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Abstract: Accurate detection and quantitative evaluation of environmental water in vapor and
liquids state expressed as humidity and precipitation play key roles in industrial and scientific
applications. However, the development of supporting tools and techniques remains a challenge.
Although optical methods such as IR and LASER could detect environmental water in the air, their
apparatus is relatively huge. Alternatively, solid detection field systems (SDFSs) could recently
lead to a revolution in device downsizing and sensing abilities via advanced research, mainly for
materials technology. Herein, we present an overview of several SDFS based sensing categories and
their core materials mainly used to detect water in atmosphere, either in the vapor or liquid phase.
We considered the governing mechanism in the detection process, such as adsorption/desorption,
condensation/evaporation for the vapor phase, and surface attach/detach for the liquid phase.
Sensing categories such as optical, chilled mirror, resistive, capacitive, gravimetric sensors were
reviewed together with their designated tools such as acoustic wave, quartz crystal microbalance,
IDT, and many others, giving typical examples of daily based real scientific applications.

Keywords: water in atmosphere; humidity; solid detection field systems (SDFSs); hygrometer;
detection ways

1. Introduction

Environmental water content, known generally as humidity, is defined as the amount
of water vapor or liquid aerosol existing in the entire environmental air. So far, it plays
a key role in the daily natural processes of mankind along with scientific and industrial
applications. Therefore, humidity level control represents an essential matter for a wide
scope of life, for instance, in avoiding the corrosion of oil and gas supply pipes, crop
diseases, vehicle clutch deterioration, mirrors and windows fogging, improper storage
of food, medicine, high-tech equipment, and many others. The detection mechanism of
environmental water depends mainly on its existing physical status, either with vapor
or liquid phase, as shown schematically in Figure 1. On the one hand, the vapor phase
status can be kept during the measurement where the adsorption/desorption mechanism
predominates, leading to the detection of water molecules that are covering or stacking on
the SDFS surface. Thus far, several techniques could be used to determine the water vapor
content, such as optical spectroscopic techniques (IR, LASER . . . . etc.) [1]. However, such
techniques require a long light path for vapor’s pre-concentration, which requires a large
working space. Nevertheless, they are high cost and require well-trained personnel with
special skills [2]. Recent advances in materials research lead to more cheap and compact
platforms such as QCM, electronic, electrochemical sensors, and many others. Beneficial
use of these newly developed techniques could finally lead to the determination of the
weight, volume, and mass of water molecules. On the other hand, when the status changes
from water vapor to liquid, the condensation/evaporation mechanism predominates, the
dew point condensation can be determined. In the liquid phase, such as fog or rain, the
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attach/detach mechanism predominates. These cases finally lead to the detection of the
size and number of water droplets formed on the SDFS substrate surface. Techniques used
for this category required a certain threshold volume of water droplets to detect sensing. In
addition, the careful determination should be realized for surface and bulk water amounts
to emphasize the liquid water in the air environment and the liquid water on the target
SDFS [3].
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Figure 1. Schematic illustration of environmental water (humidity) detection on a solid substrate
based on its physical status, related detection mechanism, and correlated output data.

In this regard, the controlled regulation of humidity implies accurate monitoring of its
real level via proper sensors/actuators called “hygrometers.” Historically, the first invented
hygrometer was in 1450 by Nicolas Cryfts. This hygrometer used wool to determine
humidity changes in the air [4–6]. Afterward, this hygrometer was modified to use a sponge
instead of wool in 1550. Time by time, various modifications were carried out, changing
the sensing materials to paper (Francesco Folli, 1664), human hair (Horace Bénédict de
Saussure, 1783), nylon, and many others. These hygrometers were classified as mechanical
hygrometers where they could record the change in humidity level based on a needle
position change along the sensing materials. The first dew-point hygrometer was invented
in 1820 by John Frederic Daniell and John Frederic to measure the temperature at which
air becomes saturated with water molecules. A further category of hygrometers started to
appear in the middle of the 19th century by Ernst Ferdinand August and Sir John Leslie,
where a dry and wet-bulb psychrometer was invented. Its working mechanism depended
on the evaporation of water from the wet base, which led to heat absorption affecting
the level of the thermometer’s reading. Correlation between these readings with various
calculation tables was used to estimate the relative humidity level. This type of dew-point
condensation hygrometers became the most popular model at that time. In the early 20th
century, Negretti and Zambra invented a hair hygrometer or hygroscope to measure the
relative humidity in the air from 10–100%. It was used to measure the relative humidity in
the air with a range of 10–100% humidity depending on the existence of a bundle of hairs
or other organic tissue that changes in length when it absorbs moisture. Science revolution
brought many other types of hygrometers that were invented in the 20th century, such as
chilled mirror hygrometers and LiCl dew point condensation (1938), and received many
modifications, especially from a sensing materials viewpoint and working mechanism.
However, this sensor showed slow response time and could not function beneficially in
high humid environments or in the presence of ammonia or organic solvents.

In the past decade, humidity measurements received considerable attention due to
the huge expansion of a wide application range such as climate change detection, food
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storage conditions, oil pipes corrosion, and many others. Along with its importance in
industrial activities, humidity could recently affect and beneficially control the global
markets of semiconductor micro-chips fabrication, vehicle automation, healthcare goods
production, and storage processes [7–12]. Especially within countries having rainy seasons,
the control of humidity levels is considered mandatory. Therefore, there is a crucial need for
accurate monitoring of the humidity level using updated technology for the cost-effective
fabrication of humidity or moisture sensors. Thus far, there have been many efforts oriented
to develop sensing methodologies. Most of them were focused on the development of
sensing materials, which represents the main key of many research works. In addition,
several criteria can determine the quality of the developed humidity sensor, such as its facile
fabrication, economical cost, fast response time, accuracy, reliability, stability, long shelf-life
time, and above all, safety. Accordingly, the application direction can be easily determined.

In general, humidity can be classified according to many expressions. The most
famous or commonly used are absolute, relative and/or dew point condensation. Absolute
humidity (AH) is defined as the mass of water vapor (MV ) that is existing in a certain
volume of air (V). It is expressed in grams per cubic meter or the density of water vapor as
in the following equation

AH =
MV

V
Relative humidity (RH) is usually used for a mixture of air and water. It is defined as

the ratio of partial water vapor pressure (VP) to the saturation vapor pressure of water at
the same temperature (VS). It can also be defined as the ratio of the actual existing moisture
amount to the saturated amount of moisture in the atmosphere.

RH =
VP
VS

Additional classification is called dew point condensation, defined as the temperature
at which a totally saturated air with moisture condensation occurs. Thus, the saturation
water vapor pressure is equal to the partial pressure of the water vapor (in an air atmo-
sphere). At this point, a change in the water phase can be clearly distinguished from the
vapor to liquid phase, assuming that there is no other change in the moisture content in the
air. The difference between the ambient temperature and the dew point temperature is a
measure of the ambient relative humidity [13]. This can be expressed as

Td = T −
(

100 − RH
5

)
where Td is dew point temperature (in degrees Celsius), T is observed temperature (in
degrees Celsius), and RH is relative humidity (in percent). This relationship is likely
applicable for relative humidity values above 50% [14].

Among humidity expressions, the measurement of dew point temperature condensa-
tion (DPTC) has been internationally recognized as the most accurate relative humidity
measurement method. Due to the favorable control of relative humidity level above ab-
solute humidity, humidity sensors are most likely to measure relative humidity [13]. The
working principle of dew point measurement/hygrometers is based on the passage of a
certain volume of gas over a cooled substrate until condensation forms and is detected as a
function of various parameters.

Humidity is considered an indirect parameter that expresses the understanding of
the atmospheric water condensation process on the target surface. Recent research efforts
towards humidity sensors demonstrated that they are principally designed to detect the
amount of water content in the surrounding environment by monitoring the change in
various parameters such as resistance, capacitance, refractive index, inductance, piezo-
electric response, and many others [15–17]. In particular, resistive and capacitive sensors
have received much interest due to their low cost, facile fabrication, being environmentally
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benign, and ease of integration within electronic circuits that can directly enable electrical
signal recording [18].

In this review, we shed light on various humidity sensing technologies based on SDFS
types that are classified according to their sensing materials and working principles in a
trial to better understand the conditions of surface existing water molecules. In addition,
we present some of their up-to-date real feasible applications.

Our recent research works demonstrated the fabrication of a new moisture sensor
based on the existence of two dissimilar Au and Al metal electrodes with a comb-like
structure that possesses tailored gap size as desired. Whenever a water droplet bridges the
two electrodes as a function of dew point condensation, a galvanic response current could
be exclusively detected on the sensor surface with excellent sensitivity and reproducibility
at a minimum response time of ~20 ms [19–27]. This criterion enabled us to beneficially use
our MS in many applications, such as (1) accurate spontaneous detection of a tiny amount
of water and determination of its droplet size [19–23]. (2) Improving sensor sensitivity
and accuracy for dew condensation detection while changing its surface wettability [24].
(3) Enhancing the sensor’s practical and scientific applicability using its surface modification
according to the heat capacity of the actual target object [25,26]. (4) Achieving reliable
detection methodology based on the linear relationship between response current and
the variation in the sensor surface’s cooling rate and the surrounding vapor pressure [22].
(5) Quantification of dew condensed water droplets on the sensor surface based on their
response current and image processing techniques [27].

2. Materials for SDFSs

Hygroscopic materials are defined as materials that can absorb water molecules from
the surrounding environment. They are used extensively in commercial hygrometers as
a sensing layer. Previously, hair, wood, and some fabrics were used for such purposes,
followed by more recent developments to achieve highly sensitive and selective materials
that possess fast response/recovery criteria. Hygroscopic materials could be classified
under organic, inorganic, and hybrid materials based on the materials used.

2.1. Organic Materials

Sensitive organic materials are usually marked as chemical compounds that can change
their electrical or optical properties when they are subjected to air humidity or specific
gases. Organic materials are frequently used for atmospheric water sensors due to their
low production cost, lightweight devices, commercial availability, facile deposition on the
desired substrates, and are relatively non-toxic [28]. Particularly, polymer-based humidity
sensors with high sensitivity and rapid response properties have been developed [29,30].
The stability of the chosen polymer at high humidity levels could guarantee its durabil-
ity and success in designated applications. The sensing mechanism is mainly recorded
based on the change in conductivity or dielectric constant once the water vapor adheres
to the polymeric layer. Since most of the used polymers were hydrophilic, the surface
dissolution and instability of the used sensors were frequently noticed at higher humidity
levels, leading to a decrease in the measurement accuracy. This, in turn, suggests the
performance within a low dynamic range. The formation of crosslinked films after coating
the sensitive materials on the surface of electrodes provides a feasible solution for this
problem [31]. However, the control of the resultant polymeric structure becomes more
difficult since these crosslinking reactions usually occur within the solid-state [32,33]. Thus
far, hydrophilic polymers such as polyethyleneimine (PEI), polyethylene oxide (PEO),
polyvinyl alcohol (PVA), and polyaniline (PANI) were utilized as composite sensors to
obtain an improved sensitivity and response time [34–36]. As a result, an increase in the
sensor’s surface wettability enhanced the adherence of water molecules on its surface and
consequently increased the surface conductivity. In contrast, hydrophobic polymers such
as polyimide, polymethylmethacrylate (PMMA), cellulose acetate butyrate (CAB), and
polyethyleneterephthalate (PET) could also be used for the manufacturing of humidity
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sensors. However, the diffused water molecules on the surface of hydrophobic polymers
could increase the surface permittivity, which misleads the humidity level monitoring.
Nevertheless, adsorption or absorption of water molecules could lead to surface swelling,
which provides more surface strain affecting their response electrical properties [13].

A further type of organic materials denoted as “phthalocyanines” represents aromatic
and macrocyclic organic materials. They are quite bulky and can be easily bound to different
bivalent ions such as Fe2+, Zn2+, Cu2+, Co2+, Ni2+ within their central cavities, affecting
their physical and electrical properties. Recent studies showed that zinc phthalocyanine
(ZnPc) or vanadyl 3,10,17,24-tetra-tert-butyl-1,8,15,22-tetrakis(dimethylamino)-29H,31H-
phthalocyanine (VTP)-based microporous device were employed as a humidity sensing
material based on the variation of their capacitance response [37,38].

2.2. Inorganic Materials

Micro-nanofabrication technology plays a very important role in providing suitable
sensing inorganic materials for atmospheric water detection. Thus far, metal oxides (MOxs)
such as TiO2, In2O3, WO3, ZnO, SnO2, and many others were widely used for humidity
and gas sensors due to their low cost, excellent sensing properties, flexible manufacturing
in various nanostructured morphologies and geometries, facile miniaturization, and high
sensitivity [39,40]. They normally possess a wide band gap enabling them to provide
inherent functional properties such as high surface reactivity and electrical conductivity.
In an early report discussing the morphological point of view, a thin-film sensor with
nano-sized MnWO4 grains showed a smaller sensitivity for humidity sensing than a
thick-film sensor despite having a faster response and low-temperature coefficient [41].
Nevertheless, they could be considered promising candidates for high precision humidity
sensing. However, the use of pristine (MOxs) revealed poor response and large hysteresis,
which limited their application particularly in humidity sensors. Recent advances to
overcome this drawback indicate that using n- or p-type semiconductor MOxs represents a
promising pathway to dramatically enhance the humidity sensing ability [42,43]. Numerous
research works demonstrated remarkable conductivity increases due to their interaction
based on the humidity level. Their reaction mechanism could be ascribed to the molecular
adsorption (by chemisorption, physisorption, or Vander Waals) of water molecules at the
dangling bonds of the semiconductor surface molecules, which leads finally to a change
in their electrical conductivity due to electron or hole mobility that affects the conduction
and valence bands [42–44]. However, the linearity in conductivity response could be
attained at lower temperatures and became non-linear once the temperature was getting
higher [45–47].

Alternatively, achieving better performance towards practical sensing applications
could enhance the effective sensing surface area, surface porosity, material’s robustness,
and signal-to-noise ratio (S/N). Thus, another category denoted as ceramic metal oxides
(CMOxs) could be developed and used. Though MOxs and CMOxs share mainly the same
interaction mechanism with atmospheric water, CMOxs possess numerous advantages such
as superior mechanical strength, chemical resistance under various environments, high-
temperature stability, large surface area, and reproducible electrical properties. Generally,
CMOxs are used widely in many sensing fields such as temperature, humidity, pressure,
oxygen, proximity, automobile, capacitive, oil level, and corrosion sensors [18,48].

Several reports demonstrated that CMOxs may or may not possess spinel structures.
They beneficially function as sensing materials for electrochemical, mass, and optical
humidity sensors due to their excellent practical robustness, stability, wide temperature
range, mechanical strength, and low fabrication costs. They tend to change their electrical
properties such as resistance or capacitance as a response to humidity sensing [13,49].
The sensing mechanism is governed by water adsorption on the CMOxs surface, and
this process is supported by a distinctive CMOxs structure with pores, grains, and grain
boundaries [50].
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The interaction of water molecules with CMOxs surface leads to the formation of
surface hydroxyl groups where the first ordered and stable chemisorbed water monolayer
can be formed via hydrogen bonding [51,52]. Further adsorption of water molecules leads
to the formation of physiosorbed layers that possess weak hydrogen bonding. The wa-
ter molecules are randomly oriented on the surface of the first physiosorbed water layer
allowing the proton conduction to take place by the Grotthus mechanism [53]. This, in
turn, enhances the conductivity throughout the CMOxs material surface once the water
molecules are more accumulated at higher relative humidity levels [54]. However, the
performance of most CMOxs materials came with less sensitivity at lower relative humidity
levels <20%. Sensitivity enhancement of the sensing ability could be achieved using porous
CMOxs materials where the surface and open pores are likely to collect water vapor through
chemical and physical adsorption, which finally leads to dew point condensation [51,52].
It was found that the pore surface conductivity and sensitivity were remarkably changed
even with a small variation in the humidity. However, practical use in the atmospheric envi-
ronment showed remarkable degradation due to pores blocking with undesired interfering
components such as dust, dirt, oil, smoke, alcohol, or solvents.

Additionally, prolonged exposure of CMOxs materials to humid environments could
lead to the formation of a stable chemisorbed hydroxyl group on their surfaces. This, in
turn, provides misleading in the electrical signal outcome affecting the judge about the
humidity level. However, CMOxs surface regeneration becomes possible once heated
at elevated temperatures expresses a great advantage over other used materials. Thus,
the design of several commercial sensors becomes likely to contain a heater for surface
regeneration. However, the surface-related phenomena of humidity sensing by CMOxs
materials made them have lower resistance levels than those of organic polymers towards
the surface contaminations due to being mainly porous.

Furthermore, CNTs are considered extraordinary sensor candidates due to their in-
herent mechanical and electrical properties, facile surface functionalization, and easy
integration within electronic circuits [55]. In defect-free MWCNTs, the bonds between
carbon atoms in their sidewalls are sp2 hybridized. This criterion facilitates intermolecular
interactions through noncovalent van der Waals forces or π-electrons stacking [55]. Particu-
larly MWCNTs contain both holes and electrons, and they show their metallic nature at
room temperature due to the overlapping of conduction and valence bands with electrons
as majority carriers. Moreover, MWCNTs can also show their semiconducting nature with
the energy overlap that changes the molecular chirality [56]. To date, many research works
demonstrated the use of chemically functionalized CNTs as core platforms for atmospheric
water sensing [57–59]. For instance, a humidity sensor based on cellulose paper employed
SWCNTs functionalized with carboxylic acid demonstrated linear behavior up to a relative
humidity of 75% [60].

Further developments in the past two decades have led to the development of another
category denoted as “2D materials”. Thus far, 2D materials have attracted considerable
attention in the sensing field due to their high specific surface area, rich-surface function-
ality, considerably high carrier mobility, fast response, and efficient selective detection.
Graphene, reduced graphene oxide (rGO), molybdenum disulfide (MoS2), black phospho-
rus, transition metal carbides and carbonitrides, and transition metal sulfides are among
the typical examples of 2D materials that were used particularly for humidity sensors
fabrication [61–70]. However, the agglomeration of stacked multilayers of 2D materials
affected their superior sensing ability. This problem was solved by combining 2D materials
with metal oxides or metallic particles to form porous structures. Apparently, 2D materials
with spontaneously formed porous structures would be attractive for improving sensing
performance and simplifying the preparation process [71–73].

In 2011, a new family of 2D metal carbides, nitrides, or carbonitrides, MXenes de-
veloped strong hydrophilicity and high electrical conductivity [74,75]. Thus far, Ti3C2Tx
MXenes revealed a greater conductivity along the direction of the plane than that per-
pendicular to the plane [76]. This criterion enabled the intercalation of water molecules
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in the interlayer leading to the low electrical conductivity of water. The increase of the
layer-to-layer repeating distance increased the resistance of Ti3C2Tx [68,70,77]. Thus, these
characteristics enhanced Ti3C2Tx MXenes as a 2D material for RH sensing. Moreover,
the investigation of the electrical and gravimetric response to water vapor using Ti3C2Tx
MXene films intercalated cations such as K+ and Mg2+ was achieved [68]. In addition,
alkalized Ti3C2Tx were employed to enhance the gas and humidity sensing properties [77].
However, material synthesis revealed that the large stacked-layer structure inhibited water
vapor diffusion, affecting the humidity sensing durability and accuracy. Further synthesis
modification demonstrated the achievement of accordion-like Ti3C2Tx MXene/K2Ti4O9
(A-Ti3C2Tx/K2Ti4O9) and sheet-like Ti3C2Tx MXene/K2Ti4O9 (S-Ti3C2Tx/K2Ti4O9) com-
posites as humidity sensing materials with satisfactory contact between water molecules
and sensing materials [78].

2.3. Hybrid Materials

Enhancing sensing materials stability and hysteresis remains among the major chal-
lenges to achieving better sensor reliability. The future for atmospheric water sensing
materials could be feasibly enhanced using hybrid structures that combine more than one
of the aforementioned materials like graphene with another 2D inorganic material such as
MXene. In this regard, hybrid fibers of Ti3C2Tx/graphene revealed better electrical and
mechanical properties and better applications in flexible wearable sensors [79]. Further-
more, flexible SDFSs systems based on hybrid 2D materials–MoS2 were also employed
to enhance the humidity and gas sensing characteristics [62,80]. Additionally, a flexible
humidity sensor based on SnO2/reduced graphene oxide (RGO) nanocomposite film was
fabricated on a flexible polyimide (PI) substrate [81]. These hybrid sensors showed better
sensitivity and faster response and recovery times than traditional humidity sensors. More-
over, better results could also be achieved via the formation of a hybrid composition of
organic polymers with other inorganic materials such as carbon nanotubes (CNTs) either
in single-walled (SWCNTs) or multi-walled (MWCNTs) type. For instance, a hybrid film
composed of poly acrylic acid (PAA) and 33 wt% of MWCNTs exhibited a volume change
due to humidity adsorption and desorption, leading to an increase or a decrease in the
distance between neighboring MWCNTs. Consequently, the electrical resistance of the
film could be varied with the volume changes as a function of adsorption and desorp-
tion of water vapor [82]. Similarly, other hybrid materials employing polyimide (PI) [83],
polyvinylpyrrolidone (PVP) [84], or polyvinyl alcohol (PVA) [85] along with CNTs could
be achieved. To date, numerous research works continue towards the beneficial use of
composite materials based on the hybrid structure of organic polymers and CNTs, revealing
their feasibility in humidity and gas sensors [44,86].

3. Detection of Water Vapor on SDFSs

(Working Principles of Hygrometer)
The humidity sensor can be defined as an integrated electronic device that can detect

and measure the degree of water vapor status on a target SDFS and convert it into a response
analog signal. Thus far, humidity sensors are known as “hygrometers”. A hygrometer
is defined as an instrument to measure humidity. The simplest form of a hygrometer
is known as a “psychrometer.” It is composed of two thermometers, including dry and
wet bulbs, respectively. A wet-bulb is usually used to detect the temperature where the
evaporation induced by the wet bulb lowers the temperature. Therefore, the wet-bulb
thermometer usually measures lower temperatures than the dry-bulb thermometer. When
the air temperature is below freezing, the wet-bulb is covered with a thin isolating layer
of ice and subjected to warmer than the dry bulb. Thus, the relative humidity can be
estimated from the ambient temperature by the dry-bulb thermometer and the difference
in temperatures between the wet-bulb and dry-bulb thermometers. Nevertheless, relative
humidity can also be estimated from the psychrometric chart that correlated the wet and
dry-bulb temperatures. Recent research could introduce several types of hygrometers
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based on the working principles of indirect humidity monitoring via mechanical, electrical,
and gravimetric detection. Summarization of different types along with their working
principles is given below.

3.1. Mechanical Detection Way

Chilled-mirror condensation hygrometer represents the classical fundamentals of
the mechanical category used for humidity detection, as shown in Figure 2. Its working
mechanism depends on the mechano-optical detection of the dew condensation of a liquid
water droplet which is formed on the chilled mirror as a function of the entire environmen-
tal humidity considering the temperature of the mirror at the optical threshold and the
temperature of the surrounding air [87].
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Figure 2. Chilled mirror hygrometer’s working mechanism to detect dew point by cooling a reflective
condensation surface until water begins to condense [87].

3.2. Electrical Detection Way
3.2.1. Resistive

The resistive sensing mechanism is used widely to detect humidity. It depends mainly
on the ionic conductivity within the sensing layer located on the surface of the examined
sensor depending on the adsorbed water molecules based on the relative humidity level.
Considering the employed mechanism, either electrical response such as impedance change
or mechanical response such as mechanical deformation could be achieved as a function of
the detected humidity level [56].

Previous reports demonstrated that traditional resistive sensors’ response times mostly
range from 10 to 30 s for a 63% resistance change versus relative humidity level, which is
unable to meet the requirements of real-time and rapid detection [13]. Several works of
literature reported the use of different sensing materials, especially polymers, for humid-
ity detection. However, used polymers faced limitations due to their surface instability,
particularly at higher humidity levels. To overcome this, a crosslinked polymer is pre-
pared by free radical polymerization to improve stability. Moreover, pyridine salt units
have been introduced to improve stability of sensitivity as well. For instance, a rigid
sulfonated polybenzimidazole sensor (SPBI) showed linear response between 20% and
95% of relative humidity [88–91]. These attempts led to the development of numerous
resistive sensors with high resolution employing polymer electrolytes that possess defined
structures revealing better stability, hysteresis, and linear response against humidity levels.

To date, sensing layer development continued, and several reports have shown dra-
matic improvements. Recently, a 2D layer of Ti3C2Tx MXene was used for resistive humidity
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detection. The surface functional group analysis of Ti3C2Tx suggests that the ultra-fast
humidity response and high sensitivity result from the high coverage rate of the hydroxyl
group on the Ti3C2Tx surface. Condensation and volatilization of water vapor molecules in
accordion-like micro-structures and hierarchical nanostructures of Ti3C2Tx lead to changes
in surface electrostatic field, resulting in resistance changes of the sensor devices as shown
in Figure 3 [92].
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Figure 3. I (a) Schematic diagram of a humidity sensor based on layered Ti3C2Tx. (b) The current-
voltage characteristic of the resistive humidity sensor. The inset is the optical image of the Ti3C2Tx
humidity sensor device. (c) A typical response to 67% RH of the Ti3C2Tx humidity sensor. (d) Re-
sponse time (left) and recovery time (right) definition of the Ti3C2Tx humidity sensor. II Repeatability
of the Ti3C2Tx humidity sensor toward (a) 33%, (b) 67%, (c) 95% RH at room temperature. (d) Av-
erage normalized responses, average response times, and recovery times plotted versus relative
humidity [92].

3.2.2. Capacitive

To date, capacitive humidity sensors represent the largest market share due to their
advantages over other types such as ease of fabrication, very low power consumption,
high sensitivity, linear response, and above all, wide dynamic range [93]. They are mostly
fabricated by depositing a thin hygroscopic layer of sensitive material from the previously
mentioned categories beneath two chosen electrodes to form a capacitor-like platform.
Such a platform could take sandwich-like or interdigitated (IDE) comb-like structures. The
relative humidity detection mechanism using capacitive sensors depends on the change
in the dielectric constant of the deposited hygroscopic sensing layer as a function of the
exiting electric field between the two electrodes leading finally to generate change in
capacitance [54]. In principle, the adsorption mechanism of surface water molecules with
this category of humidity sensors could be elucidated as follows; water molecules interact
with the surface substrate to form a complete chemisorbed monolayer. This is followed
by additional physisorption of other water layers. Due to the weak bonding nature of
the topmost layers, free charge transport could be generated, revealing the nature of
dissociation and recombination of these surface ions. This leads to the generation of various
signal outputs expressed in capacitance-related forms.

Various polymeric and ceramic candidate materials could be examined for potential
use as the hygroscopic layer. However, several studies revealed that; polymeric materials
were widely used due to their stability enhancement, ease of fabrication, economic fabrica-
tion cost, and better ability to form composites with extraordinary characteristics [84,94–96].
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Recent reports demonstrated the use of multiple inter-digital transducer (IDT) elec-
trodes connected in series with electrodes fabricated with PEDOT: PSS, methyl red and
graphene oxide materials as multi-active sensing materials for the wide dynamic range
of humidity detection, as shown in Figure 4 [97]. Full-range detection of relative hu-
midity (0–100% RH) was examined, and the response and recovery times were 1 s and
3.5 s, respectively.
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Figure 4. I (a) Schematic sensor image, (b) single fabricated inter-digital electrode, (c) optical image
of the inter-digital electrode fingers, (d) stable wave shape of the ink-jet printer DMP-3000 print head,
(e) schematic cartoon of spin coating for the active materials, and (f) schematic image of the ink-jet
printer DMP-3000. II Impedance response of the sensors with (a) PEDOT: PSS, (b) methyl red, (c) GO
thin film, and (d) combination of the three active sensing layers in series [97].

Further, the development of capacitive humidity sensors using naphthalene diamide
derivatives (NDI) as a sensing layer was reported. Three different naphthalene diamide
derivatives bearing imide side chains of different hydrophilicity were fabricated on ceramic
substrates with gold interdigitated electrodes, as shown in Figure 5. They were examined
for humidity sensing based on their structural morphology and thermal behavior. The
response capacitance (Figure 5) was remarkably increased with the increase in humidity
levels in the dynamic range between 0–95%, indicating high sensitivity, good long-term
stability, excellent reproducibility, and low hysteresis than other reported capacitive sensors.
However, the performance of the reported sensors from a material viewpoint is still unclear
and needs more experimental investigations [98].
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Meanwhile, organic semiconductor metalloporphyrin (TDTBPPNi) was also reported
to fabricate a humidity sensing layer via a microwave-assisted synthesis pathway. Experi-
mental results revealed that; with the increase in %RH from 39 to 85%, the capacitance of
the fabricated sensor had been increased by 107.37, 110.00, and 57.83 times at operational
frequencies of 200 Hz, 1, and 10 kHz, respectively. However, the morphological structure
of the sensing thin film layer was with amorphous and rough globular surface nature [99].
This is expected to increase the sensor surface roughness altering its surface adhesion ability
which in turn affects the sensor’s sensing and recovery times [100].

3.3. Optical Detection Way

Several studies demonstrated that optical humidity sensors possess more advantages
than other sensor types. This could be attributed to their faster response time and their
stability against created or naturally existing electric or magnetic fields. Nevertheless, they
do not require any electrical contacts, which may induce components failure [101]. Early
reports demonstrated that optical humidity sensors depended mainly on fluorescence and
spectroscopic techniques. Their detection mechanism of humidity depended on the change
in the optical properties of the sensitive sensing material core, such as photoluminescence,
wavelength position, refractive index, and reflectance [102,103].

A promising fluorescent humidity sensor based on a swellable porous photonic struc-
ture was recently fabricated. It was used to investigate the correlation between the local
photon density of states and the changes that occurred due to ambient conditions. Thus,
creating a sensing platform that responds to relative humidity changes with well-defined,
predesigned photoluminescence (PL) spectrum [104]. Figure 6 elucidates a schematic
model of the fluorescent photonic humidity sensor composed of H3Sb3P2O14 nanosheets
as a molecular stimuli-responsive photonic resonator sandwiched between two molecular
layers of SiO2 and TiO2 nanoparticles. The resonator itself is composed of thin films of
dyed polystyrene nanospheres that were precisely deposited at the desired depth within 2D
antimony phosphate (H3Sb3P2O14) nanosheets. However, this developed sensor showed
limited applicability in the real detection of environmental humidity applications beyond
75% RH level.

In addition, a novel dew point detection solution based on the integrated photonics
platforms could be established. Considering the fundamentals of chilled-mirror hygrom-
eters, this device possessed higher accuracy, a smaller footprint, and a faster response.
Moreover, the cost-effective mass-productivity of photonic dew point sensor (DPS) en-
hances its market availability over electrical thin-film humidity sensors and chilled-mirror
hygrometers [105].

Continuous progress with optical sensors development led to another category named
whispering gallery mode (WGM) optical resonators humidity sensors [106]. The reaction
mechanism of this category depends on their ability to confine light via total internal reflec-
tion (TIR) at their outer surface, which leads to a strong enhancement in the light interaction
with the examined sensor’s material. Therefore, due to humidity absorption/detection, the
resonating signal change can be recognized according to the sensor’s size, geometry and/or
refractive index change [107,108]. Such criteria could be applied to the highly sensitive
chemical and physical sensors that lead to portable and compatible miniaturization. Several
types of WGM optical resonators have been reported based mainly on the existence of
hygroscopic hydrophilic polymeric materials as a sensing core. This hydrophilic polymer
undergoes swelling upon exposure to humidity [109]. Accordingly, the changes in refractive
index and diameter of the core hygroscopic polymer result in shifting the resonant peaks
with an expected high sensitivity per percent relative humidity (pm/% RH) [110,111].

In addition, several reports demonstrated the use of a polymeric WGM optical
resonator doped with a fluorescent dye, demonstrating better sensitivity of 6 pm/%
RH [112–114]. Some WGM sensors showed their potential applicability due to having
compact laser sources. However, poor luminescence remains a challenge for non-tapered
type resonators [115]. In addition, the humidity sensors have to uptake water molecules
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into the resonator medium, which often disrupts the sphere’s morphology or the constituent
polymer’s chemical integrity.
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Figure 6. (a) Schematic model of the fluorescent photonic humidity sensor. It shows a thin emitting
layer embedded in an optical cavity made of H3Sb3P2O14 nanosheets that are surrounded by two
dielectric mirrors fabricated with SiO2 and TiO2 nanoparticles. (b) Excitation (blue) and emission
spectra (red) of the dye molecules employed in the fluorescent sensor. Spatial and spectral distribution
of the electric field intensity of the (c) turn-off and (d) turn-on samples at 0% relative humidity. Plane-
wave illumination at normal incidence is assumed in the calculations. For the turn-on sample,
calculations consider that the thicknesses of the SiO2 and TiO2 layers are 80 and 82 nm, respectively,
and constant over the entire humidity range, and the optical cavity is 149 nm thick, the emitting
layer being positioned in the middle of the cavity. For the turn-off sample, calculations consider that
the thicknesses of the SiO2 and TiO2 layers are 65 and 105 nm, respectively, and the optical cavity is
260 nm thick, the emitting layer is located at a depth of one-quarter of the cavity width. Interfaces
between different layers in the multilayer are indicated with thin white lines. In contrast, the position
of the light-emitting layer is signaled with a white dashed line in each case [104].

Addressing these drawbacks required several modifications. Recent modifications
revealed that the fabricated WGM microresonators based on an AIEgen-appended hygro-
scopic polymer could be a candidate for humidity sensing. The sensitivity of the PAA-TPE
microsphere toward water vapor reaches 255 pm/% RH, which is considered among the
highest reported non-tapered optical humidity. The working principle is shown in Figure 7.
Results also revealed that the PAA-TPE microsphere maintained its humidity sensing ability
through multiple swelling and de-swelling cycles. Therefore, organic luminogens based
WGM water vapor sensors can be considered in the applications of miniaturized integrated
optical humidity sensing devices for real-time, highly sensitive, and reliable sensing [116].

3.4. Gravimetric Detection Way

Resonance gravimetric sensing category includes quartz crystal microbalance (QCM),
surface acoustic wave (SAW), film bulk acoustic resonator (FBAR), capacitive micro-
machined ultrasonic transducer (CMUT), and micro-cantilever based resonator humidity



Chemosensors 2022, 10, 112 13 of 25

sensors [117,118]. Among the common types of physical sensors used to detect humidity
are mass or gravimetric sensors, which detect changes in resonant frequency due to a mass
adhered to the sensor surface by water vapor. QCM based sensors are among the widely
used sensors for this purpose [119].
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Figure 7. I (a) A schematic illustration of the experiment setup of µ-PL measurement. (b) Microscopic
images of a PAA-TPE microsphere under illumination by a backlight (left) and laser excitation (right,
lex = 470 nm). II A schematic drawing of the humidity testing setup equipped under a homemade
µ-PL measurement system. III Microscopic images of a PAA-TPE microsphere taken before and after
5 cycles of hydration and dehydration cycles [116].

Unique criteria of mass-sensitive sensors could be attributed to their facile manufac-
turing and ease of operation consuming less power than other categories possessing better
stability and sensitivity. QCM is mainly composed of quartz substrates with gold or silver
electrodes deposited on both sides, and the sensor is mainly coated with ceramic film.
The change in frequency of quartz crystal is measured, and this change depends on the
adsorbed mass and films’ physical properties.

Humidity mass sensors are considered assuming the easiest detection mechanism
where the mass of adsorbed humid water vapor is detected and estimated. The use
of Quartz Crystal Microbalance (QCM) is considered the main feature for such mass
sensors where the resonating frequency change is recorded as a function of humidity
change. Materials used for QCM sensors consist of quartz as a substrate coated with a
sensing layer of gold, silver, or any other sensing metal oxide layer such as SnO2 [120],
Cu (OH)2 [121], TiO2 [122], graphene or carbon-based materials [123–129], polymers or
composite materials [130–132].

Recent research with these materials revealed that hygroscopic dielectric cellu-
lose and cellulose-based composites were intensively considered to sense humidity
due to their large specific surface area, excellent heat resistance, and diffused double-
layer structure [133,134]. Particularly, cellulose nanocrystals (CNCs) were used on a
wide scale due to having a rich surface full of hygroscopic groups [135,136]. In this
regard, a quartz crystal microbalance (QCM) sensor based on nitro-modified cellulose
nanocrystals (NCNCs) films was developed for rapid and sensitive humidity detection.
Results shown in Figure 8 demonstrated that; the humidity sensor with NCNCs load-
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ing of 2.67 µg (QCM-4) exhibited high sensitivity (25.6 Hz/% RH) and relatively small
response/recovery times (18 s/10 s) [137].
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4. Detection of Water Liquid on SDFSs

This detection category depends mainly on the existence of an optical pathway where
the gas sample passes through a metallic mirror surface that is cooled by a cooler. At a
certain point, the dew condensation begins to form on the mirror surface. The amount
of light reflected by the mirror diminishes, which is detected by the optical sensor. The
rate of cooling can be controlled by a temperature sensor located on the mirror. Once
an equilibrium is reached between the rate of evaporation and condensation, the mirror
temperature represents the dew point condensation. Despite having a wide temperature
range between −100 to +100 ◦C, it is quite expensive and requires highly skilled working
personnel. In addition, it requires a very clean measurement environment and a regular
high level of calibration and maintenance [138]. Such limitations could not enhance further
development of chilled mirrors hygrometers for more practical and Scientific use. Figure 1
elucidates the Chilled mirror hygrometers working principle where the condensed fine
water droplets are optically detected.

5. Detection of Water Vapor and Liquid on SDFSs

Our research could address the sequential detection of water molecules and water
droplets. We detected the initial stage of dew condensation for such purposes using
our newly developed galvanic array-based moisture sensor. As shown in Figure 9, the
galvanic response current detected using different array gaps was measured as a function
of controlled relative humidity. This enabled us to monitor the dew condensation event
clearly while evaluating the dew point with better accuracy.

In addition, the moisture sensor output could be detected before, during, and after the
dew condensation (as shown in Figures 9 and 10), which reflects the phase transition of
water from tiny molecular water vapor into the liquid water droplet [23].
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with quotation marks was indicated as nominal relative humidity, which was calculated using the
humidity inside the test chamber and temperature on the sensor surface [23].
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More recently and for the first time, we used electrochemical, gravimetric, and spec-
troscopic techniques to address the electrical response properties, mass, and nature of
stacked water molecules within the interface of the sensor surface under a systematic
RH controlled scheme investigating the effect of surface wettability. Figure 11 shows the
simultaneously detected current and mass change per unit area as a function of relative
humidity that represents the quantitative detection of water molecules before, during, and
after dew condensation.
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Our results demonstrated that as the number of stacked water molecules increased, the
response current and frequency change were also increased. This enabled us to establish a
clear quantitative estimation methodology reflecting the number of stacked water molecules
on the sensor surface. Moreover, using sum frequency generation spectroscopy enabled
us to reveal the nature of the interfacial water molecules based on the surface wettability
of the sensors used. These experimental findings could be used to provide a promising
evaluation methodology for the galvanic current arising due to stacked interfacial water
molecules at different levels of RH that represents the ability to detect water either in vapor
or liquid phases [139].

6. Recent Applications of Atmospheric Water Detection
6.1. Monitoring of Wound Healing

Current use of humidity sensors indicated that they are the cornerstones on which the
treatment conditions and protocols could be assigned and executed. Generally, clinicians
monitor the wound’s status by removing the dressing, which can disturb the healing
process. Wound healing is defined as an essential physiological process spontaneously
done by damaged tissues to repair themselves. Careful monitoring and adjusting the
wound’s humidity level could affect the recovery process. If the healing process is altered,
the wound suffers a risky pathologic inflammation and may become chronic and more
painful [140,141]. This requires bearing more treatment costs. [142,143].

The first reported in vitro wound moisture sensor was in 2007 [144]. It was composed
of two Ag/AgCl electrodes separated by silicon and enclosed within a commercial dressing.
The impedance signal output was recorded as a function of the ionic nature change of
the wound exudate. Thus, a correlation between the change in impedance and moisture
loss was established quantitatively using different fabric types, as shown in Figure 12.
This attempt opened the door for many others to enhance the detection of absorption
and retention properties of different fabrics [145–147]. Furthermore, numerous studies
addressed the development of resistive humidity sensors to detect wound recovery [148].
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Figure 12. Relationship between the percentage of liquid lost from the dressing and the impedance
measured between two silver wire electrodes embedded in the dressing using four different dressing
types: Versiva, Biatain, Tielle, and Tielle Plus [144].

Recently, a new textile sensor was developed based on a screen-printed conductive
polymer poly(3,4-ethylendioxythiophene): polystyrene sulfonate (PEDOT: PSS). This sensor
was integrated with an RFID chip that is in turn connected within the patch employing
real-time wireless monitoring of impedance change as a function of the change in the
wound’s moisture level, as shown in Figure 13 [149].
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6.2. Greenhouse Cultivation of Crops

Greenhouse technology can provide a suitable climate for sustainable growth and
cultivation of fruits and/or vegetables via an accurate control of temperature, humidity,
and light conditions within a defined space of land [150].
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As an example, tomatoes growth is likely to be done in relatively dry air. Previously, it
was observed that RH between 55–90% does not affect the photosynthesis process giving
better favorability to improve the pollen and fertilization of tomatoes between 60–70% RH.
However, higher than 90% RH can stop transpiring and may lead to turgor losses in plants
giving a chance to increase the pollen susceptibility to heat stress. Moreover, pests, diseases,
and fungal pathogens spread rapidly and infect plants in a highly humid greenhouse
environment. Some diseases may include black spot, powdery mildew, leaf-edge burn-in
poinsettia, and blossom-end rot of tomatoes [151,152].

Vapor Pressure Deficit (VPD) is considered the main driving force of water move-
ments in the plant vascular system. Thus, suitable tools and techniques are needed for its
careful monitoring. Previous reports examined the effects of VPD on the transpiration rate
and the plant’s growth process, as shown in Figure 14 [153–156]. Enhancement of VPD
regulation could improve the beneficial use of water, leading to biomass plant production
and humidity-controlled storage.
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when the Low VPD conditions were applied [156].

6.3. Climate Forecast

Weather forecasting employs the basic principles of meteorology to collect the neces-
sary information about temperature, humidity, and wind. It is considered an application of
science technology to predict the status of the atmosphere for a prolonged time at a certain
location. Therefore, humidity plays a key role in affecting the prediction of atmospheric
conditions such as rainfall which depends on the equilibrium state between atmosphere
and water vapor content. In other words, the prediction of rainfall depends mainly on the
water vapor content and consequently on the humidity levels. Prediction of humidity on
the earth’s surface could be measured using similar sensors and techniques as described
earlier in this review. These sensors are hung with a radiosonde in a helium balloon that is
allowed to float up through the atmosphere. Communication between the radiosonde with
satellites or GPS can be used to transmit and predict the amount of water vapor and the
relative humidity [157]. Moreover, real and accurate humidity detection at sea or ocean
sites plays a key role in predicting atmospheric disasters such as hurricanes. Using the
same detection principle, buoys of several types associated with proper humidity sensors
could be allocated at several sea stations and detect the wind speed and direction correlated
with the temperature and humidity levels. Thus, one can estimate the surface heat flux
corresponding to the sea surface [158].

7. Conclusions and Future Outlook

In summary, this review demonstrated the major categories of SDFSs sensing mech-
anisms, types, and perspective applications for imperceptible water in the atmosphere.
For each sensing category, a literature review was presented demonstrating representative
examples for the development strategy of SDFS material selection and the performance
of their dependent devices. It was concluded that atmospheric water sensors shared the
same understanding of fabrication strategy towards the proper development of core SDFS
sensing layer to enhance the sensor’s response. This response varies based on the principle,
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technique, and the designated future applicability. An overview of the core sensing materi-
als of SDFSs was classified particularly under organic, inorganic, and hybrid or composite
materials. Along with the exhibited sensing parameters such as sensitivity, response time,
hysteresis, and stability, it is expected that optimum sensors could be achieved. How-
ever, there still remain challenges to be addressed concerning sensors’ miniaturization,
circuit integration, contactless measurements, long shelf lifetime, and above all, enhanc-
ing the durability of the SDFSs core sensing materials. Future effective tackling of these
challenges will guarantee the achievement of the best humidity sensors for the world
needed applications.
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