained a 99% accuracy overall [7]. Wang et al. (2020) proposed an inception-based model
utilizing a comparatively large dataset, with 453 CT scan images being incorporated in
the analysis, ultimately obtaining an accuracy of 73.1% [9]. However, along with lower
accuracy, the model’s network activity and region of interest were not clearly explained.
Lastly, Li et al. (2020) used a moderately large dataset containing 4356 chest CT images of
pneumonia patients, of which 1296 were confirmed COVID-19 cases, and obtained 96%
accuracy with the proposed COVNet model [5].

In parallel, several studies explored and recommended screening COVID-19 patients
using chest X-ray images instead—notable contributions can be found in [11–13]. For
instance, Hemdan et al. (2020) worked on a small dataset, comprising only 50 images,
and demonstrated an accuracy of 90% and 95% in predicting COVID-19 patients from
chest X-ray images using VGG19 and ResNet50 models, respectively [11]. Using a dataset
of 100 images, Narin et al. (2020) distinguished COVID-19 patients from those with
pneumonia with 86% accuracy [13]. However, due to the relatively small dataset, questions
remain regarding the model’s stability and interpretability. To address these issues, our
previous work has focused on representing the performance of different deep learning
models with 95% confidence intervals, so as to understand and better interpret their
performance on small datasets. For example, with a data pool of 50 chest X-ray images,
we found that InceptionResNetV2 models identify COVID-19 patients with 97% accuracy,
but with the Wilson score method representing an accuracy in the range of 68.1% to 99.8%.
Besides, the study also revealed that deep CNN-based architecture, such as VGG16 and
ResNet50, often extract unnecessary features from the images, especially when applied on
very small datasets. For instance, a modified VGG16 model identified 97% of COVID-19
patients correctly, but the model architecture emphasized a significant amount of features
in the region of the collarbone and upper shoulder instead of the region of interest on the
chest and lungs, as shown in Figure 1.

However, a significant improvement was observed utilizing a comparatively larger
dataset of 1845 chest X-ray images, which ultimately demonstrated higher accuracy [14].
Models trained with such big data convey the advantages over small data by reducing
unnecessary or irrelevant feature detection on chest X-ray images, as shown in Figure 2.
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Figure 1. Comparison between a chest X-ray image analyzed by a doctor and a modified VGG16
model, wherein its layer “Block_4” drew particular attention to the collarbone and upper shoul-
der [14].

Figure 2. The extraction of unnecessary or irrelevant features was reduced significantly following
the analysis of a larger dataset [14].

Researchers often train their models with large chest X-ray image datasets [15,16] in
order to develop a robust model. For example, 6505 images with a data ratio of 1:1.17
were utilized by Brunese et al. (2020), wherein 3003 images were patients with COVID-19
symptoms, and 3520 were labeled as “other patients” for the purposes of that study [15].
Ghoshal and Tucker (2020) used a dataset of 5941 images and achieved 92.9% accuracy [16].
However, neither study assessed or discussed how their proposed models would perform
with highly imbalanced data containing unequal class ratio. On that note, Apostol, Oztuk,
and Khan (2020) considered an imbalanced dataset of 284 COVID-19 and 967 non-COVID-
19 patient chest X-ray images and achieved 89.6% accuracy using a CNN-based Xception
model [17]. Despite the demonstrated potential, challenges associated with the unequal
data ratio, such as the risk of overfitting or underfitting during the training stages, were not
explored in detail. Considering those opportunities and the rapid spread of a transmittable
disease such as COVID-19, we recognize that existing resources and methodologies are
not alone sufficient to serve as a reliable means of diagnosis during the early stages of a
rapidly spreading pandemic. Thus, instead of using only chest CT or X-ray-based screening,
a better solution lies in integrating the usage of both techniques. A few advantages of
this proposed method include more patients being able to get tested, and less reliability
on COVID 19 testing kits. We explore this opportunity and investigate a reliable and
explainable AI-based COVID-19 screening system that can identify symptomatic patients
from widely available medical image data. In this study, we apply and evaluate the
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performance of several AI-based models with a mixed dataset containing both chest CT
and X-ray images. We summarize our main contributions as follows:

• Implementation and evaluation of six different deep CNN models (VGG16 [18], Incep-
tionResNetV2 [19], ResNet50 [20], MobileNetV2 [21], ResNet101 [22], and VGG19 [18])
to detect COVID-19 patients using a mixed dataset of chest CT and X-ray images;

• A detailed analysis of the results obtained and comparison with the performance
of the same models being applied to independent datasets of either CT scans or
X-ray images;

• Finally, we explain the models’ predictability considering top features with Local
Interpretable Model-Agnostic Explanations (LIME).

2. Research Methodology

Table 1 summarizes our adopted dataset [23], which contains both CT scans
(200 COVID-19 and 200 Non-COVID-19) and chest X-rays (1583 COVID-19 and 608 Non-
COVID-19) of patients expressing pneumonia symptoms. We dedicated 80% of the data for
training and the remaining 20% for testing. Figure 3 presents a set of representative images
used in the analysis.

Figure 3. Representative sample images of chest X-rays and CT scans used in the mixed dataset adopted for analysis.

Table 1. Summary of the mixed dataset used in the analysis, including training and test sets.

Dataset Label Train Test

Chest X-ray CT scan Total Chest X-ray CT scan Total

Mixed Data COVID-19 486 160 646 122 40 162
Non-COVID-19 1266 160 1426 317 40 357

Total 1752 320 2072 439 80 519

2.1. Using Pre-Trained Convolutional Networks

We used six different pre-trained ConvNets: VGG16, MobileNetV2, ResNet50, ResNet101,
InceptionResNetV2, and VGG19. A comprehensive explanation of the network’s archi-
tecture can be found in [24]. Each model is developed with the advantages of transfer
learning. The modified architecture was developed using the following steps:

1. Models are initiated with the pre-trained network without a fully connected (FC) layer;
2. A new layer is added, containing “Maxpool” and “softmax” as activation functions

and appended with the network’s primary architecture;
3. The convolutional weights are kept frozen and only the new FC layers are trained

with the new CNN architecture.
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A similar procedure was applied for the other five proposed deep CNN models. The
constructed CNN architecture has the following sequence: AveragePooling2D (Poolsize=
(4.4))—Flatten—Dense—Dropout (0.5)—Dense (Activation = “Softmax”). Three parameters,
specifically batch size, epochs, and learning rate (as suggested by [25,26]), are considered
for model optimization. We adopted the commonly employed grid search method [27] to
fine tune parameters. At first, the following were chosen at random:

Batch size = [20, 30, 40, 50, 60];
Number of epochs = [20, 25, 30, 35, 40];

Learning rate = [0.001, 0.01, 0.1].

Following the final computation, best results were obtained with the following:

Batch size = 50;
Number of epochs = 35;

Learning rate = 0.001.

Adaptive learning rate optimization, also known as Adam [28,29], was used as an op-
timization algorithm as used in previous works [14]. The experimental procedure was run
twice, and the results were obtained by averaging the two results. The statistical analysis
was evaluated in terms of accuracy, precision, recall, and f-1 score [30], as defined below:

Accuracy =
tp + tn

tp + tn + fp + fn
(1)

Precision =
tp

tp + fp
(2)

Recall =
tp

tn + fp
(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

where,
True positive (tp) = COVID-19 infectious patients classified as patients;
False Positive ( fp) = Healthy people classified as COVID-19 patients;
True Negative (tn) = Healthy people classified as healthy;
False Negative ( fn) = COVID-19 infectious patients classified as healthy.

2.2. LIME as Explainable AI

The overall prediction was interpreted using LIME, a procedure that allows the
understanding of the input features of the deep learning models which affect its predictions.
LIME is regarded as one of the few methodologies that works well with tabular data, text,
and images, and is extensively employed for its reliability in explaining the intricacies of
image classification [31]. For image classification, LIME creates superpixels. Superpixels are
the result of image over-segmentation. Superpixels store more data than pixels and are more
aligned with image edges than rectangular image patches [32]) for the primary prediction.
Table 2 shows the parameters used to calculate the superpixel during this experiment.

Table 2. Superpixel calculation parameters.

Function Value

Kernel size 200
Maximum distance 200

Ratio 0.2
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3. Results

Table 3 presents a summary of the performance of all models on the training and test
sets along with a 95% confidence interval. MobileNetV2 outperformed all models in terms
of accuracy, precision, recall, and f-1 score. Contrarily, the ResNet50 model showed the
worst performance considering all measures.

Table 3. COVID-19 screening performance of all models using a mixed dataset, presented with 95% confidence intervals
(CI, α = 0.05). Ta—Training Set; Ts—Test Set.

Algorithm
Accuracy (%) Precision (%) Recall (%) F-1 Score (%)

Ta Ts CI Ta Ts CI Ta Ts CI Ta Ts CI

VGG16 95 91 93 ± 1.4 95 93 94 ± 1.3 95 91 93 ± 1.4 95 92 93.5 ± 1.34
InceptionResNetV2 94 93 93.5 ± 1.34 95 93 94 ± 1.3 94 93 93.5 ± 1.34 94 93 93.5 ± 1.35

ResNet50 88 85 86.5 ± 1.86 87 85 86 ± 1.89 88 85 86.5 ± 1.86 87 85 86 ± 1.89
MobileNetV2 99 91 95 ± 1.2 99 92 95.5 ± 1.13 99 91 95 ± 1.2 99 91 95 ± 1.2

ResNet101 88 86 87 ± 1.83 88 87 87.5 ± 1.80 88 86 87 ± 1.83 88 86 87 ± 1.83
VGG19 94 91 92.5 ± 1.43 94 92 93 ± 1.4 94 91 92.5 ± 1.43 94 92 93 ± 1.4

To better understand the overall performance of each model during the prediction
stage on the test set, Figure 4 presents a set of confusion matrices. The test set con-
tained a combination of 519 chest X-ray and CT scan images (122 COVID-19 and 397
Non-COVID-19). It can be detected that MobileNetV2 and VGG19 correctly classified the
maximum number of COVID-19 and non-COVID-19 patients, whereas ResNet50 expressed
the worst performance with the maximum number of misclassified samples compared to
any other model.

Figure 4. Confusion matrices of all models applied to the mixed test dataset.

The performance of all models during training and testing, per each epoch, are
presented in Figure 5. In this case, the accuracy of VGG16, MobileNetV2, and VGG19
models reached 100% while loss decreased by nearly 100% at epoch 35.
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Figure 5. Plots of model accuracy and loss following each epoch applied to both training and testing datasets; TL = training
loss; VL = validation loss; TA = training accuracy; VA = validation accuracy.

AUC-ROC Curve

In Figure 6, measures of the Area Under the Curve (AUC) of the Receiver Characteristic
Operator (ROC) are plotted for each model with the true positive rate (TPR) in the vertical axis
and false positive rate (FPR) in the horizontal axis, applied to the test set. MobileNetV2 shows
the best performance (AUC = 0.816), while ResNet101 shows the worst (AUC = 0.590).

Figure 6. AUC-ROC curves for all models using the test set.
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Figure 7 shows the output after computing the superpixels on sample CT scan and
chest X-ray images.

Figure 7. Representation of superpixels on sample images of chest X-rays and CT scans.

Additionally, Figure 8 shows different image conditions in terms of perturbation
vectors and perturbation images. Figure 8 illustrates that the number of features varies
with the number of perturbations.

Figure 8. Example of the varying number of features as the number of perturbation changes.

The distance metric or cosine metric with a kernel width of 0.25 is used to understand
the distance difference between each perturbation and the original image. A linear model
is used for the proposed model’s explanations. Additionally, the coefficient was found for
every superpixel in the picture which represents the strength of a superpixel’s impact on
predicting COVID-19 patients. Finally, top features (only four features are considered for
the purposes of this study) are sorted to determine the most essential superpixel, as shown
in Figure 9. The features and the prediction were addressed together during this study.
As shown in Figure 9, models, such as VGG16, MobileNetV2 and VGG19 trained with CT
scan images incorrectly classified COVID-19 patients as Non-COVID-19 patients. On the
other hand, while analyzing combined models, ResNet50 shows the worst performance by
misclassifying both CT and chest X-ray images.
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Figure 9. Top four features that enabled the identification of COVID-19 patients from CT-scan-only and mixed datasets.

4. Discussion

In this study, six different deep-learning-based models were proposed and evaluated
for their ability to distinguish between patients with and without COVID-19, with demon-
strated advantages of tests conducted on combined datasets, comprising both CT scan and
X-ray images (as opposed to a singular point of reference with only CT scans or X-rays).
Among all proposed models, MobileNetV2 achieved an accuracy of 95 ± 1.12% depending
on the dataset applied. A summary of the accuracy of all six models, considering the CT
scan, chest X-ray, and the mixed dataset is presented in Table 4. Other than MobileNetV2,
the VGG16 model demonstrates higher performance on X-ray dataset by achieving an
accuracy of 98.5% ± 1.19%, which outperforms many studies in the current literature.
For example, Wang and Wong (2020) [9] and Khan et al. (2020) [33] used CNN-based
approaches to detect the onset of the COVID-19 disease using chest X-ray images and
achieved an accuracy of 83.5% and 89.6%, respectively. In comparison, as previously stated,
our proposed VGG16 and MobileNetV2 models achieved an accuracy of around 98.5% ±
1.19%.

Table 4. Top-performing models in terms of accuracy and different datasets adopted.

Dataset Datasize Model Accuracy (%)

X-ray 400 VGG16 98.5 ± 1.191
MobileNetV2 98.5 ± 1.191

CT-Scan 400 MobileNetV2 94 ± 2.327
Mixed-data 2591 MobileNetV2 95 ± 1.12

In Table 5, the accuracy of different deep learning models used in previous studies are
compared (where CT scan images were used for the experiment) with the models of this
study in consideration of different database sizes. Here, an accuracy of 98.5% ± 1.19% was
achieved using 400 images with the MobileNetV2 model. These results outperform the
referenced literature [34,35], which used large datasets containing 4356 and 1065 images,
respectively. In contrast, Butt et al. (2020) used a CNN-based approach, specifically a
ResNet23 model to detect the onset of COVID-19 disease using chest CT scan images and
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achieved an accuracy of around 86.7% [10]. Jin et al. (2020) used 1882 CT scan images and
achieved an accuracy of 94.1% [36].

Table 5. Comparison between previous studies found in the literature and our present study.

Reference Model Dataset Size Accuracy

Li et al. (2020) [34] ResNet50 4356 90%
Wang et al. (2021) [35] Inception-M 1065 74%
Zhang et al. (2020) [37] ResNet50 1531 90%
Song et al. (2020) [38] ResNet50 274 86%
Chen et al. (2020) [6] UNet++ 133 98.5%
Jin et al. (2020) [36] CNN 1882 94.1%

This study MobileNetV2 400 98.5% ± 1.19%

It is relevant to emphasize that none of the referenced literature considered a mixed-
dataset, which hinders a direct comparison with the results of this study. However, prelim-
inary computational results on a mixed dataset indicated that a modified MobileNetV2
model is capable of differentiating between patients with COVID-19 symptoms with an
accuracy of 95% ± 1.12%. Additionally, analyzing the proposed models with LIME illus-
trated MobileNetV2’s contribution to successfully characterizing the onset of COVID-19 by
recognizing essential features in CT/X-ray images.

The primary goal of this study was to develop an integrated system that can detect
patients with COVID-19 symptoms from a dataset containing CT scan, chest X-ray, or a
combination of CT scan and chest X-ray images of potential COVID-19 patients. At this
stage, the scope of the current literature in this field of work remains narrow and often does
not consider combined CT scan and chest X-ray image datasets with explainable AI. Here,
predicted features were identified with LIME to understand the models’ decision-making
process. Going forward, results of studies such as the one herein presented must be verified
in consultation with healthcare experts. In addition, future work can take advantage of
evaluating how other interpretable models could be used with mixed datasets in an attempt
to validate the overall predictions presented here.

5. Conclusions

In this study, we evaluated six different deep learning models on a mixed dataset of
CT scan and chest X-ray images for their ability to identify COVID-19 patients. We revealed
that a modified MobileNetV2 can achieve an accuracy of 95% on that task. We have also
used Local Interpretable Model-Agnostic Explanations (LIME) to interpret and validate
our predictions. The findings of the proposed models should provide some insights to
researchers and practitioners regarding the application of explainable AI on screening
COVID-19 patients based on chest X-ray and CT-scan images. Next steps which would
build on the efforts of our work include developing user-friendly mobile apps/web-based
COVID-19 screening systems using MobileNetV2 models and creating decision support
systems along with numerical (i.e., age, gender) and categorical (findings, health conditions)
data. Opportunities also lie in utilizing other image processing techniques, such as fuzzy
entropy and divergence, so as to more precisely recognize edges and contours of X-rays
and CT images [39,40].
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