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Abstract: In this work, organic–inorganic hybrids based on nanocrystalline indium oxide and ruthe-
nium (II) heteroleptic complexes were used as sensitive materials for room temperature light-activated
NO2 detection. In2O3 was obtained by chemical precipitation method and then annealed at three
different temperatures (T = 300, 500, 700 ◦C) in order to investigate the influence of the microstructure
of indium oxide on sensor characteristics of hybrid materials and on kinetics of the rise and fall of
photoconductivity. The results of the X-ray phase analysis demonstrated that the obtained materials
are single-phase with a cubic bixbyite structure. The Ru (II) heteroleptic complex, which was used as a
photosensitizer, made it possible to shift the optical sensitivity range of the hybrids to the low energy
region of the spectrum and to use a low-power LED (λmax = 470 nm) source for the photoactivation
process. The sensor properties were investigated toward NO2 at sub-ppm range at room temperature.
It was found that for pure oxides, the sensor signal correlates with a specific surface area, while
for hybrid materials, both the sensor signal and photoresponse increase with increasing the matrix
crystallinity. In this case, the main role is played by traps of nonequilibrium charge carriers, which
are structural defects in the matrix.

Keywords: nanocrystalline indium oxide; Ru(II) heteroleptic complex; organic–inorganic hybrid
materials; room temperature gas sensor; light activation; nitrogen dioxide; microstructure effect

1. Introduction

Since the early 2000s, organic–inorganic hybrid materials have become a rapidly
developing investigation objects and attract special attention within the framework of
fundamental research and industrial application in the field of gas sensors [1–4]. This is
due to the fact that such systems can have new or improved physicochemical functional
properties through a synergistic interaction between the constituent components in the
interface. In this regard, organic dyes and QD (quantum dots) as photosensitizers are
of particular interest as the receptor part of the system, which allow shifting the optical
sensitivity of wide-gap semiconductor oxides towards lower energies due to their high
extinction coefficient in the visible region of the spectrum [5–10]. The location of HOMO
and LUMO levels allows one to control the generation of photoexcited charge carriers
and their transfer to the semiconductor conduction band [11–16], while the composition
(central cation and ligands) and structure (chirality and steric effects) of the complex itself
can contribute to additional and specific interaction with gas phase molecules [17–19].
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However, there are pitfalls in the form of physical and chemical parameters of materi-
als, such as composition and microstructure that can either limit or facilitate their use as
gas sensors [20–24].

Previously, the authors of the works [25,26] already carried out a study of the influence
of the In2O3 microstructure on the NO2 detection. It was concluded that the dependence
of the sensor signal on the size of nanocrystals is nonmonotonical; it is connected with
the concentration and mobility of the electrons and was explained on the basis of the
potential barriers on the boundary of nanocrystals. However, the influence of the matrix
microstructure in hybrid systems, where the photosensitizer provides the transfer of charge
carriers, still remains unexplored.

The possibility of using the organic–inorganic hybrid materials based on nanocrys-
talline SnO2 or In2O3 and Ru(II) heteroleptic complexes for the efficient photoactivated
detection of nitrogen oxides (NO2 and NO) at room temperature was published in our
earlier works [8,9,27]. A recent study of a series of Ru(II) complexes based on 1H-imidazo
[4,5-f][1,10] phenanthroline derivatives (ImPh) demonstrated that the complex with the
bithiophene ligand demonstrates the most effective photosensitization effect [16]. At the
same time, the NO and NO2 gas sensor properties of hybrids based on In2O3 turned out to
be two orders of magnitude higher than that of SnO2, which may be due to a smaller band
gap and higher number of nonequilibrium charge carriers of the first one [8,9].

Based on the background experience, we have focused our attention in this work on
the study of the influence of the In2O3 microstructure on the NO2 detection in sub-ppm
range at room temperature by hybrid materials with the Ru(II) heteroleptic complex as
the photosensitizer. Particular consideration is paid to the photoelectrical properties of the
obtained materials.

2. Materials and Methods
2.1. Materials Synthesis
2.1.1. Synthesis of Nanocrystalline In2O3

The synthesis of nanocrystalline In2O3 was carried out by deposition of an aqueous
solution of indium (III) chloride with ammonia solution followed by heat treatment. A
solution of NH3·H2O (1 M) was added dropwise into a water solution of InCl3·4H2O
(3.5 M) with vigorous stirring until pH ~ 6 was reached. The synthesis was carried out at
room temperature. The following reaction took place:

2InCl3 + 6NH3·H2O + (x − 3)H2O→ In2O3·xH2O ↓ + 6NH4Cl (1)

The formed dense gel-like precipitate was separated by centrifugation, then it was
washed with deionized water, and with 0.01 M NH4NO3 solution after the beginning of
peptization until the chloride ions were removed. An opalescence absence was verified
by adding a AgNO3 solution (0.01 M). Next, the In2O3·xH2O gel was dried at 50 ◦C for
24 h. The resulting glassy mass was grounded to a powder state in an agate mortar and
annealed in air at three different temperatures (T = 300, 500 and 700 ◦C) for 24 h.

2.1.2. The Heteroleptic Ru(II) Complex as Photosensitizer

A detailed description of the synthesis method of heteroleptic Ru(II) complex is given
in Supplementary Materials. Table 1 shows the structural formula, the energies of HOMO
and LUMO and the label of the complex in this work.

2.1.3. Synthesis of Hybrid Materials

Organic–inorganic hybrid materials were obtained both in the form of powders for
the composition and optical characterization and in the form of thick films to study the
photoelectric and sensor properties. The sensitization of indium oxide in the form of
a powder was carried out by the impregnation method; thick films of pure oxides were
formed on microelectronic hotplates and then the solution of the heteroleptic Ru(II) complex
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was directly deposited dropwise on their surface. The concentration of the solution was
chosen so that the total content of [Ru] relative to [In] was 0.5 wt%. The microelectronic
hotplate consists of a metal base with leads, in the center of which a dielectric substrate
made of Al2O3 (0.9 × 0.9 × 0.25 mm) is fixed on with platinum wires (Figure 1). The
substrate is covered with Pt electrodes (0.18 mm in width) on the top side for resistance
measurements and a Pt heater (0.18 mm in width) on the back side.

Table 1. Structural formula, the energies of HOMO and LUMO and the label of the Ru(II)
heteroleptic complex.

Structure EHOMO, eV ELUMO, eV Label Name
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Tek, Newark, Delaware, USA) equipped with a BAC 151C microscope. Raman spectra 
were recorded in the range of 90–2000 cm−1 with 4 cm−1 resolution; a laser with a wave-
length of 532 nm was used as a radiation source. The thickness and morphology of the 
films were studied by scanning electron microscope (SEM) using a Carl Zeiss SUPRA 40 
FE-SEM instrument (Carl Zeiss AG, Oberkochen, Germany) with Inlens SE detector. The 
specific surface area (Ssurf) of nanocrystalline oxides was measured by low-temperature 
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available for adsorption was calculated using the BET model (Brunauer, Emmett, Teller). 
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Figure 1. Microelectronic hotplate (a) before and (b) after deposition of a thick semiconductor film
on the substrate and (c) after sensitization with a Ru(II) heteroleptic complex; SEM images of the
sensitive layer deposited on the substrate, (d) side view and (e) top view.

Figure 1d,e shows the side view and top view SEM images of the sensitive layer
deposited on the substrate, respectively. As the sensitive layer is deposited from a sus-
pension with α-terpineol, the surface dries unevenly; this explains why the surface has
a wavy shape with an average thickness of 110 ± 10 µm. The surface of the thick film
after annealing in the flow of dry air at T = 300 ◦C during 3 h is porous and consists of
agglomerated and sintered grains. The size of agglomerates is about 50–80 nm.
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2.2. Materials Characterization

The phase composition of the obtained In2O3 was investigated by X-ray diffraction
on a DRON-4-07 diffractometer (radiation source—CuKα with λ = 1.5418 Ǻ). The phase
composition was determined using the STOE WinXPOW software. The ICDD PDF database
was used to identify the peaks. The crystallite size (dXRD) was calculated using the Scherrer
equation. The crystal structure of the synthesized samples was also studied by Raman
spectroscopy. The studies were carried out on an i-Raman Plus spectrometer (BW Tek,
Newark, Delaware, USA) equipped with a BAC 151C microscope. Raman spectra were
recorded in the range of 90–2000 cm−1 with 4 cm−1 resolution; a laser with a wavelength
of 532 nm was used as a radiation source. The thickness and morphology of the films
were studied by scanning electron microscope (SEM) using a Carl Zeiss SUPRA 40 FE-
SEM instrument (Carl Zeiss AG, Oberkochen, Germany) with Inlens SE detector. The
specific surface area (Ssurf) of nanocrystalline oxides was measured by low-temperature
nitrogen adsorption using a Chemisorb 2750 instrument (Micromeritics). The surface area
available for adsorption was calculated using the BET model (Brunauer, Emmett, Teller).
Oxidation centers on the surface of the synthesized materials were investigated by the
thermo-programmed hydrogen reduction (TPR-H2) method, and also on a Chemisorb
2750 instrument (Micromeritics, Norcross, GA, USA) in a quartz reactor using a 10% H2/Ar
gas mixture (50 mL/min) under heating up to 900 ◦C with 10 K/min rate.

Fourier Transform Infrared (FTIR) spectroscopy measurements were performed on
a Spectrum One (Perkin Elmer Inc., Beaconsfield, UK) spectrometer in the transmission
mode in the wavenumber range of 400–4000 cm−1 with a step of 1 cm−1. Samples (about
5 mg) were ground with 50 mg of potassium bromide (Aldrich, for FTIR analysis) and
pressed into tablets 0.5 mm thick and 6 mm in diameter.

X-ray fluorescence analysis (XRF) was used to determine the elemental composition
of hybrid materials. The study was performed on a M1 Mistral spectrometer (Bruker)
with a tube voltage of 50 kV. The diameter of the analyzed region was 1.5 mm; the signal
accumulation time was 1 min. The absorption spectra of semiconductor oxides and hybrid
materials were obtained on a Perkin-Elmer Lambda-950 spectrophotometer in the diffuse
reflection mode in the range of 200–800 nm with a step of 1 nm. The measurements of
spectral dependence of the photoconductivity were studied in the range of 350–700 nm
and were performed by using a halogen lamp as a white light source and MDR-206
monochromator to obtain irradiation with narrow spectral band. The illumination time for
each wavelength was 1 min, and then followed by a stage of the material’s conductivity
recovery to the initial stationary value at dark conditions. The conductivity of the samples
was measured by a Keithley 6517A electrometer. The following equation was used to
calculate the photoconductivity:

∆σ

σ0
=

σ(λ)− σ0

σ0
(2)

where σ(λ)—is the conductivity of the thick film after 1 min of illumination with the
corresponding wavelength; σ0—is the conductivity of the thick film in stationary state in
dark conditions.

The gas sensor properties of hybrid materials were investigated by measuring the
electrical conductivity of thick films in situ in a flow cell under a controlled gas flow of
100 ± 0.1 mL/min. The gas mixture for measurements was prepared by dilution with dry
synthetic air using RRG-12 electronic mass-flow controllers. Sensor measurements were
carried out at room temperature under conditions of periodic illumination with a blue
light-emitting diode (LED, 8 mW/cm2, λmax = 470 nm, OTdiode, Shenzhen, China) located
at a distance of 4 cm above the sensors.
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3. Results and Discussion
3.1. Characteristics of Nanocrystalline In2O3

Figure 2a shows X-ray diffraction patterns of nanocrystalline In2O3 samples annealed
at temperatures of 300, 500 and 700 ◦C. According to the results of X-ray phase analysis and
ICDD PDF-2 database, the obtained indium oxide powders are single-phase corresponding
to a cubic bixbyite structure. It was found that increasing the annealing temperature leads to
an increase in crystallite size (dXRD) and a decrease in specific surface area (Ssurf) (Table 2).
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Figure 2. X-ray diffraction patterns (a) and Raman spectra (b) of nanocrystalline In2O3 samples.

Table 2. Phase composition, crystallite size (dXRD) and specific surface area (Ssurf) of nanocrystalline
In2O3 samples annealed at temperatures of 300, 500 and 700 ◦C.

Sample Phase Composition dXRD, nm Ssurf, m2/g

In2O3(300) 13 ± 1 72 ± 3
In2O3(500) In2O3 bixbyite 24 ± 2 6 ± 1
In2O3(700) 28 ± 2 3 ± 1

Figure 2b represents the Raman spectra of nanocrystalline In2O3 samples annealed at
temperatures of 300, 500 and 700 ◦C. The main characteristic Raman modes for the body-
centered cubic lattice of In2O3 were observed. The peak at 122.5 cm−1 is associated with the
vibrations of the In-O bond of the [InO6], and the peaks at 298.5 cm−1, 487.6 and 621.5 cm−1

are due to the deformation and stretching vibration of the [InO6] octahedrons, respectively.
The stretching vibrations of In-O-In bonds were corresponded at 357.2 cm−1 [28–30]. How-
ever, the In2O3(300) sample contains a broad band at 441.5 cm−1, which corresponds to
a superposition of surface modes. These vibration modes are characteristic of nanosized
powders and indicate a highly defective surface layer [31]. It should also be noted that with
an increase in the annealing temperature, the background of the Raman spectra descends
and becomes horizontal. The defect structure leads to luminescence of the sample under
the influence of a powerful radiation source, which leads to the rise in the baseline at higher
values of the Raman shift. This statement confirms the defect structure of the surface of the
samples annealed at lower temperatures.

The curves of the TPR-H2 method are represented in Figure 3a. Two regions of hy-
drogen consumption can be distinguished—low-temperature (up to 400 ◦C) and high-
temperature (above 400 ◦C). The absorption of hydrogen at low temperatures is due to the
reduction of surface OH groups and various forms of chemisorbed oxygen:

OH(ads) +
1
2

H2 = H2O (3)
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annealing temperatures.

In the high-temperature region, the H2 consumption is due to the reduction of In2O3
to metallic indium:

In2O3 + 3H2 → 2In + 3H2O (5)

The amount of consumed hydrogen was calculated from the peak area, and the
calibration was performed using a standard Ag2O sample. The calculation results of
the H2 consumption for two temperature ranges are presented in Table 3. In the low-
temperature region, the amount of absorbed hydrogen is 2 times higher in the case of
the most dispersed sample (In2O3(300)), which indicates a greater number of surface OH
groups and chemisorbed O2. A shift in the maximum H2 consumption peak and an increase
in its amount with an increase in the annealing temperature of the sample can be observed
in the high-temperature region. This is associated with an increase in the particle size and
crystallinity degree of In2O3, which increases the crystal lattice energy, and therefore its
destruction during bulk reduction requires large amounts of thermal energy. The total
amount of hydrogen consumed during the reduction of In2O3 ranges from n = 3.0 to 3.3 mol
of H2 per mol of In2O3, which is in good agreement with the theoretical value (n = 3 mol)
of the reduction of indium oxide to metal (reaction (5)).

Table 3. The results of the TPR-H2 experiments.

Sample H2 Consumption, mol H2 per 1 mol In2O3

Total 25–400 ◦C 400–900 ◦C Tmax, ◦C

In2O3(300) 3.0 ± 0.1 0.12 ± 0.01 2.88 ± 0.1 582
In2O3(500) 3.2 ± 0.1 0.05 ± 0.01 3.15 ± 0.1 589
In2O3(700) 3.3 ± 0.1 0.06 ± 0.01 3.24 ± 0.1 589

FTIR spectra of the samples are shown in Figure 3b. The spectra contain peaks
corresponding to the vibrations of bonds in the crystal lattice of In-O (400–600 cm−1),
adsorbed water (1628 cm−1) and hydroxyl groups (3000–3670 cm−1). With an increase in
the annealing temperature, a decrease in OH groups on the surface is observed, while the
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In2O3(300) sample contains the largest number of OH groups, which is in good agreement
with the TPR-H2 results.

The electrophysical properties of the In2O3(300), In2O3(500) and In2O3(700) samples
were investigated in the temperature range of 300–25 ◦C in a dry air flow. The temperature
dependence of the conductivity has a complicated form for all samples, which may be
associated with the chemisorption of oxygen from air. Therefore, in order to study the
electrophysical properties, the temperature dependence of the conductivity was plotted in
the Mott coordinates [32] (6):

G =
GM

T0.5 exp

[
−
(

TM

T

)0.25
]

(6)

where GM and TM are the Mott characteristic parameters.
This dependence is well linearized in the temperature range of 140–25 ◦C. The value of

TM was calculated from the slope of the straight line ln(GT0.5) = f(T−0.25) (Figure 4). Then,
using equations (7–9), the following characteristic parameters were calculated: N(EF), Rhop
and Whop, where N(EF) is the density of localized states near the Fermi level, Rhop is the
electron “jump” length, Whop is the “jump” energy electron, α is a quantity that describes
the spatial degree of localization of the wave function, and is equal to 1.24 nm−1 and kB is
the Boltzmann constant.

TM =
16α3

kBN(EF)
(7)

Rhop =

(
9

8παkBTN(EF)

)0.25
(8)

Whop =
3

4πR3
hopN(EF)
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Figure 4. Temperature dependence of conductivity of the In2O3(300), In2O3(500) and In2O3(700)
samples in Mott coordinates in the temperature range of 140–25 ◦C.

Table 4 shows the parameters characterizing the conductivity of the studied samples
according to the Mott model [32]. The Mott model assumes the activation character of
conductivity, which indicates the presence of barriers, and the height of the barrier is directly
proportional to the resistance of the material. In this case, the resistance value correlates
with the grain size in the range of In2O3(300) > In2O3(500) > In2O3(700). The calculated
values of the electron “jump” energy or activation energy (Whop) for the temperature range
of 25–140 ◦C also changes monotonically, and may be associated with an increase in the
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crystallite size, which leads both to a decrease in the height of intergrain barriers and to a
shift of the Fermi level to the edge of the conduction band.

Table 4. Parameters characterizing the conductivity of the studied samples according to the Mott
model for In2O3(300), In2O3(500) and In2O3(700) samples.

Sample TM × 109, K
N(EF) × 1017,
eV−1 ×cm−3

Rhop, nm Whop, eV

25 ◦C 140 ◦C 25 ◦C 140 ◦C

In2O3(300) 14.5 0.24 26.05 24.01 0.55 0.7

In2O3(500) 3.5 1.01 18.26 16.83 0.38 0.49

In2O3(700) 1.16 3.05 13.85 12.77 0.29 0.37

3.2. Characteristics of Hybrid Materials

The results of a quantitative analysis of the composition of hybrid materials obtained
by X-ray fluorescence analysis (XRF) are presented in Table 5. It can be observed from the
table that the ruthenium content in the hybrids is close to the theoretically specified value
[Ru]/([Ru] + [In]) = 0.5 wt.%. These values are averaged and taken from 4 different areas
of the sample.

Table 5. Elemental composition of hybrid materials.

Sample [Ru]/([Ru] + [In]), wt.% [In]/([Ru] + [In]), wt.%

In2O3(300)+RuTT 0.53 ± 0.01 99.47 ± 0.13

In2O3(500)+RuTT 0.58 ± 0.01 99.42 ± 0.11

In2O3(700)+RuTT 0.54 ± 0.01 99.46 ± 0.12

The optical absorption spectra (a,b) and normalized spectral dependences of the
photoconductivity (c,d) of the sensitized composites and pure In2O3 samples are shown
in Figure 5.
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Figure 5. Optical absorption spectra (a,b) and normalized spectral dependences of the photoconduc-
tivity (c,d) of pure semiconductors and hybrid materials.

As can be observed from the figures, unmodified In2O3-based samples are transparent
in the visible spectral range. All spectra exhibit an absorption band in the UV region,
which corresponds to a direct transition from the valence band to the conduction band,
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as the energy of this transition exceeds the semiconductor band gap. The curves of the
absorption spectra coincide and are overlapped on the curves of the spectral dependence of
the photoconductivity for all samples. However, some features can be noticed. In particular,
in Figure 5c, a shoulder is observed in the blue region of the spectrum, while its intensity
increases with a decrease in the size of indium oxide crystallites. This may be related to
excitation of the impurities within the bandgap, because the In2O3(300) sample has a more
defective structure.

An absorption edge is observed in the visible region of the spectrum in hybrid materi-
als due to the presence of organic complexes in their composition. Moreover, the maximum
of the absorption edge for In2O3(500)+RuTT and In2O3(700)+RuTT samples is shifted to
longer wavelengths by about 10 nm; for these composites, a bathochromic shift is observed.
This shift may be associated with the stabilization effect of the excited states of Ru(II)
heteroleptic complexes by the solid phase of the semiconductor oxide. The increase in
photoconductivity for hybrid materials in the visible range of the spectrum indicates the
transfer of photoexcited electrons from the Ru(II) heteroleptic complex to the conduction
band of the semiconductor oxide.

The photoconductivity of nanocrystalline In2O3 and hybrid materials was studied
under constant illumination with blue LED (λmax = 470 nm). The curves of changes in
the conductivity of the studied samples under illumination are shown in Figure 6. When
the light is turned on, the electrical conductivity of materials increases; turning off the
LED leads to relaxation of the conductivity. The effect of the annealing temperature of
In2O3 on the behavior of photoconductivity under the influence of blue LED radiation is
nonmonotonic. The maximum value of the photoresponse, calculated as the ratio of the
conductivity under illumination to the conductivity under dark conditions, was achieved
by the In2O3(500) sample. In this case, the change in conductivity can be associated with
the presence of acceptor levels in the band gap of the semiconductor, as the value of the
quantum energy corresponding to the emission of a blue LED is less than the band gap of
indium oxide.
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Figure 6. Change in the conductivity of pure In2O3 with different grain sizes (a) and hybrid materials
(b) under dark and irradiation conditions.

As can be observed, the difference in photoresponse between the hybrid material and
the corresponding matrix increases with the increasing annealing temperature (Figure 7).
The In2O3 annealed at 300 ◦C has the largest number of structural defects that can act as
charge carrier traps. An increase in the annealing temperature leads to ordering of the
system and structural perfection, leading to a decrease in the concentration of traps.
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Figure 7. Photoresponse of synthesized samples.

3.3. Investigation of the Gas Sensor Properties of Hybrid Materials in Interaction with Nitrogen
Dioxide in Dry Air

The illumination of the sensor was carried out in a pulsed mode with periods of 2 min
by switching on and off the LED, as a result of which the change in the resistance of the
sensor with time also acquires a periodic character and is an alternation of the curves of the
decay and rise of the photoconductivity. The repeated cycle of turning on and off the light
leads to the change in the resistance of the sensor in each of the subsequent cycles close
to the previous one. In this steady state, the minimum resistance Rlight is achieved during
the illumination of the sensor and the maximum resistance Rdark is achieved in the dark
conditions. The ratio (10) varies with the composition of the atmosphere and has been used
as a “sensor signal” for this measurement technique.

S =
Rdark(gas)
Rdark(air)

(10)

Sph =
Rdark
Rlight

(11)

Figure 8 shows the change in the resistance of sensors based on pure oxides and hybrid
materials under periodic blue LED illumination in the presence of various concentrations
of NO2 (0.1–0.25–0.5–1.0 ppm). As can be observed, the sensors show a periodic change
in resistance under the influence of pulsed illumination, both in air and in the presence of
NO2. On the logarithmic scale of resistance, it can be observed that with an increase in the
concentration of NO2, the ratio of the photoresponse (11) increases for all sensors sensitized
with Ru(II) heteroleptic complex. Moreover, with an increase in the concentration of NO2,
the average resistance of the sensors increases. The sensor resistances at the same NO2
concentrations, obtained both with an increase and a decrease in the detected gas in air, are
very close, which indicates a good ability of these sensors to operate reversibly.
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Figure 8. Change in resistance of the pure oxides and hybrid materials under periodic illumination
with blue LED in the presence of various NO2 concentrations for (a) In2O3(300) based, (b) In2O3(500)
based, (c) In2O3(700) based samples.

Table 6 represents the average values of the sensor resistances under dark conditions
and constant light illumination in dry air. The resistances were measured during 1 h for each
step, in order to obtain a relatively stable state. The first observation is that the resistance of
all sensors under the LED illumination is much less, which is due to the photodesorption of
oxygen from the surface that was adsorbed in the air flow in dark conditions. It can also be
noticed that the higher the annealing temperature of the sample (resulting in larger In2O3
grain size), the lower the baseline resistance during measurements. This can be associated
with the height of potential barriers at the grain boundary: the smaller the crystallite size,
the higher the barrier.

Table 6. Baseline resistance in dark conditions and under LED illumination in dry air at room temperature.

Sample R (Dark), Ohm R (Light), Ohm

In2O3 (300) 7.6 × 103 103

In2O3 (500) 2.6 × 103 4.6 × 102

In2O3 (700) 7.2 × 102 4.0 × 102

In2O3 (300) + RuTT 1.6 × 106 6.5 × 105

In2O3 (500) + RuTT 5.3 × 105 9.4 × 104

In2O3 (700) + RuTT 4.2 × 105 8.6 × 104

In our previous works, it was demonstrated that the energy of the blue LED
(λmax = 470 nm) excitation is equal to the absorption band of the Ru(II) heteroleptic com-
plex in the visible range of the spectrum [8,9]. During light-activation, the electron-hole
pairs are generated in it and then electrons can be transferred to the In2O3 conduction
band facilitating to increase conductivity. NO2 being a stronger electron acceptor than
O2, can attract the electrons from the conduction band of the semiconductor:

NO2(gas) + e− ↔ NO−2(ads) (12)

NO2(gas) + O−2(ads) ↔ NO−2(ads) + O2(gas) (13)
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On the other hand, the chemisorbed particles (both NO−2(ads) and O−2(ads)) can be con-
verted into physically sorbed particles by interaction with photogenerated holes:

NO−2(ads) + h+ ↔ NO2(gas) (14)

The values of the sensor signal were calculated using formula (10) and the photoresponse—
using formula (11). The concentration dependences of the sensor signal and photoresponse of
semiconductor oxides and hybrids are shown in Figure 9.
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In2O3(700) samples and hybrid materials based on them on the concentration of NO2.

The obtained data show that the introduction of a photosensitizer into nanocrystalline
oxides, In2O3, leads to an increase in sensor signal and photoresponse by 2–3 orders. For
pure oxides, the sensor signal correlates with a specific surface area and is inversed with
crystallite size. For hybrid materials, both the sensor signal and photoresponse increase
with increasing matrix crystallinity. In this case, the main role is played by traps of
nonequilibrium charge carriers, which are structural defects in the matrix. An increase
in the annealing temperature decreases their concentration, which makes it possible to
accelerate the kinetics of photoconductivity.

On the one hand, nanocrystalline In2O3 has a significant advantage over the sample
with a large crystallite size, because nanosized crystalline grains have a large specific
surface area, which leads to a more intense interaction of the semiconductor with the gas
phase and, as a result, to an increase in the sensor signal. This was observed for pure oxides
in NO2 detection. However, a consequence of a decrease in nanocrystals is an increase in
the height of potential barriers at the grain boundary, which in turn can lead to a decrease in
the mobility of free electrons and the probability of their tunneling [25,26]. The consequence
of this was an increase in resistance with a decrease in the size of crystallites (Figure 8 and
Table 6). The obtained result corresponds to the calculated values of the activation energy
(Whop) for the samples at room temperature: In2O3(300) (0.55 eV) > In2O3(500) (0.38 eV) >
In2O3(700) (0.29 eV). On the other hand, the crystal structure of nanosized materials is more
defective, and that has been proven above using various characterization methods. Acting
as traps, these defects can reduce the number of nonequilibrium charge carriers and, as a
result, increase the time of relaxation and recovery to a steady state of resistance in dark
conditions compared to the photoresponse time. Moreover, the photogenerated electrons
from the heterocyclic Ru(II) complex can also be trapped by this type of defect.

The humidity effect was studied for the samples based on In2O3 annealed at 300 and
700 ◦C. Figure 10 shows the dependence of the sensor signal on the NO2 concentration at
different air humidity (relative humidity at 25 ◦C RH = 25, 45, 65%).
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Figure 10. Dependence of the sensor signal of In2O3(300), In2O3(700) samples and hybrid materials
based on them on the NO2 concentration at different air humidity (relative humidity at 25 ◦C
RH = 25, 45, 65%).

As can be noticed, a monotonous increase in sensor signal is observed with increasing
humidity for pure oxides. It was demonstrated that in humid atmosphere the conductivity
of the n-type metal oxides increases, as dissociative adsorption of H2O molecules or
replacement of the chemisorbed oxygen ions can lead to release of the additional electrons
into the conduction band [21,27]. The increase in the concentration of the electrons can
stimulate the adsorption of the NO2 molecules [6]. Sample In2O3(300) has the largest
specific surface area and, consequently, more adsorption sites; therefore, this effect is more
significant for it compared to sample In2O3(700).

The hybrid materials have specific interactions with NO2 at the humid atmosphere.
For the NO2 concentration below 0.25 ppm, the sensor signal increases with increasing
relative humidity because of additional electrons released by the interaction with water
vapor. However, for higher NO2 concentrations, the change in sensor signal in humid
atmosphere is negligible comparing with the sensor signal in dry air. In this case, vacant
surface active sites play vital roles as, due to their limited amount, the surface is saturated
with adsorbed water and the proportion of “water electrons” becomes limited. Moreover,
certain sites are already occupied by molecules of the Ru(II) heteroleptic complex in hybrid
samples. Therefore, water and nitrogen dioxide molecules can compete for the same
remaining adsorption sites. As the In2O3(700) sample has the smallest specific surface area,
a very limited number of water molecules will be able to adsorb onto the free sites. This is
additionally confirmed by the fact that with an increase in relative humidity up to 65%, the
sensor signal begins to decrease and, compared to the sample In2O3(300), the sensor signal
in a humid atmosphere is less.

Table 7 illustrates a comparative analysis of materials used for the detection of NO2
gas by photoactivation. Using illumination at room temperature instead of heating for
activation of physical and chemical processes on the surface of the sensitive layer will
significantly reduce the power consumption of sensors in the case of their practical applica-
tion. An analysis of the literature data demonstrated that UV sources are mainly used for
photoactivated gas sensors. The use of low-power LEDs with radiation in the visible region
of the spectrum, unlike UV sources, will further reduce energy consumption and allows
one to embed such sensors into compact electronic devices. The periodic illumination with
a duty light cycle of 50% used in this work will further reduce the power consumption by
half. The highest sensor signal is established for CdSe QD@In2O3 composite material [5]
and here the authors also used a periodic illumination approach. However, the specific
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power was higher (20 mW/cm2 vs. 8 mW/cm2) and the response differs by one order
(106 vs. 1.75× 105). Hereby, the hybrid materials based on nanocrystalline In2O3 and Ru(II)
heteroleptic complex have good prospects, also like the CdSe QD@In2O3 composites, for
further research and applications as low power consumption gas sensors.

Table 7. Comparison of the light-activated (with LED) NO2 gas sensor performances at room
temperature for different materials.

Material Wavelength, nm Incident Irradiance,
mW/cm2

NO2 Concentration,
ppm Sensor Signal (a), % Ref.

Mesoporous In2O3 400 - 5.0 900 [33]

In2O3 385 1.0 8.0 17,900 [34]

WO3 590 340 0.16 820 [35]

Au/ZnO 365 1.2 5.0 455 [36]

Al/TiO2/Al2O3/p-Si 254 - 20 11.5 [37]

ZnS-core/ZnO-shell
nanowires 254 1.2 1.0 339 [38]

Bi2O3-core/ZnO-shell
nanobelt 254 1.2 1.0 227 [39]

N-719 dye/ZnO hybrid 480 370 1.25 143 [40]

CuO/ZnS nanowire 365 2.2 5.0 955 [41]

CdSe QD@In2O3 535 20 1.6 106 [5]

CdSe QD@ZnO 535 20 1.6 3000 [5,42]

ZnO/In2O3 composite 365 25 5 221 [43]

Au/MoS2 365 - 2.5 30 [44]

ZnO 455 5 0.025 20 [45]

WS2-decorated rGO 430 0.66 1.0 21 [46]

ZnO/(ZnSe(shell)
@CdS(core)) composite 535 20 2.0 6900 [6]

WO3 365 8 5.0 11,300 [47]

Perylenediimide-
sensitized

SnO2

400–700 - 0.5 12,900 [48]

Polypeptide-assisted ZnO
nanorods 365 - 10.0 400 [49]

Au-ZnO nanorods 495 50 1.0 109 [50]

Ag- ZnO heterostructure 470 75 1.0 150 [51]

MoS2/ZnO nanohybrid 365 0.3 0.5 2310 [52]

ZnO/CsPbBr3 NCs 470 8.0 2.0 30,000 [7]

In2O3–ZnO nanotubes 365 1.95 0.5 3170 [53]

In2O3/Ru(II) heteroleptic
complex 470 8.0 1.0 1.75 × 105 This work

(a) The sensor signals were recalculated as S = R(NO2)−R(air)
R(air) × 100%.

4. Conclusions

Synthesized organic–inorganic hybrid materials based on the nanocrystalline In2O3
and Ru(II) heteroleptic complex demonstrated high sensitivity in NO2 (0.1–1.0 ppm) de-
tecting at room temperature under periodic illumination with blue light (λmax = 470 nm).
Surface modification of In2O3 with the heteroleptic complex leads to the growth of pho-
tosensitivity accompanied by the reproducible change in the photoresponse depending
on the NO2 concentration. For pure oxides, the sensor signal correlates with the specific
surface area, while for hybrid materials, both the sensor signal and photoresponse increase
with increasing the matrix crystallinity; the In2O3(700)+RuTT sample demonstrated the
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highest values of response. In this case, the main role is played by traps of nonequilibrium
charge carriers, which are structural defects in the matrix. An increase in the annealing
temperature decreases their concentration, which makes it possible to accelerate the kinetics
of photoconductivity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/chemosensors10040135/s1; Scheme 1. Synthesis of Ru (II) complex.
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