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Abstract: Biogenic polyamines, especially spermine and spermidine, are associated with cell growth
and development. These amines can be found at high concentrations in the tumor cells, tissues,
and urine of cancer patients. In contrast, spermidine levels drop with age, and a possible connec-
tion between low endogenous spermidine concentrations and age-related deterioration has been
suggested. Thus, the quantification of these amines in body fluids like urine could be used in the
diagnosis of different pathological situations. Here a new fluorescent molecular probe based on
a tetraphenylethylene derivative is reported. This probe is able to selectively detect these amines
through the enhancement of the fluorescence emission of the resulting complex. This fluorescence
enhancement may be related to restricted intramolecular rotations of TPE phenyl rings induced by
the analyte. Theoretical studies were carried out to shed light on the observed selectivity. Finally, the
detection of these amines in urine was performed with limits of detection of 0.70 µM and 1.17 µM for
spermine and spermidine, respectively.

Keywords: biogenic polyamines; spermine; spermidine; fluorescence detection; tetraphenylethylene
derivative; chemosensor; restricted intramolecular motions

1. Introduction

The development of chromogenic or fluorogenic chemosensors for detecting bio-
logically active molecules is a continuously progressing research area. The expansion
of this field is related to the many advantages of these chemosensors, such as real-time
detection, low cost, easy usage protocols, and naked-eye detection, among others [1–3].
Most chemosensors are designed using the binding site signaling unit approach, in which
two subunits, one able to interact with the analyte and the other with chromogenic or
fluorogenic properties, are covalently bound. The structure of the molecule must guarantee
the analyte complexation at the binding site, inducing a change in the optical properties of
the signaling unit. This, in turn, will lead to variations in the color or fluorescence emission
of the chemosensor [4,5]. In this way, the information at the molecular level (presence of the
analyte) is amplified at a macroscopic level (signaling event). Even though chromogenic
probes are very appealing, fluorescent systems usually allow lower limits of detection
to be obtained [6]. In this sense, many fluorescent organic units, such as coumarins [7],
dansyl derivatives [8], cyanines [9], and BODIPYs [10], among others, have been used.
Another interesting approach is to use fluorophores with aggregation-induced emission
(AIE) properties [11,12]. Molecules containing molecular rotors, such as archetypal lumino-
gen tetraphenylethene (TPE), exhibit this AIE behavior, which is generally accepted to be
caused by restricted intramolecular rotations (RIR). It is well known that intramolecular
rotations can nonradiatively deactivate excited states, which leads to the quenching of
fluorescence. Thus, if these intramolecular rotations are inhibited by either aggregation or
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an interaction with a certain analyte, enhancement of the fluorescence of the fluorophore
will be observed. Although some examples of fluorescent chemosensors that display RIR-
induced emissions have been reported [13,14], there are fewer publications than those based
on conventional fluorophores. Of the structures displaying AIE behavior, tetraphenylethy-
lene (TPE) derivatives have many demonstrated applications [15–18]. This versatility is
related to the different possible functionalizations that can be introduced into the parent
compound [19].

Biogenic polyamines, such as spermine (Spm), spermidine (Spd), putrescine (Put), and
cadaverine (Cad), are aliphatic amines found in nearly all living cells. They are synthesized
from arginine, ornithine, proline, and methionine [20], and are involved in multiple biolog-
ical processes [21,22], like cell growth, gene regulation, differentiation, development, and
immunity [23]. Intracellular polyamine levels are regulated by a complex mechanism that
involves biosynthetic, catabolic, and transport processes to ensure that the concentration in
cells remains within strictly controlled limits [23–25]. Being associated with cell growth
and development, these amines can also be found at high concentrations in the tumor cells,
tissues, and urine of cancer patients [26,27]. High levels of polyamines have been associated
with breast, colon, lung, prostate, skin, and ovarian cancers [25,28–33]. In humans, spermi-
dine levels drop with age, and a possible connection between low endogenous spermidine
concentrations and age-related deterioration has been suggested [34].

Following our interest in developing chromogenic and fluorescent chemosensors
for the detection of relevant disease biomarkers [15,35–37], we decided to explore the
utility of a new TPE derivative in the fluorescence sensing of Spm and Spd through a
RIR-induced emission mechanism. As shown in Figure 1, chemosensor 1 consists of a TPE
that incorporates two carboxylic acids with a cleft disposition (Figure 1).
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Figure 1. Structure of fluorescent chemosensor 1 and some aliphatic biogenic amines.

2. Results and Discussion
2.1. Synthesis of Chemosensor 1

The preparation of chemosensor 1 was carried out as shown in Scheme 1. Compound 2
was prepared from the reaction of 4,4´-dimethoxybenzophenone with diphenylmethane in
the presence of n-BuLi [38]. The treatment of 2 with BBr3 in dichloromethane transformed
the ether groups into the corresponding hydroxyl groups to give rise to compound 3 [39].
The reaction of 3 with 2 equiv of propargyl bromide in a basic medium allowed the
isolation of 4. When this compound was made to react with azide 5 under the typical
conditions of a “click” reaction, compound 6 was obtained. Finally, the hydrolysis of 6 led
to chemosensor 1.
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Scheme 1. Synthetic pathway for the preparation of chemosensor 1.

Compound 1 was fully characterized using 1HNMR, 13CNMR, and MS. Chemosensor
1 shows an absorption band at 341 nm (10−4 M in acetonitrile). When irradiated at 340 nm
in acetonitrile, the compound was practically nonfluorescent.

2.2. Detection Studies

The “molecular cleft” structure of compound 1 suggested a possible double interaction
with α,ω-aliphatic diamines through electrostatic and hydrogen bonding interactions be-
tween the carboxylates and the cationic ammonium groups of the amines at physiological
pH. We expected this interaction to lead to significant restrictions in the intramolecular
motions of the chemosensor, resulting in changes in its fluorescence emission. For this
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reason, the interactions between 1 and the aliphatic polyamines, ethylenediamine (ED),
diethylenetriamine (Det), cadaverine (Cad), putrescine (Put), spermine (Spm), and spermi-
dine (Spd), were evaluated. For the detection studies, two equivalents of the corresponding
polyamines in buffered aqueous solutions (10−2 M in phosphate buffer, pH = 7.4) were
added to a solution of compound 1 in acetonitrile (50 µM) and the emission was imme-
diately measured. The experimental procedure was carried out in such a way that the
composition of the solvent mixture was acetonitrile:water 98:2 for all the measurements.
This protocol was used to avoid fluorescence modifications induced by changes in sol-
vent polarity. As seen in Figure 2, Cad, Put, ED, and Det did not induce any significant
change in the fluorescence emission of 1 (λexc = 340 nm). Conversely, in the presence of
Spm or Spd, the fluorescence emission of the sensor was remarkably enhanced at 473 nm
when it was irradiated at 340 nm (ca. 60-fold increase for Spm and 80-fold increase for
Spd). This strong increase in the fluorescence emission can be assigned to the restricted
intramolecular rotations in 1 as a result of polyamine complexation, which gives rise to an
emissive complex.
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Figure 2. Fluorescence emission spectra of sensor 1 (50 µM in acetonitrile) in the absence and presence
of 2 equiv. of different amines (phosphate buffer, pH = 7.4) (λexc = 340 nm).

2.3. Selectivity Studies

Other types of amines, such as biogenic amine neurotransmitters, can be found in
body fluids. Therefore, to evaluate the selectivity of sensor 1 vs. Spm and Spd, its fluores-
cence response was also studied in the presence of the neurotransmitters serotonin (Stn),
dopamine (Dop), epinephrine (Epi), and norepinephrine (Nor), as well as trimethylamine.
A 50 µM solution of compound 1 in acetonitrile was prepared and amines were prepared
in phosphate buffer following the previously described procedure. As seen in Figure 3,
sensor 1 only became strongly fluorescent when it was irradiated at 340 nm in the presence
of Spm and Spd, and remained silent with the other studied biomarkers. These and the
previous data clearly indicate that chemosensor 1 was able to selectively detect Spm and
Spd in buffered aqueous media in the presence of biogenic amine neurotransmitters and
other biogenic aliphatic amines.
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Figure 3. A total of 50 µM of the sensor in acetonitrile in the presence of 2 equiv. of different amines
(in phosphate buffer = 7.4) (solvent mixture acetonitrile:water 98:2) (λem at 473 nm, λexc = 340 nm).

2.4. Sensitivity Studies in Urine

As previously commented, abnormally high amounts of these biogenic polyamines
are found in the urine of cancer patients. To evaluate the sensitivity of sensor 1 during the
detection of Spm and Spd as biomarkers in urine, fluorescence titration experiments were
carried out in this medium. In a typical experiment, increasing amounts of Spm or Spd
in urine were added to an acetonitrile solution of sensor 1 (50 µM), always maintaining a
98:2 acetonitrile:urine solvent mixture ratio, and the corresponding fluorescence spectra
were recorded (Figure 4 for Spm. For Spd, see the Supporting Information). As seen in
Figure 4b, the normalized fluorescence intensities at 473 nm vs. Spm concentration showed
a linear response in urine in the 1–31 µM concentration range. The limits of detection
(LoD) for both compounds were determined as 3·Sb/m, where Sb was the blank standard
deviation and m the slope obtained during titration, which was 0.70 µM and 1.17 µM for
Spm and Spd, respectively. The normal level of Spm and Spd in the urine of healthy adults
is ca. 1.2–1.3 µM, whereas in cancer patients with certain solid tumors these concentrations
are much higher (higher than 8 and 26 µM for Spm and Spd, respectively) [11]. Thus, the
LoDs determined for these amines are low enough to detect pathological situations, such
as ovarian tumors, where the concentration in urine is around 40 µM [40,41]. The recovery
experiments carried out with Spm and Spd are summarized in Table S2.
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2.5. Theoretical Calculations

To propose a binding mode capable of explaining the observed selectivity of chemosen-
sor 1 to Spm and Spd, an exhaustive two-stage computational simulation study was carried
out. Given the flexibility of chemosensor side chains over TPE moiety and the linear
structure of the biogenic polyamines, a 50 ns molecular dynamics simulation of the sensor,
together with each studied biogenic aliphatic amine and the amine neurotransmitters acting
as possible interferences, was first carried out. These simulations allowed us to obtain
representative structures of the interaction between TPE moiety and the tested amines. In a
second stage, and by taking these representative structures as a starting point, they were
further optimized using high-level quantum calculations to analyze the stabilization of the
different complexes formed by chemosensor 1 in solution in the presence of the biogenic
aliphatic amines and neurotransmitters.

2.5.1. Molecular Dynamics Simulations

The protonation state of amines was obtained with the Chemicalize tool [42] by
ChemAxon. The main species obtained for each amine at pH 7.4 during the experimental
tests is shown in the legend of Figure 5. All the molecules under study were parametrized
using AMBER following the protocol described in the Supporting Information section to
obtain a molecular dynamics trajectory simulation of every sensor:amine complex formed
by 50,000 snapshots. For most amines, the interaction with the sensor remained stable
throughout the simulated time. Only some of the amines with a single positive charge were
able to break this interaction and were released to the solvent.
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and the amine neurotransmitters during the simulation time (50 ns). For the sake of clarity, the
average of every 20 points was plotted. The charge of each amine is included in the legend of the plot.

The amine with the largest number of hydrogen bonds and electrostatic interactions
was Spm, which formed an average of 5.66 hydrogen bonds with 1 over the 50,000 analyzed
structures. Spd had an average of 5.06 hydrogen bonds with chemosensor 1. In terms of
hydrogen bonding, a second differentiated group was found to include the polyamines
with two protonated amino groups, such as Put, Det, and Cad, with an average of 3.50,
3.15, and 2.99 hydrogen bonds, respectively, during the simulation time. A third group
showing the lowest hydrogen bond binding indices included the amines with only one
protonated amino group, such as Stn and Epi, with an average of 1.07 and 0.63 hydrogen
bonds with chemosensor 1, respectively. Finally, Dop and Nor broke the interaction during
simulation and were released to the solvent at 22 and 34 ns, respectively.

To obtain accurate geometry and the binding energy of each sensor:amine com-
plex, the cluster command of the ptraj program of Amber12 [43] was used to process
the 50,000 snapshots of the molecular dynamics trajectories, which gave 250 representative
structures that were submitted to a binding energy calculation.
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2.5.2. DFT Calculations

Further optimization of the complexes formed between chemosensor 1 and the bio-
genic amines/neurotransmitters, which remained hydrogen-bonded during the molec-
ular dynamics simulation (i.e., Det, Cad, Put, Spm, Spd, and Dop), and the correspond-
ing isolated species, was performed at M062X/6-31+G(2d,p)/PCM(acetonitrile) [44,45]
by taking into account the empirical dispersion through the D3 version of Grimme’s
dispersion parametrization and the original D3 damping function [46] using the Gaus-
sian16 Rev. A.03 package [47] (see the computational details in the Supporting Infor-
mation section. The atomic coordinates of this and other complexes are found in the
Supplementary Material).

2.5.3. Complexes’ Geometry Description

The optimized structure of the 1-Spm system revealed how the Spm chain came close
to the carboxylate groups of the chemosensor, almost as if they were two closed shackles
in a chain (see Figure 6). This arrangement promoted the formation of seven hydrogen
bonds between the protonated amino groups of the polyamine and the two carboxylate
groups of the sensor, and an additional one between an internal amine N-H group and the
central nitrogen of the triazole ring of the sidechain of the sensor. Therefore, only one of
the 10 available hydrogen atoms of the amino groups of Spm was unable to interact with
the sensor and be accessible to the solvent. The distance between these hydrogen-bonded
amine hydrogen atoms and the carboxylate oxygen atoms ranged from 1.70 to 1.90 Å,
whereas the distance between N-H and triazole nitrogen was 2.15 Å. For Spd, the structure
of the 1: Spd complex showed six simultaneous hydrogen bonds, in which the distance
between the oxygen atoms of the sensor and the amine hydrogen atoms of the analyte were
between 1.66 and 1.95 Å.
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The stable structure of the complexes of the TPE-based sensor with the amines that
carried two protonated nitrogens (Cad, Put, Det) looked similar to that reported for Spm
and Spd due to the formation of an extensive hydrogen-bond network. The terminal amino
groups of Det were protonated at pH 7.4, whereas the central one remained unchanged.
Therefore, its complex with sensor 1 only exhibited hydrogen-bond interactions through the
two protonated amines. One of these protonated amino groups specifically interacted with
the two carboxylates by keeping together the side chains of the sensor, whereas the other
terminal protonated amino group interacted simultaneously with both the carboxylate
group and the central nitrogen of imidazole moiety of the same side chain. The distance
between the amino hydrogen atoms and the oxygen of the carboxylate groups was between
1.57 and 1.74 Å, and the hydrogen-bond distance between the protonated amino group and
the imidazole nitrogen atom was 2.34 Å, which suggests a weak hydrogen-bond interaction.
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Finally, the optimized structure of chemosensor 1 and Put and Cad was similar and showed
a hydrogen-bond network between their terminal protonated amino groups and the TPE
carboxylate groups. The distance of these bonds ranged from 1.62 to 1.82 Å for Put, and
from 1.62 to 1.75 Å for Cat.

2.5.4. Binding Energy Analysis

The ∆G thermochemical calculations at the same theory level at 298.15 K and 1 atm
(scale factor 0.952 [48]), as seen in Tables S3 and S4, show that the stabilization of the
different complexes lay between 29.7 kcal/mol (1: Cad (2+) complex) and 61.5 kcal/mol
(1: Spm (4+) complex). When these free-energy results were divided by the number of
nitrogens with a positive charge over the biogenic amines/neurotransmitters, the stabi-
lization average was around 15 kcal/mol (see the last column in Table S4) except in two
cases, where a stabilization of around 18 kcal/mol was recorded: Dop(1+) (18.5 kcal/mol
stabilization for its only positively charged nitrogen atom) and Spm(3+) (18.0 kcal/mol sta-
bilization for three of its four nitrogen atoms with a positive charge). In both cases, this fact
was easily explained by looking at the recorded interactions in both optimized structures:
In the Dop(1+) complex with 1, the positively charged nitrogen interacted with one of the
carboxylate end groups of the TPE sensor, whereas the other noncharged nitrogen was
hydrogen-bonded to the two phenol groups of the molecule; for the 1:Spm(3+) complex, the
nonpositively charged nitrogen atom was hydrogen-bonded to one of the two 1,2,3-triazole
groups of the sensor moiety.

Therefore, the hydrogen bonds that sensor 1 was able to establish at the selected pH
with the different biogenic amines/neurotransmitters was the driving force of stabilization
and, thus, of its selectivity.

3. Materials and Methods

The reagents and solvents employed in the syntheses were purchased from Sigma-
Aldrich and were used without further purification. Drug-free human urine was supplied
by Thermo Scientific. 1H NMR and 13C NMR spectra were recorded in a Bruker Avance
300 spectrophotometer and referenced to the solvent peak. Fluorescence measures were
taken with a Cary Eclipse Spectrofluorometer (Santa Clara, CA, USA) using a 1 cm path-
length cuvette.

3.1. Preparation of 4,4’-(2,2-Diphenylethene-1,1-diyl)bis(methoxybenzene) (2)

Diphenylmethane (2 mL, 12 mmol) dissolved in dry THF (40 mL) in an argon atmo-
sphere was cooled to −78 ◦C. nBuLi (2.2 M in hexane solution, 5.0 mL, 11 mmol) was
injected dropwise and stirred at RT for 4 h. The reaction was cooled to −78 ◦C again and
4,4-dimethoxybenzophenone (2.42 g, 10 mmol) dissolved in THF (10 mL) was added to the
reaction and then stirred at RT overnight. NH4Cl (sat.) was added and stirred at RT for
1 h. THF was evaporated, and the crude was extracted with DCM. Then p-toluenesulfonic
acid (385 mg, 2 mmol) in toluene (80 mL) was added and refluxed at 155 ◦C overnight with
a Dean–Stark apparatus to remove water. Once cooled, it was extracted with NaHCO3
(sat.) and brine. After filtration, the solvent was evaporated and the product was pu-
rified by silica column chromatography using hexane: ethyl acetate (9:1) as an eluent.
Compound 2 was isolated as a yellow solid (2.08 g; 53%). 1H RMN (300 MHz, CDCl3) δ
(ppm) 7.15–7.06 (m, 6H); 7.06–7.00 (m, 4H); 6.95 (d; J = 8.9 Hz; 4H); 6.64 (d; J = 8.8 Hz; 4H);
3.74 (s, 6H). 13C NMR (75 MHz, DMSO-d6) δ (ppm). 158; 144; 141; 125–135; 114; 55.

3.2. Synthesis of 4,4’-(2,2-Diphenylethene-1,1-diphenyl) Diphenol (3)

Compound 2 (1.758 g, 4.5 mmol) was dissolved in dry DCM (12 mL) and cooled to
0 ◦C in an argon atmosphere. BBr3 (17 mL, 18 mmol) was added dropwise and then the
ice bath was removed. The mixture was stirred overnight at RT. Deionized water (20 mL)
was added and the solution was extracted with AcOEt. The organic phase was washed
with brine and dried with anhydrous MgSO4. The organic solvent was evaporated to
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give compound 3 as a brown solid (1.54 g; 83%). 1H RMN (300 MHz, DMSO-d6) δ (ppm)
9.30 (s, 2H); 7.17–7.02 (m, 6H); 6.95–6.91 (m, 4H); 6.74 (d; J = 8.6 Hz; 4H); 6.48 (d; J = 8.6 Hz;
4H). 13C RMN (75 MHz, DMSO-d6) δ (ppm) 156; 1446; 141; 138; 134; 132; 131; 128; 126; 115.

3.3. Synthesis of 4,4’-(2,2-Diphenylethene-1,1-diyl)bis((prop-2-yn-1-yloxy) Benzene) (4)

In a reflux apparatus set up in an argon atmosphere, compound 3 (400 mg, 1.1 mmol)
was dissolved in acetone (15 mL) and solid potassium carbonate (334 mg, 2.4 mmol) was
added. Afterward, 3-bromo-1-propyne (80% in toluene, 0.2 mL, 2.4 mmol) was injected
dropwise. The mixture was refluxed at 70 ◦C overnight. Deionized water (20 mL) was
added, and the mixture was cooled to RT and then extracted with AcOEt. The organic
phase was washed with brine and dried with anhydrous MgSO4. After filtration and
solvent evaporation, compound 4 was isolated as a yellow amorphous solid (307 mg;
99%). 1H RMN (300 MHz, DMSO-d6) δ (ppm) 7.19–7.07 (m, 6H); 7.00–6.92 (m, 4H); 6.88 (d;
J = 8.7 Hz; 4H); 6.73 (d; J = 8.8 Hz; 4H); 4.71 (d; J = 2.4 Hz; 4H); 3.54 (t; J = 2.3 Hz; 2H).
13C RMN (75 MHz, DMSO-d6) δ (ppm) 156; 144; 140; 139; 136; 132; 131; 128; 126; 114;
79; 78; 55.

3.4. Synthesis of tert-Butyl 2-Azidoacetate (5)

tert-Butyl 2-bromoacetate (2.3 mL; 15 mmol) was dissolved in dimethylformamide
(20 mL). Then, sodium azide (1.20 g; 18.4 mmol) was added and the mixture was stirred
for 12 h at 60 ◦C. Then, water (100 mL) was added and the solution was extracted with
ethyl acetate. The organic phase was washed with brine and dried with anhydrous MgSO4.
After filtration and solvent evaporation, compound 5 was isolated as a colorless liquid
(2.40 g; 99%). 1H RMN (300 MHz, DMSO-d6) δ (ppm) 3.95 (s, 2H); 1.45 (s, 9H).

3.5. Azide-Click CuAAC Synthesis of Di-terc-butyl 2,2’-((((((2,2-Diphenylethene-1,1-diyl)bis(4,1-
phenylene)bis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl)diacetate (6)

Compound 5 (368 mg, 0.76 mmol) was added to a stirred solution of 4 (468 mg,
1.1 mmol) in THF (30 mL). Two catalytic solutions, A and B, were prepared, where A was
copper acetate (44 mg) in water (15 mL) and B was sodium ascorbate (94 mg) in water
(15 mL). Solution A was poured over B and the mixture was immediately poured into the
reaction vessel and was left to stir at RT overnight. Brine (120 mL) was added and extracted
with DCM. The organic phase was washed with brine and dried with anhydrous MgSO4.
When the solvent was evaporated, a yellow oil was obtained. Toluene was added to the
obtained oil and a white precipitate formed, which was isolated by centrifugation to give
compound 6 pure (118 mg; 46%). 1H RMN (300 MHz, DMSO-d6) δ (ppm) 8.17 (s, 2H),
7.17–7.05 (m, 6H), 6.99–6.94 (m, 4H), 6.88 (d, J = 8.8 Hz, 4H), 6.80 (d, J = 8.9 Hz, 4H), 5.28
(s, 4H), 5.06 (s, 4H), 1.43 (s, 18H). 13C RMN (75 MHz, DMSO-d6) δ (ppm) 166; 157; 144; 143;
140; 139; 136; 132; 131; 128; 127; 126; 114; 82; 61; 51; 28.

3.6. Synthesis of Compound 1

Compound 6 (73 mg, 0.1 mmol) was dissolved in DCM (6 mL). TFA (1.5 mL) was
added and was left to stir at RT overnight. DCM was evaporated at low pressure and the
product was obtained as pure (55 mg; 89%). 1H RMN (300 MHz, DMSO-d6) δ (ppm) δ
13.36 (s wide, 2H); 8.17 (s, 2H); 7.19–7.04 (m, 6H); 7.00–6.94 (m, 4H); 6.89 (d; J = 8.8 Hz; 4H);
6.81 (d; J = 8.9 Hz; 4H); 5.28 (s, 4H); 5.06 (s, 4H). 13C RMN (75 MHz, DMSO-d6) δ (ppm)
169; 157; 144; 143; 140; 139; 136; 132; 131; 128; 126; 114; 61; 51. HRMS: m/z calculated for
C36H30N6O6 (M + H): 643.2305 found 643.2283 [M+H]+.

3.7. Fluorescence Measurements

Fluorescence measurements were taken in 3 mL cuvettes with 2940 µL of the sensor in
acetonitrile (50 µM) in the presence of two equivalents of the analytes (10−2 M in phosphate
buffer). To maintain the 98:2 ratio (CH3CN : H2O), corresponding volumes of water were
added. Samples were irradiated with a wavelength of 340 nm.
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3.8. Fluorescence Titrations

Thirteen different solutions were prepared in 3 mL cuvettes with 2940 µL of the sensor
in acetonitrile (50 µM) in the presence of increasing concentrations of the analytes (3–50 µM)
in urine. To maintain the 98:2 ratio (CH3CN : H2O), corresponding volumes of water were
added. Samples were irradiated with a wavelength of 340 nm.

4. Conclusions

A new chemosensor 1 to selectively detect Spm and Spd was prepared. The probe is
based on a TPE moiety with “molecular cleft” structure. The two branches ending with
carboxylic acids allow it to strongly interact with the longer biogenic aliphatic polyamines.
The interaction gives rise to an important and easily observed fluorescence emission
enhancement. The new probe responds to Spm and Spd, but keeps silent for other
aliphatic polyamines and several neurotransmitters that could interfere with biological
fluids. Theoretical studies suggest that coordination strength is related to the positive
charges of the amine under the applied experimental conditions (pH = 7.4). Coordination
can induce a restriction in the TPE aromatic rings, which is responsible for the fluorescence
enhancement. Finally, detection can be also carried out in urine with LoDs of 0.70 µM
and 1.17 µM for Spm and Spd, respectively. These values suggest that 1 can be used as a
biomarker to detect Spm and Spm in the urine of patients with different cancer types.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemosensors10010008/s1, Table S1: Comparison of the sensing properties of the different
Spm/Spd selective optical probes, Figures S1–S11: The 1H and 13C NMR spectra of compounds 1–6,
Figure S12: The fluorescence titration spectra with Spd in urine, Table S2: Recovery and accuracy of
the method, Computational methods for theoretical calculations, Tables S3 and S4: Energy results for
the DFT calculations, Cartesian coordinates of the optimized DFT structures.
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