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Abstract: Carbon dots (CDs) are a new class of carbon-based luminescence materials with fascinating
properties. They have been given great expectations on superseding traditional semiconductor
quantum dots due to their good dispersity and stability, relatively low toxicity, superior resistance
to photobleaching, and excellent biocompatibility. The diversified luminescence properties of CDs
are largely due to the synthetic strategies and precursors. In view of those described above, this
study has explored the possibility to establish a facile one-step hydrothermal method for the one-pot
synthesis of folic acid-modified cerium-doped CDs (Ce-CDs-FA), which could be further utilized as a
sensitive fluorescent nanoprobe for biosensing. This investigation demonstrates that the Ce-CDs-FA
nanocomposites have nice biocompatibility and bright fluorescent properties, which can be readily
utilized to detect cancer cells through recognizing overexpressing folate receptors by virtue of folic
acid. Meanwhile, it is noted that the Fe3+ ion can actualize a specific and hypersensitive quenching
effect for these Ce-CDs-FA nanocomposites, which can be further explored for special ion recognition,
including iron ions. It raises the possibility that the as-prepared Ce-CDs-FA nanocomposites could be
extended as a dual fluorescence sensor for targeted cell imaging and Fe3+ ion detection.

Keywords: carbon dots; cerium; targeted multicolored imaging; fluorescence sensor; Fe3+ ion detection

1. Introduction

Carbon dots (CDs) are a new type of luminescent material and a new member of
carbon nanostructures with unique structural and photophysical properties, which were
accidentally discovered in 2004 [1,2]. They have similar photoluminescence (PL) proper-
ties to semiconductor quantum dots as well as low toxicity with organic dye molecules.
Therefore, tremendous attention has been given to sundry CDs as promising upgrading
tools for exploitation in bioimaging and sensor fields to supersede semiconductor quantum
dots [3]. Generally, CDs can be readily synthesized by two synthetic categories, “top-down”
and “bottom-up” approaches, and hydrothermal treatment is one of the most effective and
popular methods to prepare CDs [4,5]. A variability of precursor materials and procedures
can be utilized to produce CDs by “bottom-up” synthetic routes, which can lead to the
distinctive properties of various CDs [6,7]. Thus, the structure and function of CDs could
be readily regulated by synthesis and post-modificatory processing. Nevertheless, there are
still some controversies about the PL mechanism of CDs, which have become the focus of
extensive investigations. Recently, Yang′s group have summarized the theoretical structure
models of CDs [8] and divided CDs into three categories: graphene quantum dots (GQDs),
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carbon quantum dots (CQDs), and carbonized polymer dots (CPDs), depending on the core
structures and surface states [1,8]. According to the structure model theory, the fluorescence
characteristics of CDs are mainly caused by hybridization and synergy effects between the
carbon core and surface chemical groups [8,9].

CDs represent an emerging subset of promising nanomaterials for various possible
applications. More recently, much attention has been focused on the extensive applications
of some CDs in bioimaging [10–13], sensing and detection [14–22], phototherapy [23–25],
drug delivery [26–28], light-emitting diodes (LEDs) [29–31], and catalysis [32–34], etc.,
due to their excellent biocompatibility, tunable emission wavelength, and high stability.
Owing to the characteristics of low cost, simple, and high efficiency, CD-based sensors
have essential roles in metal ion detection and biomolecule sensing by quenching or
enhancing the effect on the CDs’ fluorescence, which is the most commonly studied in
terms of CD research [35]. These mechanisms are reported as static quenching, dynamic
quenching, photoinduced electron transfer (PET), energy transfer (ET), and the inner filter
effect (IFE) [35,36]. The efficient sensing and detection of ferric ion have a great importance
for health risk assessment. Ferric ions have been the most commonly detected ions in
the literature by using quantum dots (QDs) as fluorescent probes due to the presence of
the amino, carboxyl, and hydroxyl functional groups on the surface [35,37]. Zulfajri et al.
synthesized CDs by a green precursor Volvariella volvacea and used it as a fluorescent sensor
to detect Fe3+ and Pb2+ ions in water samples with good spike recoveries [4]. Fruit peels
can be turned into CDs via a hydrothermal-carbonization route and utilized for detection
of ferric ion in an aqueous medium by fluorescent quenching [38].

Surface passivation and heteroatom doping are critical factors to efficiently tune the
intrinsic PL properties of CDs [5,39]. Most obtained CDs have a relatively low emission
efficiency compared to the conventional semiconductor quantum dots [39]. The doping of
the heteroatom can introduce holes or electrons into the CDs and create disorders within the
carbon backbone by the formation of conjugated carbon clusters, which distinctly improve
the physicochemical features, PL and chemical activity [3,35]. The quantum yield and
PL properties of the heteroatom-doped CDs are closely related to the electronegativity
values of the heteroatoms [5,40]. Doping with high electronegative atoms usually cause
blue-shifted PL emission and low electronegative atoms have the reverse effect [39]. The
CDs with heteroatoms can be acquired by undergoing dehydration and carbonization reac-
tions using heteroatom substituted organic molecules as precursors. The passivation and
functionalization through surface chemistry with heteroatom-contained molecules are also
common methods to obtain heteroatom-doped CDs. Although both metals and non-metal
heteroatoms have been introduced into the carbon skeleton matrices and chemical struc-
tures, non-metal-based doping is the most adopted strategy due to the facile and efficient
doping process [41]. To date, various non-metal atoms, such as nitrogen, phosphorus,
sulfur, boron, selenium, tellurium, silicon, and halogens (F/Cl/Br/I), have been reported to
effectively dope into CDs and widely investigated for applications [42,43]. N, P, and S can
increase the electron concentration of CDs while B and Si can generate a large number of
active sites. Se-doped CDs can protect the cells from excessive ROS and F-doped CDs can
initiate magnetism [44,45]. Te-doped CDs can specifically trace superoxide anion in vivo
and I-doped CDs give a strong X-ray attenuation in CT diagnosis imaging [46,47].

The metallic and transition metallic dopants can chelate to the functional groups
and modulate the band structures in the carbonization and dehydration processes of pre-
cursors [48]. Several metal atoms, such as Cu, Mg, Zn, Gd, Cr, Co, Mn, Ge, etc. are
employed to create metal atom-doped CDs [41]. In addition, some research efforts have
recently studied the effect of rare earth element doping for CDs [49–51]. Doping with
Tb3+ and Eu3+ can improve the PL quantum yield of CDs by causing the energy trans-
fer from CDs to the rare-earth metal ions [52]. The substitution of carbon atoms with
cerium can energize a variety of biomedicine functions of CDs, such as mimetic phos-
phatases activity [53], antibacterial activity [54], and radical scavenging activity [55], for the
degradation of organophosphorus pesticide, accelerating wound healing and enhancing
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antioxidants, respectively. The doping of Mn(II) and Gd(III) can render magnetic properties
to CDs for an MRI modality [56,57]. Li et al. synthesized chromium(III)-doped carbon dots
(Cr-CDs) by a hydrothermal approach [58]. Tris(2, 4-pentanedionato) chromium(III) and
polyethyleneimine were used as precursors. This Cr-CDs have low cytotoxicity with a 20%
quantum yield, and excitation-independent emissions. Cr-CDs can be used as a fluores-
cence probe for insecticide metabolite p-nitrophenol (p-NP) in human urine. Subsequently,
they exploited manganese(III) acetylacetonate (Mn(C5H7O2)3) as the single precursor and
achieved manganese oxide-doped CDs (MnOx-CDs) [59]. The multifunctional MnOx-CDs
can be used as a sensitive thermometer in living cells, restrain the migration of HepG2
cancer cells for liver cancer adjuvant treatment and detect Fe3+ and biothiols with high
reliability and accuracy as fluorescence probes.

In the present investigation, the folic acid-modified cerium-doped CDs (Ce-CDs-
FA) nanocomposites were explored and fabricated by a facile one-step hydrothermal
synthetic route in which polyvinylpyrrolidone (PVP-K30), cerium acetate (Ce(Ac)3), and
folic acid (FA) were mixed and heated to 160 ◦C to induce carbonization. UV-Vis absorption
spectroscopy, PL spectroscopy, transmission electron microscopy (TEM), dynamic light
scattering (DLS) measurement, X-ray diffraction (XRD) analysis, Fourier transform infrared
(FT-IR) spectrum, and X-ray photoelectron spectroscopic (XPS) analyses were conducted
to characterize the formation and properties of Ce-CDs-FA nanocomposites. The use of
folic acid (FA) molecules as precursors could render the nano Ce-CDs-FA as a potential
targeted imaging agent for specific bio-recognition and selectively staining of cancer cells
expressing folate receptors on cell surfaces. Furthermore, the luminescence of Ce-CDs-FA
nanocomposites can be selectively quenched by the Fe3+ ion, which makes it possible for
the as-prepared Ce-CDs-FA to be applied as a dual fluorescence sensor for cancer cell
recognition and Fe3+ ion detection.

2. Experimental
2.1. Materials and Reagents

The polyvinylpyrrolidone (PVP-K30) was obtained from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). FA was purchased from Sigma-Aldrich Co., Ltd. (Shanghai,
China). Ce(Ac)3 was produced by Nanjing Chemlin Chemical Industry Co., Ltd. (Nanjing,
China). Dulbecco′s Modified Eagle Medium (DMEM) was acquired from Thermo Fisher
Scientific (China) Co., Ltd. (Shanghai, China). The fetal bovine serum (FBS) was supplied
by Hyclone Co., Ltd. (Logan, UT, USA). The trypsin and penicillin–streptomycin solutions
were bought from Thermo Fisher Scientific (China) Co., Ltd. (Shanghai, China). The Cell
Counting Kit-8 (CCK-8) was purchased from Beijing Solarbio Science & Technology Co.,
Ltd. (Beijing, China). All metal ions, in the form of nitrate or chloride salts, were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China), and were dissolved in
ultrapure water to prepare the stock solutions (100 mM). Ultrapure water (18.2 MΩ·cm,
Millipore Simplicity, USA) was used throughout the experiment.

2.2. Characterization

The morphology of the as-prepared Ce-CDs-FA nanocomposites was characterized
by a JEM-2100F transmission electron microscope (JEOL Co., Ltd., Akishima, Japan). The
particle size distribution of Ce-CDs-FA nanocomposites was measured by the DLS on a
Zetasizer Nano ZS90 (Malvern Co., Ltd., Malvern, UK). The UV-vis absorption spectra were
obtained on an Evolution 260 spectrophotometer (Thermo Scientific Co., Ltd. Waltham,
MA, USA). The fluorescence spectra were recorded with a Shimadzu RF-5301 PC spec-
trophotometer (Shimadzu Co., Ltd., Kyoto, Japan). The FT-IR spectra were carried out on a
Nicolet iS50 FT-IR spectrophotometer (Thermo Scientific Co., Ltd., Waltham, MA, USA).
The XRD measurement was performed on a SmartLab-3 KW X-ray diffractometer (Rigaku
Co., Ltd., Tokyo, Japan). XPS was recorded with an Ulvac Phi Quantera II scanning XPS
microscope (ULVAC Co., Ltd. Chigasaki, Japan). The Fe3+ concentrations of blood samples
were measured by an Agilent 7700 Series inductively coupled plasma mass spectrometry



Chemosensors 2022, 10, 219 4 of 13

(ICP-MS, Agilent Technologies Inc., Santa Clara, CA, USA). The in vitro bioimaging was
performed by a Nikon ECLIPSE Ti2-C2 confocal laser scanning microscope (CLSM) (Nikon
Co., Ltd., Tokyo, Japan).

2.3. Preparation of Ce-CDs-FA Nanocomposites

Initially, 0.15 g PVP-K30, 0.1 g FA, and 0.05 g Ce(Ac)3 were dissolved in 15 mL
ultrapure water with ultrasonication for 10 min. Then the solution was poured into a 20 mL
Teflon-lined stainless-steel reactor and treated at 160 ◦C for 24 h. After that, the solution was
cooled to room temperature and centrifuged at 8000 rpm for 10 min to remove impurities
and large particles. The supernatant was collected and kept in the refrigerator at 4 ◦C
as the stock solution for further study. The final FA-modified cerium-doped carbon-dots
(Ce-CDs-FA) powder was obtained by drying under vacuum at 60 ◦C or lyophilized in a
freeze-dryer. For comparison, the nano Ce-CDs were synthesized by the same procedure
without FA.

2.4. Cytotoxicity Assay

The cytotoxicity assay of the Ce-CDs-FA nanocomposites was performed by using the
CCK-8 on the L02 and cancer cell lines. Generally, L02 cells or cancers cells were seeded
into a 96-well plate at a density of 0.8 × 104–1.0 × 104 cells per well and incubated at
37 ◦C with 5% CO2 in a humidified atmosphere. The DMEM was supplemented with
10% FBS, 100 µg/mL streptomycin, and 100 U/mL penicillin. The medium was changed
every other day until 80% confluence had been reached. Then different concentrations
of Ce-CDs-FA nanocomposites were added in the wells. After 24 h incubation, 10 µL
CCK-8 solution was added to each well and removed 1–4 h later. Then the absorbance of
each individual well was measured by an automatic enzyme linked immunosorbent assay
(ELISA) analyzer at 450 nm. The cell viabilities were obtained by a simple calculation with
a control group (100%).

2.5. Cellular Bioimaging

The targeted fluorescence bioimaging performance of Ce-CDs-FA nanocomposites
was evaluated in vitro on the L02 and Hela cell lines by using the CLSM. The Ce-CDs-FA
nanocomposites were dissolved in DMEM at a final concentration of 250 µg/mL and several
incubated with the two cell lines for 24 h. The unmodified Ce-CDs were simultaneously
incubated and implemented on CLSM as control group. The blank group without any
treatment was conducted in parallel. After treatment, the cells were rinsed twice with
PBS and changed into fresh medium to remove the non-internalized nanoparticles before
fluorescence bioimaging to evaluate the in vitro targeted imaging validity.

2.6. Detection of Fe3+ Ion

Different metal ions of K+, Na+, Zn2+, Ni2+, Mg2+, Al3+, Ca2+, Ba2+, Co2+, Pb2+, Cr3+,
Cu2+, Fe2+, Fe3+, Mn2+, Cd2+, Hg2+ and Ce3+ were offered for the detection. The Ce-CDs-FA
stock solution was diluted up to 50 µg/mL and appraised as a metal ion sensor through
titration. In short, the highly dilute solution of Ce-CDs-FA nanocomposites was added
into a quartz photometric cuvette and the fluorescence emission spectra were acquired
as control. The PL intensity of the control was noted as F0. A certain volume (20 µL) of
metal ion solution (10 mm) was dropped into the Ce-CDs-FA solution and incubated for
1 min. The PL intensity in the presence of metal ions was noted as F. The PL intensity ratios
(F/F0) of Ce-CDs-FA solution were calculated. Multiple dropping proceeded once there
was a significant quenching effect. All the experimental procedures were carried out under
the same conditions. The relationship of different concentrations of metal ions and the PL
intensity of the relevant Ce-CDs-FA was explored by using linear line fitting.
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3. Results and Discussion
3.1. Characterization

The optical properties of Ce-CDs-FA nanocomposites were characterized by UV-Vis
spectra and fluorescence spectra, as shown in Figure 1A. The characterization of a relevant
UV-Vis absorption peak around 290 nm was observed, while at 350 nm excitation the
fluorescence emission of the Ce-CDs-FA nanocomposites covered almost the entire visible
light range (400~650 nm). High-resolution transmission electron microscopy (HRTEM) was
performed to confirm the formation of Ce-CDs-FA nanocomposites. Figure 1B shows the
TEM and HRTEM images of the as-prepared Ce-CDs-FA, which demonstrates a spherical in
shape and good monodispersity. The relevant crystalline lattice displays a width of 0.34 nm,
which closely matches the graphite lattice parameters ((002) crystal planes) [60]. The particle
size distribution was further counted by the DLS spectrum. The result in Figure 1C reflects
that the average particle size distribution is estimated to be 3.8 nm by a single peak. The
powder X-ray diffraction (XRD) was carried out over the range of 10~80◦ (2θ) to investigate
the crystalline characteristics and particle size of the Ce-CDs-FA nanocomposites. A typical
broad peak appears in Figure 1D around 25◦ in a pattern indexed to the (002) diffractions
of carbon [61,62], which verifies the existence and amorphous property of carbon, in
agreement with HRTEM observations.
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Meanwhile, FTIR and XPS analyses were carried out to investigate the as-prepared
Ce-CDs-FA nanocomposites. The relevant FT-IR spectra are illustrated in Figure 2A and
Table 1, presenting the appearance of varied functional groups. The observed broad
absorption peaks around 3500 cm−1 and 3200 cm−1 can be ascribed to the O-H and N-H
stretching vibration bonds [63,64]. The relevant peak at 2900 cm−1 symbolizes a stretching
vibration of C-H [63,64]. The peaks at 1670 cm−1 and 1220 cm−1 correspond to the C=O
stretching motion and C–H stretching motion [3], respectively. After the formation of
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Ce-CDs-FA nanocomposites, the peak at 1640 cm−1 could be attributed to carboxyl groups
O-H bending vibrations while the C=O peak has become less obvious. Three peaks at
1420 cm−1, 1283 cm−1, and 1020 cm−1 can be attributed to the C-H bending vibrations and
stretching vibrations of C-N and C-O, respectively [3]. The peak at 1562 cm−1 demonstrates
the stretching vibrations of C=C from benzene in FA [62].
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Table 1. FT-IR data of the Ce-CDs-FA.

Groups Mode of Vibration Wave Number References

O-H stretching vibration 3500 cm−1 [37,38]
N-H stretching vibration 3200 cm−1 [37,38]
C-H stretching vibration 2900 cm−1 [37,38]
C=O stretching vibration 1670 cm−1 [39]
C-H stretching vibration 1220 cm−1 [39]

O-H (carboxyl) bending vibration 1640 cm−1 [39]
C-H bending vibration 1420 cm−1 [39]
C-N stretching vibration 1283 cm−1 [39]
C-O stretching vibration 1020 cm−1 [39]

C=C (benzene in FA) stretching vibration 1562 cm−1 [36]

Moreover, X-ray photoelectron spectroscopy (XPS) was further explored to acquire
the elemental information. The raw XPS data were corrected with reference to the C1s
line at 284.6 eV before analysis. As shown in Figure 2B, the XPS data indicate that the
Ce-CDs-FA primarily consist of four elements: carbon, nitrogen, oxygen, and cerium. The
C 1s spectrum in Figure 2C shows five different bonding energy peaks at 283.9 eV, 284.6 eV,
285.2 eV, 286.8 eV, and 288.2 eV, corresponding to the C=C (benzene), C-C, C-N, C-O,
and C=O groups [65], respectively. The N 1s spectrum of the Ce-CDs-FA in Figure 2D is
represented by four peaks at 398.8 eV, 399.2 eV, 399.4 eV, and 400.3 eV, associated with
pyridinic N, amide N, pyrrolic N and graphite N [66], respectively. The O 1s region of
Ce-CDs-FA in Figure 2E has three peaks at 530.4 eV, 531.2 eV, and 532.3 eV, symbolizing
metal oxides, C=O, and O-H/O-C-O [67,68], respectively. The Ce 3d spectra are shown in
Figure 2F. The four peaks at 881.4 eV, 885.2 eV, 900 eV, and 903.9 eV originated from Ce(III)
oxide [67].

3.2. Cytotoxicity Assay

The CCK-8 assay was applied to assess the cytotoxicity of Ce-CDs-FA nanocomposites.
The graded concentrations (62.5, 125, 250, 500, and 1000 µg/mL) of Ce-CDs-FA were
incubated with L02 and Hela cells for 24 h. An encouraging cytotoxicity result was shown
in Figure 3. The trend lines exhibited that the L02 and Hela cells had different responses for
the same concentration of Ce-CDs-FA nanocomposites. These data indicate that Ce-CDs-FA
was biocompatible for cells even though the concentration was up to 1000 µg/mL. It could
be a potential multicolored fluorescence agent in the field of bioimaging application.
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3.3. Targeted Multicolored Bioimaging

The capabilities of targeted cell imaging were studied on Hela and L02 cell lines by
CLSM. The experimental group was incubated with Ce-CDs-FA and the control group was
incubated with Ce-CDs simultaneously. The cells in the blank group proliferated naturally
without any treatment. The cell fluorescence imaging could reflect the internalization level
of Ce-CDs-FA and Ce-CDs into Hela and L02 cells. The multicolored fluorescence of the
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Hela experimental group could be clearly visible (Figure 4), which indicated that the Ce-
CDs-FA was imbibed into the cytoplasm. The obvious difference of fluorescence intensity
on Hela cells between the control groups and experimental groups indicated that Ce-CDs-
FA and Ce-CDs could produce different degrees of internalization. This consequence
displays a cooperative effect of FA and Ce-CDs. Meanwhile, the notable differences in
cell internalization between Ce-CDs-FA and Ce-CDs have not been observed in L02 cells
(Figure 5). This demonstrated the diverse internalization mechanism of Ce-CDs-FA on
Hela and L02 cells. Since FA served as the major contributor to rapid cell internalization,
this could be attributed to the abundant folate receptors on the surface of Hela cells. It
is evident that the cell imaging studies by CLSM demonstrated the specific cancer cell
recognition of Ce-CDs-FA nanocomposites.
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3.4. Detection of Fe(III)

Various metal ion solutions with identical concentrations (10 mm) were added to the
Ce-CDs-FA dilute solution several times to check out the quenching degree correlated with
the type and valence of metal ions. K+, Na+, Zn2+, Ni2+, Mg2+, Al3+, Ca2+, Ba2+, Co2+, Pb2+,
Cr3+, Cu2+, Fe2+, Fe3+, Mn2+, Cd2+, Hg2+, and Ce3+ ions were inspected and the results
were exhibited by the PL intensity ratios (F/F0) in Figure 6. It was obvious that Ce-CDs-FA
was highly specific and hypersensitive to the Fe3+ ion compared to any other metal ion.
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The whole blood samples were used as actual specimens to appraise the potency of
Ce-CDs-FA as an Fe3+ fluorescence sensor. The EDTA-K2-anticoagulated whole blood was
diluted with ultrapure water 20 times and fragmented by ultrasonic disruption for 1 h.
After centrifugation for 5 min at 8000 rpm, the supernatant was filtered through a 0.22 µm
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filtration membrane before analysis. The final solution was analyzed by 50 µg/mL Ce-
CDs-FA aqueous solutions for Fe3+ detection. These samples were digested several times
via concentrated nitric acid, filtered with 0.22 µm filtration membranes, and detected with
ICP-MS. The calculation result of the Fe3+ concentration was compared with the standard
ICP-MS method. The comparison results between the ICP-MS method and fluorescence
method are shown in Figure 8 and Table 2. Meanwhile, the fluorescence method shows a
relatively good consistency with the ICP-MS method. Thus, the fluorescence analysis was a
simple and convenient alternative method for effective Fe3+ detection in blood samples,
and thus has enormous potential.
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Table 2. The Fe3+ analysis of blood samples.

Blood Samples Method Concentration (mm) RSD (%)

NO. 1
ICP-MS 0.5292 1.6223

Fluorescence 0.5775 2.1363

NO. 2
ICP-MS 0.3050 1.1995

Fluorescence 0.3554 6.7506

NO. 3
ICP-MS 0.3701 1.8507

Fluorescence 0.3848 2.6780

NO. 4
ICP-MS 0.3960 1.3994

Fluorescence 0.4657 2.2312

NO. 5
ICP-MS 0.2707 2.2001

Fluorescence 0.3835 6.9046

NO. 6
ICP-MS 0.3081 4.2540

Fluorescence 0.3724 4.4534

NO. 7
ICP-MS 0.3912 4.2602

Fluorescence 0.4268 1.6551

NO. 8
ICP-MS 0.3871 1.7743

Fluorescence 0.4503 7.7068

4. Conclusions

In summary, we have synthesized cerium-doped carbon dots modified with folic acid
by a simple one-pot procedure. The as-prepared Ce-CDs-FA nanocomposites have unique
properties, including commendable biocompatibility, low toxicity, multicolor luminescence,
and low cost. More importantly, it possible to be used as a dual fluorescence sensor for
the identification of cancer cells expressing the folate receptors and the detection of Fe3+
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ions. It is evident that the Ce-CDs-FA nanocomposites could be explored as a promising
powerful fluorescent probe for multicolored bioimaging and ion detection.
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