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Abstract: As a volatile organic compound, toluene is extremely harmful to the environment and
human health. In this work, through a simple one-step solvothermal method, Ni-doped ZnO
sensitive materials (0.5, 1, and 2 at% Ni-doped ZnO) with a core-shell morphology were synthesized
for the first time for toluene gas detection. The sensing test results showed that the sensor based
on 1 at% Ni-doped ZnO exhibited the best toluene sensing performance. The response was up
to 210 to 100 ppm toluene at 325 ◦C. The sensor exhibited high selectivity, fast response/recovery
characteristics (2/77 s), and low detection limit (500 ppb, 3.5). Furthermore, we carried out molecular-
level research on the sensitive material prepared in this experiment by various characterization
methods. The SEM characterization results showed that ZnO and Ni-doped ZnO possessed the core-
shell morphology, and the average grain size decreased with the increase in the Ni doping content.
The UV–Vis test showed that the band gap of ZnO became smaller with the increase in the Ni doping
amount. The enhanced toluene sensing performance of 1 at% Ni-doped ZnO could be ascribed to
the structural sensitization and Ni doping sensitization, which are discussed in detail in the sensing
mechanism section.

Keywords: Ni doping; ZnO; gas sensor; toluene; core-shell structure

1. Introduction

With the development of modern industry, various kinds of poisonous and harmful
gases have been produced, which will cause harm to human health and the environment.
In particular, volatile organic compounds (VOCs) such as ethanol, acetone, formaldehyde,
and toluene, etc., which widely exist in our surroundings. Among them, toluene as a
typical aromatic compound is a kind of colorless gas with a special fragrance, and is
widely used in many aspects of production and life such as raw materials in the chemical
industry, the production of dyes, pharmaceuticals, pesticides, explosives, and other fine
chemicals. In addition, it can be used as a food preservative in major food production
factories [1]. Meanwhile, toluene is a flammable and harmful gas and can produce an
anesthetic effect on the central nervous system, causing great and irreparable harm to the
human body. Therefore, toluene has been identified as a highly toxic carcinogen by the
International Center for Research on Cancer [2]. Due to the harmfulness of toluene, it is
very necessary and urgent to develop a high performance toluene gas sensor to monitor
toluene in real-time to ensure human health and environmental safety.

Gas sensors based on semiconductor metal oxides have attracted extensive attention in
recent years due to their advantages of high sensitivity, easy fabrication, low cost, and small

Chemosensors 2022, 10, 327. https://doi.org/10.3390/chemosensors10080327 https://www.mdpi.com/journal/chemosensors

https://doi.org/10.3390/chemosensors10080327
https://doi.org/10.3390/chemosensors10080327
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com
https://orcid.org/0000-0001-6172-8669
https://orcid.org/0000-0003-3594-942X
https://doi.org/10.3390/chemosensors10080327
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com/article/10.3390/chemosensors10080327?type=check_update&version=1


Chemosensors 2022, 10, 327 2 of 15

size. As the most promising sensing material, gas sensors based on semiconductor metal
oxides have become a research hotspot. Up to now, many metal oxide semiconductors have
been developed and used as gas sensing materials, for instance, ZnO [3,4], In2O3 [5–7],
SnO2 [8–10], WO3 [11–13], NiO [14,15], CuO [16,17], etc. Among the n-type and p-type
single semiconductor oxides, ZnO is the most widely studied gas sensing material as
ZnO is an n-type semiconductor oxide with a wide band gap energy (3.37 eV) and a large
excite binding energy (60 MeV) [18,19]. The physical and chemical properties of ZnO are
stable, and the electrical property of ZnO is tunable with transition metal doping [20]. Cur-
rently, different morphologies of ZnO have been reported to detect different gases [21–27]
including nanoparticles [28], one-dimensional nanowires [29], nanorods and nanofibers,
two-dimensional nanosheets [30], nanoribbons and nanorings as well as three-dimensional
flower-like structures [31], core-shell structures, and hollow spheres. Studies have shown
that the hierarchical structure of ZnO enables better gas sensing properties due to its larger
specific surface area, porosity, and permeability.

In addition to constructing the hierarchical structure of ZnO, it is also an effective way
to improve the gas sensitive performance by doping. There are many types of doping sub-
stances including metal oxides, precious metals, transition metals, carbon-based materials,
and polymers [32–36]. Since transition metal ions can be doped into the semiconductor
lattice, the lattice distortion of sensitive materials generates a large number of defects and
vacancies. The increase in the defect concentration on the surface can improve the adsorp-
tion of oxygen anions on the surface of the material, thereby improving the gas-sensing
response value of the sensing material. Thus far, many studies have reported that through
transition metal doping, improved gas sensing performance can be achieved. Transition
metal doping elements including Co, Sn, Fe, and Ni [37–40] etc. have been reported to tune
the sensing performance of ZnO. The catalytic properties, surface properties, and charge
carriers of pristine semiconductor materials can be improved by doping transition metal
elements. Guo [41] et al. successfully synthesized Fe-doped ZnO/rGO nanocomposites
via a simple hydrothermal process. The sensor exhibited a response of 12.7 to 5 ppm
formaldehyde at 120 ◦C. Compared with pure ZnO, the response of the doped sensing
material was about 3 times higher. The reason for the enhanced sensing performance is
that the doping of Fe changes the band gap, making the band gap of ZnO smaller and
generating a large number of oxygen vacancies.

Based on that demonstrated above, the gas sensing performance of semiconductor
metal oxides can be improved by constructing a hierarchical structure to adjust the surface
area and doping transition metal elements to tune the electrical and catalytic proper-
ties [42–44]. To our best knowledge, fabricating a core-shell Ni doped ZnO (Ni–ZnO) to
achieve an enhanced sensing performance of toluene has rarely been reported.

Here, materials with different ratios of 0, 0.5, 1, and 2 at% Ni–ZnO core-shell morpholo-
gies were successfully prepared by a simple solvothermal method and used for toluene
gas detection. Gas sensing measurements showed that out of all the four gas sensors, the
sensor based on 1 at% Ni–ZnO had the highest toluene response of 210 (100 ppm, 325 ◦C),
which was almost seven times higher than pure ZnO (33.6, 375 ◦C). Moreover, the sensor
also had high selectivity, low detection limit, and fast response/recovery properties. The
sensing mechanism of the enhanced sensing properties was analyzed in detail.

2. Materials and Methods
2.1. Synthesis of the Pure ZnO and Ni–ZnO Core-Shell Spheres

First, 20 mL of deionized water and 1 mmol Ni (CH3COO)2·4H2O were added into a
50 mL beaker and stirred for 20 min. Then, 7 mL of glycerol and 30 mL of isopropanol were
added into a 50 mL beaker with vigorous stirring, and 0.45 mmol Zn (CH3COO)2·2H2O
was dissolved into the above mixed solution with stirring for 15 min, named as solution
A. Then 0, 45, 90, and 180 µL of the above prepared Ni (CH3COO)2·4H2O solution were
added into solution A, respectively, and stirring was continued for another 20 min. Then,
the four solutions were placed in an oven and kept at 180 ◦C for 24 h. After the reaction was
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completed, the temperature was naturally cooled to room temperature, and the product
was separated by centrifugation, alternately washed with anhydrous ethanol and deionized
water, and then dried at 80 ◦C for 10 h. The dried product was calcined at 500 ◦C for 2 h
(heating rate, 2 ◦C·min−1). Finally, pure ZnO and 0.5, 1, and 2 at% Ni–ZnO core-shell
products were obtained.

2.2. Characterization

In this paper, an X-ray powder diffractometer (XRD; Bruker D8 Discover, Billerica, MA,
USA) was used to investigate the composition and crystallinity of pure ZnO and different
proportions of the Ni–ZnO samples. Diffraction analysis of sensitive materials was carried
out using Cu Kα1 rays (λ = 1.5406 Å) in the range of 2θ from 20 to 80◦, and the scanning step
was 10◦·min−1. The microscopic topography of sensitive materials can be analyzed and
studied using scanning electron microscopy (SEM; ZEISS Sigma 500, Jena, Germany). More
information about the microscopic morphology and the lattice size of sensitive materials can
be obtained by transmission electron microscopy and high-resolution transmission electron
microscopy. In addition, energy dispersive X-ray spectrometry (EDS) enables the detection
of element mapping distributions. The chemical element analysis was obtained from the
X-ray photoelectron spectroscopy (XPS; Escalab 250 XI, Waltham, MA, USA) measurements,
and the surface area and pore size distribution were calculated by the Brunauer–Emmett–
Teller (BET) and Barrett–Joyner–Halenda (BJH) methods using the nitrogen adsorption–
desorption isotherm test (Micromeritics ASAP2000 system, USA). The absorbance and
band gap of the sample were measured by using a UV–Visible spectrophotometer (UV–Vis;
Lambda 1050+, Waltham, MA, USA) between 250 and 800 nm.

2.3. Fabrication and Measurement Process of the Gas Sensors

As schematically shown in Figure S1a,b, first, the as-synthesized sample (3–5 mg) and
an appropriate amount (0.3–0.5 mL) of deionized water were mixed to form a slurry. Then,
the slurry was evenly coated on the surface of the ceramic tube (outer diameter 1.2 mm,
inner diameter 0.8 mm, length 4 mm) using a small brush. After drying in air for 15 min,
the ceramic tube was placed in a Muffle furnace at 400 ◦C for 120 min with a heating rate
of 2 ◦C min−1 to enhance the stability during the test process. After that, a Ni–Cr alloy
wire, which provides the operating temperature by tuning the constant current, is inserted
in the sintered ceramic tube. Finally, the sensor was welded on a six-legged sensor base,
and the gas sensing performance was tested after aging for 24 h with 100 mA. Figure S1c
is schematically shown as the static gas sensing test system. A constant-current power
(Gwinstek GPD-3303S, New Taipei City, Taiwan) was used to supply a constant current
for the Ni–Cr alloy wire to control the operating temperature. Two glass cavities with a
volume of 1 L were used to hold air and test gas, respectively. A digital multimeter (Fluke
8846a, Everett, WA, USA) and a computer was used to record and monitor the resistance
of the gas sensor. During the sensing test process, the sensor was alternately placed in
1 L of fresh air in the glass cavity for a few minutes to obtain a stabilized resistance value
recorded as Ra. Then, the gas sensor device was transferred to another glass cavity with
1 L, which was filled with a mixture of fresh air and target gas, the stabilized resistance
value in the target gas was recorded as Rg. The sensing test was carried out in a laboratory
environment (25 ◦C, 30 RH%). The volatile organic gas used was an analytical grade liquid,
and injected to the glass cavity by a microinjector. The gas preparation process is detailed
in the Supplementary Materials. The gas sensing response was defined as S = Ra/Rg,
and response/recovery time was the time taken by the sensor to reach 90% of the overall
resistance change.

3. Results

The XRD pattern of the pure ZnO, 0.5, 1, and 2 at% Ni–ZnO core-shell spheres are
shown in Figure 1a. The diffraction peaks appeared at 34.42◦, 36.25◦, 47.53◦, 56.60◦, 62.85◦,
68.17◦, 69.29◦, which corresponded to the (100), (002), (101), (102), (110), (103), and (112)
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crystal planes of the hexagonal wurtzite phase ZnO (JCPDS No. 36-1451) [45]. However,
no peak matched with Ni or NiO in the Ni–ZnO samples. No other diffraction peaks
corresponding to the impurities were detected. Figure 1b is the high-resolution peak of the
(101) plane of ZnO compared to pure ZnO, and the diffraction peak of Ni–ZnO shifted to a
higher angle direction. The shift of 2 at% Ni–ZnO sample was the most obvious, which
indicated that Ni2+ was incorporated in the ZnO crystal lattice due to the radius of Ni2+

being smaller than Zn2+.
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Figure 1. (a) The XRD patterns of the pure and Ni–ZnO, (b) enlarged spectra of the XRD patterns of
the Ni–ZnO.

Figure 2a–d shows the SEM images of the 0, 0.5, 1, and 2 at% Ni–ZnO sample, re-
spectively. The pure ZnO, 0.5, and 1 at% Ni–ZnO samples showed a core-shell spherical
hierarchical structure, and there was no obvious core-shell structure observed for 2 at%
Ni–ZnO; the morphology was a simple spherical structure. It was found from the SEM
images that with the increase in the Ni doping content, the surface of the ZnO microspheres
became more and more coarse and the average particle size of the spheres decreased. The
average particle size was 15.10, 9.42, 5.62, and 4.66 µm for pure ZnO, 0.5, 1 and 2 at%
Ni–ZnO spheres, which suggests that the addition of Ni ions can inhibit the growth of ZnO
particles in the hydrothermal reaction process. In addition, the inserted magnified SEM
images showed that the core of the core-shell spheres was very large and next to the shell.
Proper Ni doping, a rough surface, and loose shell are favorable for gas adsorption and
diffusion, with a high gas sensing performance, which will be verified in later sections.

Figure 3a,b are TEM images of different magnifications, whose shape and size are
consistent with the SEM characterization results. The inset figure is the selected area electron
diffraction (SAED) image and shows that the 1 at% Ni–ZnO sample had a polycrystalline
structure. Figure 3c is the HRTEM images of the 1 at% Ni–ZnO sample. The lattice spacings
were 0.286 and 0.249 nm, corresponding to the (100) and (101) crystal planes of ZnO [46,47].
Interplanar spacing corresponding to NiO was not found, which is consistent with the
results of the XRD. From the element mapping test results in Figure 3d–g, the three elements
(Ni, O, and Zn) were evenly distributed in the 1 at% Ni–ZnO sample.

The specific surface area of the pure ZnO and Ni–ZnO samples was determined by
the nitrogen adsorption/desorption isotherm. As illustrated in Figure 4a–e, the adsorption–
desorption curve is an iv-type isotherm belonging to the H3 hysteresis loop, indicating
that Ni–ZnO has a microporous structure [48].The specific surface area increased with
the increase in the Ni doping amount, especially for 1 and 2 at% Ni–ZnO, the specific
surface areas were 20.43 to 26.41, 37.54 and 40.14 m2·g−1 for the pure ZnO, 0.5, 1, and 2 at%
Ni–ZnO. The results showed that with the proper amount of Ni doping, the specific area of
ZnO could increase a lot; when the doping amount reached a certain value, the specific area
did not increase too much. A large specific area could supply more surface-active sites for
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surface adsorbed oxygen species, thus improving the recognition function of the sensing
material and contributing to the high gas sensing performance.

Moreover, the inset of Figure 4 shows the nonlocal density functional theory (NLDFT)
and grand canonical Monte Carlo (GCMC) pore size distribution of the Ni–ZnO, and
through analysis, it was found that the pore sizes of the pure ZnO and 0.5 at%, 1 at%, and 2
at% Ni–ZnO were 46.8, 58.08, 32.72, and 32.71 nm, respectively. Appropriate Ni ion doping
can increase the size of the pore size, and combined with the gas sensing data, it can be
inferred that the pore size of the sensitive material in this experiment had little effect on the
gas sensing performance. The increase in the specific surface area is one of the main factors
affecting the gas sensing performance.
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The XPS measurement was used to analyze the chemical composition and states of
the elements in the pure ZnO and Ni–ZnO samples. Figure 5a exhibits the full spectrum
of the ZnO and Ni–ZnO samples, where the full spectrum contained the peaks of Zn, O
and Ni, proving the presence of Zn, O, and Ni in the sample. In Figure 5b, the binding
energy around 1021.20 and 1044.28 eV corresponded to Zn 2p3/2 and Zn 2p1/2, respectively,
proving that Zn was in the form of Zn2+ [49]. Figure 5c–e shows that the Ni 2p3/2 orbital
can be separated into three peaks of about 854.1, 856.3, and 861.2 eV, corresponding to the
Ni2+, Ni3+ and satellite peaks, respectively [50], indicating the existence of Ni ions in the
ZnO crystals.

Figure 6a–d is the XPS spectra of the O 1s of all samples, the peak shape is asymmetric,
and can be allocated into three different oxygen components: chemisorbed gen (OC),
oxygen vacancy (OV), and lattice oxygen (OL), which correspond to the peaks at around
532.2 ± 0.5 eV, 531.0 ± 0.5 eV, and 529.5 ± 0.5 eV [51,52], respectively. Table 1 shows the
relative proportion of the three oxygen components of O 1s in all of the samples. The
relative ratio of OC did not change a lot, but with Ni doping, the ratio of OL decreased,
while relatively, the proportion of OV increased, and 1 at% Ni–ZnO showed the highest
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proportion of OV with 22.8%. Ni doping led to the formation of an oxygen vacancy in ZnO,
and more OV concentration distributed to more surface-active sites, thus benefiting more
surface negatively charged oxygen species.
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Table 1. The relative percentages of O 1s in the XPS spectra ZnO, 0.5 at%, 1 at%, and 2 at% Ni–ZnO.

Species Peak (eV) ZnO 0.5 at% Ni–ZnO 1 at% Ni–ZnO 2 at% Ni–ZnO

OL 529.9 60.0% 55.9% 53.0% 53.7%
OV 530.8 15.6% 19.9% 22.8% 21.0%
OC 531.7 24.4% 24.2% 24.2% 25.3%

Gas Sensing Characteristics

The operating temperature can affect the carrier concentration and gas adsorption and
desorption of the sensor resistance and gas response [53,54]. Response of the four sensors to
100 ppm toluene at different temperatures (Figure 7a) showed that the response values first
increased and then decreased. The maximum response values of the four sensors reached
at 375 ◦C (pure ZnO), 350 ◦C (0.5 at% Ni–ZnO), and 325 ◦C (1 and 2 at% Ni–ZnO), and the
response values were 33.6, 111.4, 210.0 and 23.1, respectively. The 1 at% Ni–ZnO sample
had the highest response of 210.0, which was seven times higher than the pure ZnO. With
Ni doping, the operating temperature of 1 at% Ni–ZnO was significantly decreased, which
could be explained by the change in the band gap, as illustrated in Figure S2. After Ni
doping, the band gap reduced from 3.05 to 2.89 eV, and free electrons were easier to release
from the conduction band. Figure 7b displays the responses of the four sensors to the six
tested target gases (toluene, ethanol, acetone, methanol, formaldehyde, and xylene) with
100 ppm at their optimal operating temperatures (ZnO, 375 ◦C; 0.5 at% Ni–ZnO, 350 ◦C;
1 and 2 at% Ni–ZnO, 325 ◦C). Obviously, the four sensors had the highest response to
toluene. Compared with the other tested gases, the 1 at% Ni–ZnO sensor showed the best
toluene sensing performance, and the response to toluene and other gases was 210.0, 52.0,
3.4, 9.4, 3.1, and 1.5. The toluene response was 4–140 times higher than other measured
gases, indicating that the sensor had excellent selectivity for toluene.
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Figure 7. (a) The response of the four gas sensors to 100 ppm toluene at different temperatures.
(b) The selectivity of the four gas sensors to 100 ppm different VOC gases at their optimum
operating temperature.

Figure 8a,b shows the real-time response curves of the four sensors at 375 ◦C (pure
ZnO) and 325 ◦C (Ni–ZnO samples) with different concentrations of toluene. The response
value increased with the increase in toluene concentration. The sensor response based
on 1 at% Ni–ZnO increased significantly with increasing toluene concentration. The
corresponding linear relationship between the toluene response and concentration is listed
in Figure 8c,d. It can be observed that the linearity of the sensor was very good in both the
low-concentration range and the high-concentration range. The response increased almost
linearly with the toluene concentration, and 1 at% Ni–ZnO had the highest sensitivity.
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Furthermore, the sensor based on 1 at% Ni–ZnO had a low detection limit of 0.5 ppm with
a response value of 3.5, which makes it promising in practical application.
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Figure 8. (a,b) The dynamic response curves of the four sensors to toluene with different concentra-
tions at 375 ◦C (pure ZnO) and 325 ◦C (Ni–ZnO samples). (c,d) The response of the pure, 0.5, 1, and
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The response and recovery characteristics are also important parameters of gas sensors.
Thus, the response and recovery transients of the sensor based on 1 at% Ni–ZnO to 100 ppm
toluene at 325 ◦C are shown in Figure 9a. The response time and recovery time of the
sensor based on 1 at% Ni–ZnO are 2 and 77 s, respectively, illustrating that the sensor had a
relatively fast response and recovery property. Table 2 is a comparison of the toluene sensing
performance of this work and the sensors reported in the literature [55–59]. The operating
temperature was relatively higher than that in the literature, but the response and recovery
time were fast and the toluene response was much higher than the reported literature.

Figure 9b is the resistance in air as a function of operating temperature. With the
increase in Ni doping, the resistance of the sensor increased significantly. The resistance
versus temperature plot of the sensors showed an abnormal PTCR (positive temperature
coefficient of resistance) behavior during 300–350 ◦C. Based on the reported literature [60],
this phenomenon was caused by Ni doping, which introduced defects in ZnO, thus forming
oxygen vacancy-like defects in this temperature region.

Figure 9c is a seven-cycle test curve of the 1 at% Ni–ZnO sample to 100 ppm toluene
at 325 ◦C. The resistance in air and toluene was within the allowable fluctuation range,
proving that the sensor had good repeatability. The long-term stability was also studied in
this work; the sensing response to 100 ppm toluene in the air for one month is shown in
Figure 9d. During the test days, the response values varied and slightly decreased but did
not show an obvious fluctuation. The results indicate that the 1 at% Ni–ZnO gas sensor has
good long-term stability.
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Figure 9. (a) The response/recovery time of 1 at% Ni–ZnO gas sensor to 100 ppm toluene at 325 ◦C.
(b) Resistance in the air of the four gas sensors at different operating temperatures. (c) Seven reversible
cycles of 1 at% Ni–ZnO gas sensors. (d) The stability testing curves of 1 at% Ni–ZnO gas sensor to
100 ppm toluene in 30 days.

Table 2. A comparison of the toluene gas sensing performance of this work and other sensing material
in previously reported works.

Sensing Material Conc. in ppm Operating
Temperature (◦C) Response Res/Rec (s) LOD (ppm) Ref.

WO3–SnO2 10 340 5.6 14.5/406 - [55]
SnO2–ZnO 50 200 7.5 90/150 0.1 [56]

NiGa2O4–NiO 100 230 12.7 60/70 0.5 [57]
NiO/NiGa2O4 5 200 10.54 600/- - [58]

CuO–SnO2 75 400 540 100/36 10 [59]
Ni–ZnO 100 320 210 2/77 0.5 Present work

4. Discussion

The gas sensing mechanism can be explained by the interaction of multiple factors.
In this work, toluene sensing mechanisms with exceptional response are discussed in
detail. The gas sensing mechanism has been widely explored in many studies [61,62],
and the extensively accepted theory is the chemical reaction between the target gas and
chemically adsorbed oxygen species (O2

− (T < 100 ◦C), O− (100 ◦C < T < 300 ◦C), and O2−

(T > 300 ◦C)) [63,64]. When redox reactions take place on the surface of the semiconduc-
tors, charge transfer will occur during this process, which changes the resistance of the
gas sensor.

As illustrated in Figure 10, when the Ni–ZnO gas sensor is exposed to air, O2 molecules
will capture electrons in the conduction band of the material to form negatively charged
oxygen species on the surface of the Ni–ZnO material, and a depletion layer will form on
the surface at the same time, leading to a high resistance of the sensor in air. Then, when
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the sensor is exposed to a reducing gas (toluene) environment, the chemically adsorbed
oxygen can react with the target gas molecules on the surface of the sensing material, the
electron depletion layer becomes smaller. As a result, electrons that are released back
into the conduction band induce lower resistance values in reducing gases. The relevant
reactions are seen in Equations (1)–(3) (T > 300 ◦C) [65]:

O2 → O2(ads) (1)

O2(ads) + 4e→ 2O2− (2)

C7H8 + 18O2− → 4H2O + 7CO2 + 36e− (3)
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The enhanced sensing performance of the 1 at% Ni–ZnO-based gas sensor can be
attributed to the following two aspects including structural sensitization and modified
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sensitization. The first is structural sensitization. After Ni doping, the hierarchical mi-
crostructure of ZnO changed, and the surface of the Ni–ZnO core-shell spheres became
rougher. This loose structure is very favorable for the diffusion of gas molecules, which can
not only penetrate into the shell at the outer surface of the material, but may also further
diffuse to the surface of the core. Therefore, the sensing material has a higher sensing
performance [66]. Furthermore, the thickness of the shell of the sensing material becomes
thinner with increasing Ni content. According to the literature [67,68], when the thickness
of the shell layer is close to the Debye length, the gas sensing material has the best gas
sensing performance. Finally, the size of the topography of the gas sensing material is also
affected by Ni, resulting in a smaller morphology size. An appropriate reduction in the
morphology size can lead to an increase in the specific surface area, which can adsorb more
oxygen and toluene molecules and provide more active sites [69].

Modified sensitization includes the following points. First, the specific surface area
increased with Ni doping, so the recognition function of the sensing material will be
improved. Second, it can be seen from Table 2 that Ni doping increased the relative
proportion of oxygen vacancy in ZnO. The oxygen vacancy improved from 15.6% to 22.8
for 1 at% Ni–ZnO, which means that more oxygen species will adsorb on the surface of
1 at% Ni–ZnO and the sensing performance will be enhanced. The third and most important
point is that Ni2+ ions can be easily oxidized into Ni3+ with a higher oxidation state, which
will facilitate the redox reaction, due to which Ni3+ usually plays the role of the catalyst
during the redox process, as many studies have reported [70–72]. Therefore, a greater
percentage of Ni3+ will obtain a good gas sensing property to a large extent. Figure 5c–e
displays the fitted XPS results of Ni2+ and Ni3+ of the 0.5, 1, and 2 at% Ni–ZnO. The
relative percentage of Ni2+ and Ni3+ varied in the three samples, and the ratio of Ni3+/Ni2+

was calculated to be 1.33, 1.62, and 1.05 for the 0.5, 1, and 2 at% Ni–ZnO samples. The
1 at% Ni–ZnO sample had the highest ratio of Ni3+/Ni2+ of 1.62, followed by the 0.5 at%
Ni–ZnO and 2 at% Ni–ZnO. From the gas sensing tests, the highest sensing performance
was obtained by the 1 at% Ni–ZnO, and then the 0.5 at% Ni–ZnO and 2 at% Ni–ZnO
samples. The gas sensing results coincided with the inference of the Ni3+/Ni2+ ratio.

5. Conclusions

In summary, different Ni–ZnO core-shell spheres were successfully prepared by a one-
step solvothermal method and gas sensors based on the prepared materials were prepared.
The role of Ni doping in ZnO on the microstructure and gas sensing performance was stud-
ied in detail. The results showed that Ni doping changed the hierarchical microstructure
of ZnO, and the BET specific area increased after Ni doping. Gas sensing measurements
revealed that the operating temperature decreased due to the lower band gap after Ni
doping. All of the sensing materials had the highest response to toluene, the best sensing
performance was acquired by the 1 at% Ni–ZnO based gas sensor, with high response,
excellent selectivity, fast response and recovery time, and relatively long-term stability.
The enhanced sensing property can be mainly due to the increase in the specific surface
area and relative percentage of oxygen vacancy after Ni doping, and more importantly,
is the catalyst effect of Ni ions. This work provides a reasonable way to fabricate a high
performance toluene sensing material.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors10080327/s1, Figure S1: The schematic figure of the
(a) ceramic tube, (b) sensor device, and (c) the sensing test system. Figure S2: (a) The UV–Vis
absorption spectrum and (b) energy band gap of the ZnO samples with different Ni doping amounts.
Table S1: The parameter information for all of the gas samples.
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