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Abstract: Five new disubstituted 2,6-thioaryl-BODIPY dyes were synthesized via selective aromatic
electrophilic substitution from commercially available thiophenols. The analysis of the photophysical
properties via absorption and emission spectroscopy showed unusually large Stokes shifts for BODIPY
fluorophores (70–100 nm), which makes them suitable probes for bioimaging. Selected compounds
were evaluated for labelling primary immune cells as well as different cancer cell lines using confocal
fluorescence microscopy.

Keywords: fluorophores; probes; microscopy; cytometry; labelling

1. Introduction

Compounds containing chalcogen elements—for instance, selenium, tellurium, and
sulphur—have wide applications in many areas of science [1–3]. Importantly, they can act
as redox centers and modulate the activity of biomolecules [4–6]. Chalcogen atoms can
be also introduced in fluorescent structures to fine-tune their optical properties, including
absorption/emission wavelengths and photodynamic capabilities [7,8]. In recent years, our
research group and others have focused on the preparation of several classes of fluorescent
compounds [9–16]. Antitumor compounds with fluorescent properties, optical probes
activated by enzymes [17–22], fluorescent amino acids and synthetic peptides for imaging
studies [23–30], and more recently, boron-dipyrromethene (BODIPY) derivatives [31–40]
have been the targets of many investigations.

BODIPY dyes are versatile fluorescent scaffolds due to their remarkable photophysical
properties. These include relatively large molar absorption coefficients, high fluorescence
quantum yields, sharp emission bandwidths, and high photostability [41–43]. Moreover, the
chemical versatility of the BODIPY core allows their spectroscopic and photophysical prop-
erties to be fine-tuned. This family of compounds has been extensively employed in many
research fields, including chemosensors [44], photosensitizers [45–49], and OLEDs [50].

The functionalization of BODIPYs with chalcogen groups has multiple motivations,
such as the enhancement of their physicochemical properties [51]. Among the BODIPY
derivatives already reported in the literature [52], BODIPYs containing sulphur [53–55],
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selenium [56,57], and tellurium [58] atoms have been reported for the detection of hypochlo-
rite or hypochlorous acid, among some applications.

Synthetic methods for the insertion of sulphur atoms into the basic architecture of
BODIPYs have been described (Scheme 1); however, many of them require harsh reaction
conditions [55]. Rezende and coworkers developed a methodology for the thiocyanation of
3-substituted and 3,5-disubstituted BODIPYs using oxone and ammonium thiocyanate [59].
Kim and coworkers prepared an alkylthioether BODIPY derivatives via an electrophilic sub-
stitution reaction in the presence of DMSO and POCl3 [60]. Bröring’s group described other
interesting examples using S2Cl2 to dimerize BODIPY moieties as sulfide analogues [61].
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Upon compiling existing data on the photophysical properties of the above-mentioned
BODIPYs, we observed that while having variable excitation and emission maxima and
photoluminescence quantum yields (ΦPL), all 2- and 2,6-thioether-substituted compounds
exhibited large Stokes shifts > 50 nm [60,61] (Scheme 1B), partially due to electron delocal-
ization, whereas the 3-, 3,5- and meso-thioether-substituted BODIPYs displayed smaller
excitation–emission gaps of 10 to 30 nm (Scheme 1A) [53–55]. Because large Stokes shifts
can improve signal-to-noise ratios or allow excitation of multiple dyes with the same
laser source, they can be advantageous for bioimaging applications. Therefore, we de-
signed new 2,6-sulphur-disubstituted BODIPYs based on thiophenol derivatives. Herein
we present an optimized 2-step synthesis from readily available building blocks, their
photophysical properties in different solvents, and potential use as probes for live-cell
imaging (Scheme 1C).

2. Materials and Methods
2.1. Chemistry

All reagents and solvents used were of analytical grade. 1H, 13C, and 19F spectra were
recorded on a Varian VNMRS 300 MHz and Varian VNMRS 500 MHz spectrometer, using
tetramethylsilane (TMS) or trifluoroacetic acid (TFA) as reference. Spectra were recorded
typically at r.t. in CDCl3. Chemical shifts are reported in ppm (δ) and coupling constants
(J) are given in Hz. Column chromatographic purifications were carried out on silica gel
SiliaFlash G60 70–230 mesh (SiliCycle) columns with the defined eluents. NMR spectra and
HRMS data are presented in Supporting Information.

4,4-Difluoro-8-(4-methoxyphenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-S-indacene (1): 2,4-
dimethyl-1H-pyrrole (1.03 mL, 10.0 mmol) and 4-methoxybenzaldehyde (0.61 mL, 5.0 mmol)
were mixed with a pestle and mortar. Trifluoroacetic acid was added and the mixture was
ground for 2 min. CHCl3 (2.0 mL) was added and then p-chloranil (1.81 g, 7.4 mmol) was
added to the mixture and ground for 2 min. Next, triethylamine (6.0 mL, 43.0 mmol) was
added and the resulting paste was ground for 3 min. BF3·OEt2 (6.0 mL, 47.4 mmol) was
then added dropwise and the mixture was ground for 2 min until a dark red paste formed.
The reaction mixture was dissolved in CHCl3 (200 mL) and washed with saturated Na2CO3
(3 × 200 mL) and brine (2 × 200 mL). The solvent was evaporated and the crude solid
was purified by normal-phase chromatography with hexane:chloroform (9:1). The product
was obtained as an orange solid (45% yield). 1H NMR (500 MHz, CDCl3) δ: 7.18–7.16
(d, J = 8.7 Hz, 2H), 7.02–7.00 (d, J = 8.7 Hz, 2H), 5.97 (s, 2H), 3.87 (s, 3H), 2.55 (s, 6H), 1.43
(s, 6H) ppm. 19F NMR (470 MHz, CDCl3) δ: −143.5 (q, JBF = 32.9 Hz) ppm. 13C NMR
(75 MHz, CDCl3) δ: 160.27, 155.39, 143.29, 141.99, 131.98, 127.1, 121.2, 114.6, 55.4, 14.6 ppm.
The data are consistent with those reported in the literature [62].

Synthesis of thioaryl-BODIPYs (2a–e): To a suspension of N-chlorosuccinimide (267 mg,
2 mmol) in CH2Cl2 (10 mL) at r.t., we carried out a dropwise addition of a solution of
the corresponding thiophenol (2 mmol) in dry CH2Cl2 (10 mL). After stirring for 30 min,
the orange solution of the phenyl-sulfenyl chloride was used in situ. To the solution of
phenyl-sulfenyl chloride at 0 ◦C, a solution of BODIPY 1 (50.0 mg, 0.135 mmol) in 10 mL of
dry CH2Cl2 was added dropwise over 15 min. The mixture was stirred at r.t. for 15 min.
Next, H2O (20 mL) was added to the reaction mixture. After separation, the organic
phase was washed with H2O (20 mL), dried over Na2SO4, and the solvent was evaporated
under reduced pressure. The residue was purified by column chromatography using
hexane:CH2Cl2 (8:1) to give the products 2a–e.

4,4-Difluoro-8-(4-methoxyphenyl)-2,6-bis(phenylthio)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-S-
indacene (2a): The product was obtained as a red solid (94% yield; m.p. (◦C) 225–228; 1H NMR
(500 MHz, CDCl3) δ: 7.22–7.19 (m, 6H), 7.11–7.08 (t, J = 7.4 Hz, 2H), 7.04–7.03 (d, J = 8.7 Hz,
2H), 7.01–7.00 (d, J = 7.3 Hz, 4H), 3.87 (s, 3H), 2.62 (s, 6H), 1.54 (s, 6H). 19F NMR (470 MHz,
CDCl3) δ: −143.11 (q, J = 31.7 Hz). 13C NMR (75 MHz, CDCl3) δ: 160.6, 160.1, 148.5, 143.3,
137.5, 132.0, 129.1, 126.7, 126.0, 125.3, 115.0, 77.1, 55.5, 13.6, 13.3. ESI+/HRMS (m/z) [M + H]+:
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571.1855 Cald. for C32H30BF2N2OS2, found: 571.1850. Data are consistent with those reported
in the literature.

4,4-Difluoro-8-(4-methoxyphenyl)-2,6-bis(2-methylphenylthio)-1,3,5,7-tetramethyl-4-bora-3a,4a-
diaza-S-indacene (2b): The product was obtained as a red solid (83% yield); m.p. (◦C) 223-229;
1H NMR (300 MHz, CDCl3) δ: 7.25–7.22 (d, J = 8.7 Hz, 2H)), 7.14–7.11 (m, 2H), 7.05–7.00 (m,
6H), 6.63-6.60 (m, 2H), 3.78 (s, 3H), 2.52 (s, 6H), 2.33 (s, 6H), 1.43 (s, 6H).19F NMR (470 MHz,
CDCl3) δ: −143.11 (q, J = 31.7 Hz). 13C NMR (75 MHz, CDCl3) δ: 160.6, 160.1, 148.7, 143.1,
136.5, 134.8, 130.2, 129.2, 126.7, 126.6, 124.9, 124.7, 115.0, 77.1, 55.5, 20.0, 13.5, 13.3. ESI+/HRMS
(m/z) [M + H]+: 599.2168 Cald. for C34H34BF2N2OS2, found: 599.2162.

4,4-Difluoro-8-(4-methoxyphenyl)-2,6-bis(4-methylphenylthio)-1,3,5,7-tetramethyl-4-bora-3a,4a-
diaza-S-indacene (2c): The product was obtained as a pink solid (63% yield); m.p. (◦C) 225–229;
1H NMR (500 MHz, CDCl3) δ: 7.21–7.20 (d, J = 8.6 Hz, 2H), 7.04–7.01 (m, 6H), 6.92–6.91 (d, J
= 8.2 Hz, 4H), 3.86 (s, 3H), 2.27 (s, 6H), 1.53 (s, 6H). 19F NMR (470 MHz, CDCl3) δ: −148.08
(q, J = 31.5 Hz). 13C NMR (125 MHz, CDCl3) δ: 160.6, 160.0, 148.3, 143.2, 135.3, 133.9, 132.0,
129.9, 129.2, 126.8, 126.4, 115.0, 55.5, 13.6, 13.4. ESI+/HRMS (m/z) [M + H]+: 599.2168 Cald.
for C34H34BF2N2OS2, found: 599.2163.

4,4-Difluoro-8-(4-methoxyphenyl)-2,6-bis(4-methoxiphenylthio)-1,3,5,7-tetramethyl-4-bora-3a,4a-
diaza-S-indacene (2d): The product was obtained as a deep red solid (90% yield); m.p. (◦C)
234–238; 1H NMR (500 MHz, CDCl3) δ: 7.19–7.18 (d, J = 8.7 Hz, 2H), 7.03–7.02 (d, J = 8.7 Hz,
2H), 7.01–6.99 (d, J = 8.9 Hz, 4H), 6.78–6.76 (d, J = 8.9 Hz, 4H), 3.79 (s, 3H), 3.68 (s, 6H), 2.55 (s,
6H), 1.46 (s, 6H). 19F NMR (470 MHz, CDCl3) δ: −143.17 (q, J = 31.7 Hz). 13C NMR (125 MHz,
CDCl3) δ: 160.6, 159.7, 158.2, 147.7, 143.0, 131.8, 129.2, 128.8, 127.9, 126.8, 122.3, 114.9, 114.8,
77.1, 55.5, 13.6, 13.4. ESI+/HRMS (m/z) [M + H]+: 631.2066 Cald. for C34H34BF2N2O3S2,
found: 631.2057.

4,4-Difluoro-8-(4-methoxyphenyl)-2,6-bis(4-chlorophenylthio)-1,3,5,7-tetramethyl-4-bora-3a,4a-
diaza-S-indacene (2e): The product was obtained as a deep red solid (52% yield); m.p. (◦C)
230–235; 1H NMR (500 MHz, CDCl3) δ: 7.21–7.19 (d, J = 8.8 Hz, 2H), 7.18–7.17 (d, J = 8.7
Hz, 4H), 7.05-7.03 (d, J = 8.7 Hz, 2H), 6.93–6.91 (d, J = 8.7 Hz, 4H), 3.52 (s, 3H), 2.57 (s, 6H),
1.47 (s, 6H). 19F NMR (470 MHz, CDCl3) δ: −148.01 (q, J = 31.7 Hz). 13C NMR (125 MHz,
CDCl3) δ: 160.7, 160.0, 148.6, 143.6, 136.0, 132.1, 131.2, 129.2, 129.1, 127.3, 126.5, 120.3, 115.1,
77.1, 55.5, 13.5, 13.3. ESI+/HRMS (m/z) [M + H]+: 639.1076 Cald. for C32H28BCl2F2N2OS2,
found: 639.1076.

2.2. Photophysical Measurements

Absorption spectra were obtained on a UV-visible spectrophotometer (Thermo Scien-
tific Evolution 600) at r.t. Fluorescence excitation and emission spectra were recorded on a
Varian Cary Eclipse spectrofluorometer using 1 cm pathlength cuvettes at r.t. Fluorescence
quantum yields (ΦF) of the new compounds were obtained from a comparative method
using Rhodamine 6G (ΦF = 0.95 in ethanol, λexc = 500 nm) as a standard [63]. In this method,
a series of solutions in different concentrations were used for measurements of absorbance
and fluorescence emission, keeping a low absorbance (A < 0.1) to avoid inner-filter effects
and intermolecular reabsorption [64]. The quantum yield was calculated by plotting the
integrated fluorescence intensity vs. absorbance to obtain the slope of the curve. The
photoluminescence quantum yield of the tested compound (Φx) was calculated using the
following equation

Φx = Φst

(
Gradx

Gradst

)(
η2

x

η2
st

)
(1)

where Φst is the quantum yield of the standard, Gradx and Gradst are the slopes for the
test and standard compounds, respectively, and ηx and ηst are the refractive indexes of the
solvents.

2.3. Biological Experiments

Viability assays: Cell lines were cultured in DMEM supplemented with 10% FBS,
antibiotics (100 U mL−1 penicillin and 100 mg mL−1 streptomycin) and 1% L-Glutamine at
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37 ◦C in a humidified atmosphere with 5% CO2. Cells were regularly passaged in T-75 flasks
using trypsin-EDTA. Cells were plated at a density of 10,000 cells per well and incubated
overnight with the fluorophores (10 µM). Cell viability was assessed using an MTT cell
proliferation assay following the manufacturer’s instructions. Values were normalized to
the viability of untreated cells and analysed by GraphPad Prism.

Work with peripheral blood cells: The study protocol to work with human peripheral
blood leukocytes was approved by the Accredited Medical Regional Ethics Committee
(AMREC, 20-HV-069, University of Edinburgh). Human blood leukocytes were isolated
from healthy volunteers and processed as described previously [65]. Briefly, whole blood
was anticoagulated with sodium citrate 0.4% (w/v) and centrifuged at 350× g for 20 min.
Polymorphonuclear cells (>95% neutrophils) were harvested from the 63%/72.9% interface
and cultured in RPMI with 5% FBS, 100 U mL−1 penicillin, and 100µg mL−1 streptomycin.
Neutrophils were stimulated with 10 nM PMA for 3 h at 37 ◦C. Monocytes were separated
from the 49.5%/63% interface and cultured for 10 days in IMDM supplemented with 5%
autologous serum to yield monocyte-derived macrophages (MDMs). Cells were plated and
cultured with or without 5 ng/mL LPS at 37 ◦C.

2.4. Fluorescence Confocal Microscopy

Cells were plated in glass chamber slides (NuncTM Lab-TekTM II) and incubated with
compounds 1 or 2a (10 µM) and Hoechst 33342 (0.1 µg/mL) for 15 min. Cells were washed
and imaged using a Leica SP8 confocal microscope using 488 nm laser for excitation. All
resulting images were analysed using FIJI.

2.5. Crystallography

Single, clear, light, colourless block-shaped crystals of 2d were obtained by recrystal-
lization from slow evaporation. A suitable crystal 0.22 × 0.20 × 0.15 mm3 was selected
and mounted on a suitable support on an XtaLAB Mini (ROW) diffractometer. The crystal
was kept at a steady T = 293(2) K during data collection. The structure was solved with the
ShelXT [66] structure solution program using the intrinsic phasing solution method and by
using Olex2 [67] as the graphical interface. The model was refined with version 2017/1 of
ShelXL 2017/1 [68] using least-squares minimization.

3. Results

The synthesis of the target compounds started with the preparation of BODIPY struc-
ture 1 as shown in Scheme 2. Compound 1 was synthesized from 2,4-dimethyl-1H-pyrrole
and 4-methoxybenzoldehyde condensation, followed by oxidation with p-chloranil and
complexation with BF3·OEt2. The one-pot reaction was performed by grinding the starting
materials using a simple mortar affording the compound 1, and the optimized reaction
procedure raised the recovery yields from 19 to 45% [62]. The use of neat conditions also
led to faster reaction times (15 min) in comparison to conventional BODIPY synthesis.
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pyrrole and 4-methoxybenzoldehyde.

With the BODIPY derivative 1 in hand, we prepared 2-, and 6-thioaryl-substituted
BODIPY dyes as outlined in Scheme 3. Arylthiol chlorides were prepared in situ from N-



Chemosensors 2022, 10, 19 6 of 14

chlorosuccinimide and commercially available thiophenols, and then used for the selective
electrophilic substitution of the positions 2 and 6 of compound 1, which are known to be
more susceptible to electrophilic attack [59]. The new 2,6-substituted thioaryl-BODIPYs
2a–e were obtained in moderate to high yields (52–94%), and fully characterized by 1H,
13C and 19F NMR spectroscopy and high-resolution mass spectrometry. Suitable crystals of
compound 2d were obtained by the slow evaporation method using chloroform as solvent.
With appropriate red crystals in hand, the structure of 2d was solved and reconfirmed by
X-ray crystallographic analysis. Representative Oak Ridge thermal ellipsoid plot (ORTEP)-3
diagram for 2d is displayed in Figure S1 and the crystallographic data is shown in Table S1.
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Scheme 3. Synthesis and chemical structures of sulphur-containing BODIPY derivatives (2a–2e).

The photophysical properties (absorption/emission wavelengths and relative photo-
luminescence quantum yields) of compounds 2a–2e were determined in different relevant
solvents, namely toluene, tetrahydrofuran (THF), acetone, methanol (MeOH), dimethylsul-
foxide (DMSO), and water (including 1% DMSO). These results are summarized in Figure 1
and Table 1. In general, no relevant solvatochromic properties were observed (Figure S2
and Table 1). All compounds presented a large Stokes shift (70–100 nm, 2200–3200 cm−1)
with absorption maxima around 515–525 nm and emission maxima around 595–620 nm
in toluene. Notably, this large Stokes shift was not observed for the unsubstituted parent
compound 1, highlighting the increased electronic delocalization in thio-containing com-
pounds. We also observed that the emission wavelengths shifted from ~590 nm for the most
electron-poor thioaryl group (2e, 4-Cl-Ph, toluene) to ~618 nm for the most electron-rich
substituent (2d, 4-OMe-Ph, toluene); however, the absorption maxima remain unchanged
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(519 and 521 nm for 2d and 2e). In most BODIPY dyes, it has been reported that the HOMO
is localized on the π-system of the pyrrole rings, whereas the LUMO sits on a mix of the
π-system and the meso position [69]; however, with the introduction of the thioaryl groups
on positions 2 and 6 of the BODIPY core, the compound may undergo heavy-atom-free
intersystem crossing via photoinduced electron transfer (PET) as observed in some BODIPY
dyads [45].

Next, to evaluate the applicability of our new BODIPY fluorophores for live-cell imag-
ing, we performed cell viability assays. For these experiments, we used breast cancer
cells MDA-MB-231 as a representative cell line. All our new compounds (2a–2e) did not
show any significant cytotoxicity when incubated with the cells for 16 h at 10 µM, and ad-
verse effects on cell viability were only detected at very high concentrations (i.e., >100 µM,
Figure S3). Because the photophysical properties of our new BODIPY fluorophores are
relatively similar, we decided to assess the application of compound 2a, the simplest
disubstituted thioaryl-BODIPY compound, for live-cell imaging experiments.

First, we evaluated the ability of compound 2a to label different human cancer cell
lines, namely MDA-MB-231 and MCF7 (both breast cancer cells) and HT29 (colorectal
carcinoma). Cells were incubated with compound 2a (10 µM) and Hoechst 33342 for 15 min
prior to acquiring images under the fluorescence confocal microscope (λexc: 488 nm, λem:
550–680 nm). Figure 2 shows that compound 2a was taken up by cancer cells, with slightly
brighter staining being observed in breast cancer cells than in colorectal cancer cells, which
could be due to differences in the expression of transporters or efflux pumps between
these cell lines. The parent compound 1 was also able to stain MCF7 cells with a similar
intracellular distribution than compound 2a (Figure S4).
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Table 1. Photophysical properties of BODIPY compounds (2a–2e) and the standard BODIPY FL.

Compound Solvent λabs
[nm]

λem
[nm]

Stokes Shift
[cm−1] ΦPL

2a

Toluene 521 595 2387 0.27
THF 520 593 2340 0.18

Acetone 516 597 2629 0.1
MeOH 516 600 2713 0.1
DMSO 517 605 2813 0.07

Water (1% DMSO) 516 606 2878 0.02

2b

Toluene 523 599 2426 0.24
THF 520 599 2536 0.13

Acetone 519 600 2601 0.08
MeOH 517 602 2731 0.05
DMSO 518 613 2991 0.07

Water (1% DMSO) 519 612 2928 0.03

2c

Toluene 524 599 2389 0.2
THF 521 602 2583 0.12

Acetone 518 607 2831 0.05
MeOH 519 607 2793 0.05
DMSO 522 616 2923 0.02

Water (1% DMSO) 520 614 2944 < 0.01

2d

Toluene 519 618 3087 0.14
THF 517 619 3187 0.03

Acetone 516 619 3225 < 0.01
MeOH 514 619 3300 < 0.01
DMSO 513 620 3364 < 0.01

Water (1% DMSO) 515 622 3340 < 0.01

2e

Toluene 521 590 2245 0.26
THF 517 589 2364 0.2

Acetone 512 592 2639 0.12
MeOH 515 591 2497 0.11
DMSO 518 599 2610 0.05

Water (1% DMSO) 513 600 2826 0.01

BODIPY-FL DMSO 503 509 234 0.97
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Figure 2. Confocal fluorescence microscopy images of compound 2a (10 µM, λexc = 488 nm, λem =
550–680 nm) in MDA-MB-231 and MCF7 (breast cancer cells) as well as HT29 (colorectal carcinoma
cells). Cells were counterstained with Hoechst 33342 for nuclear labelling. Scale bar: 5 µm.

Next, we also examined the utility of compound 2a to label human primary cells,
such as healthy immune cells derived from peripheral blood. We examined the labeling
capabilities of compound 2a in human neutrophils (both unstimulated and stimulated
with phorbol myristate) and in monocyte-derived macrophages (both unstimulated and
stimulated with liposaccharide). We acquired Z-stack fluorescence microscopy to analyze
the cell labelling as well as the intracellular localization. As shown in Figure 3, we observed
bright intracellular punctate structures in neutrophils, whereas the labeling in macrophages
was distributed across the whole cytoplasm.
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Figure 3. Z-stack confocal fluorescence microscopy images of neutrophils (untreated and PMA-
stimulated), and macrophages (untreated and LPS-stimulated). Cells were incubated with compound
2a (10 µM, λexc = 488 nm, λem = 550–680 nm) and counterstained with Hoechst 33342 for nuclear
labelling. Scale bar: 15 µm.

4. Conclusions

In conclusion, we reported a new synthetic approach to generate BODIPY deriva-
tives under neat conditions and the preparation of novel 2,6-thioaryl-derivatized BODIPY
compounds. The straightforward and selective functionalization of the BODIPY core by
thiophenol chloride prepared in situ allows for easy modification and addition of targeting
moieties. Analysis of the photophysical properties shows that thioaryl-BODIPY derivatives
display large Stokes shifts, which can be advantageous for optical imaging. Finally, we
have confirmed that thioaryl-BODIPYs are not toxic in mammalian cells at their working
concentrations and can be used for fluorescence confocal microscopy in human cells of
multiple origin.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors10010019/s1, Figure S1: ORTEP-3 projection of
compound 2d, Figure S2: absorption and emission spectra of compound 2a in different organic
solvents, Figure S3: cell viability data, Figure S4: additional confocal microscopy images. Table S1:
ORTEP-3 projection of compound 2d, showing the atom numbering and displacement ellipsoids at
the 50% probability level.
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