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Abstract: Organic phototransistors (OPTs) as optical chemical sensors have progressed excitingly in
recent years, mainly due to the development of new materials, new device structures, and device
interfacial engineering. Exploiting the maximum potential of low-cost and high-throughput fabrica-
tion of organic electronics and optoelectronics requires devices that can be manufactured in a fully
printed way that also have a low operation voltage. In this work, we demonstrate a fully printed
fabrication process that enables the realization of a high-yield (~90%) and low-voltage OPT array.
By solution printing of a high-quality organic crystalline thin film on the pre-printed electrodes, we
create a van der Waals contact between the metal and organic semiconductor, resulting in a small
subthreshold swing of 445 mV dec−1 with a signal amplification efficiency over 5.58 S A−1. Our
OPTs thus exhibit both a low operation voltage of −1 V and a high photosensitivity over 5.7 × 105,
making these devices suitable for a range of applications requiring low power consumption. We
further demonstrate the capability of the low-voltage OPT array for imaging and show high imaging
contrasts. These results indicate that our fabrication process may provide an entry into integrated
and low-power organic optoelectronic circuits fabricated by scalable and cost-effective methods for
real-world applications.

Keywords: full printing; organic phototransistors; low operation voltage; small subthreshold swing;
image sensor

1. Introduction

Organic phototransistors (OPTs) adopt a three-terminal transistor device structure that
offers an additional gate electric field to magnify the response to incident light, leading to
their outstanding performance such as large photosensitivity, high photoresponsivity (R*),
over 100% external quantum efficiency (EQE), and large specific detectivity (D*) [1–7]. In ad-
dition, the fabrication of OPTs is compatible with solution printing technologies, providing
additional high-throughput and cost-effective advantages. Combining their superior perfor-
mance and solution processability, OPTs represent a promising alternative optical detection
technology for imaging, optical communications, biomedical monitoring, chemical sensors,
and artificial visual-perception systems [1,5,8–11]. Advances in developing novel organic
semiconducting materials, designing new device structures, and interfacial engineering
have led to unprecedented success in the performance of OPTs, which already can compete
with rigid inorganic phototransistors. For instance, by designing a novel hybrid-layered
device structure, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT)-based OPT
demonstrates an ultra-high photosensitivity of 2.9 × 106, R of 8.6 × 103 A W−1, D* of
3.4 × 1014 Jones, and EQE of 2.9 × 106% [12]. Calvi et al. reported a flexible OPT with
high stability for photodetection of light intensities as low as few nW cm−2 [13]. Despite
promising advancements, high-performance OPTs usually need to supply a large working
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voltage (more than 10 V) [14–21], which leads to a considerable power consumption and in-
applicability for battery-powered operation. Furthermore, such high working voltages have
difficulty satisfying the demands of flexible/wearable electronic technologies (considering
both current flexible battery capacities and safety) [22,23].

Recently, various strategies, such as increasing the capacitance of gate dielectrics and
reducing the device trap state density, have been routinely used to lower the operation
voltages of OPTs [24–27]. For example, Liu et al. developed a solution-processed high k
titanium-silicon oxide/hybrid (hTSO) material to fabricate a high-capacitance dielectric
layer and successfully achieved a high R at a low driving voltage of 3 V [28]. In addition,
various organic single-crystal materials have been widely adopted as light absorption layers
to construct OPTs [29–31]. The use of low-defect organic single crystals not only reduces the
trap states within the device channel but can also minimize the interfacial defects between
the organic semiconductor and dielectric or contact electrode, enabling low-voltage OPTs.
However, fabrication of low-voltage OPTs through the present approaches inevitably
involves relatively high vacuum deposition procedures (which greatly loses the advantages
of scalable and solution-processable manufacturing of OPTs). Therefore, a fully solution-
processed fabrication approach for generating OPTs with low working voltage but high
photoresponse performance is needed to move the organic optoelectronic development to
real-world device applications.

Here, we report a fully printed fabrication process to achieve a high-yield OPT array
with a high photoresponse but low power for an imaging application. In the OPT, van der
Waals contacts between metals and semiconductors are created by solution printing of an
organic crystalline film on the inkjet-printed electrodes. This preserves the pristine interface
between metal and semiconductor, enabling extremely sharp switching characteristics of
the device with a small subthreshold swing (SS) of 445 ± 177 mV dec−1 and a high signal
amplification efficiency (Aeff) of 5.58 ± 1.64 S A−1. As a result, the OPTs exhibit excellent
optical figures of merit with a high photosensitivity of 5.7× 105, a high R of 0.1 A W−1, and
a maximum specific detectivity of 1.31 × 109 Jones, respectively, at a very low operation
voltage of −1 V. Furthermore, we successfully demonstrate the application of our low-
voltage, high-photoresponse OPT array in high-contrast image sensors. Our process offers
a general platform for scalable, cost-effective manufacturing of organic optoelectronic
devices with both high performance and low power.

2. Materials and Methods
2.1. Materials

The conducting silver (Ag) ink purchased from Shanghai Zhongbin Technology Co.,
Ltd, Shanghai, China. 2,8-difluoro-5,11-bis-(triethylsilylethynyl)anthradithiophene (Dif-
TES-ADT, 99%) was supplied by Luminescence Technology Corp. (Lumtec, Taiwan, China)
and used without purification. Pentafluorobenzenethiol (PFBT), poly (4-vinylphenol) (PVP,
Mw~11000), poly(melamin-co-formaldehyde) (PMF), and propylene glycol monomethyl
ether acetate (PGMEA), and polystyrene (PS, Mw~2000 k) were purchased from Sigma-
Aldrich, Burlington, USA. The solvent (m-xylene) was purified and distilled from the
drying agents before use.

2.2. Ink Preparation

Fluoropolymer (Cytop) ink was prepared by mixing Cytop (CTL-890 M, Asahi Glass,
Tokyo, Japan) and its solvent (CT-Solv. 180, Asahi Glass, Tokyo, Japan) at a volume-to-
volume ratio of 8:1. Parylene-C (J&K Scientific, Beijing, China) powders and conductive
Ag ink were used directly without treatment. The ink of the dielectric layer was prepared
by mixing PVP, PMF, and PGMEA at a weight-to-weight ratio of 0.34:0.16:2.5. PFBT
was dissolved in isopropanol at a volume-to-volume ratio of 1:200 to modify the Ag
drain/source electrodes. Dif-TES-ADT and PS were dissolved in m-xylene at the same
concentration of 10 mg mL−1. Then the two solutions were mixed at a volume-to-volume
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ratio of 1:1 to prepare the organic semiconductor ink. All of the inks were prepared at room
temperature and stirred for at least 3 h before use.

2.3. Fabrication of the 10 × 10 OPT Array

Glass substrates were washed with deionized water, acetone, and isopropyl alcohol in
an ultrasonic bath for 10 min each. After blow-drying with high-purity nitrogen, all glass
substrates were treated in an ultraviolet ozone cleaning system for 30 min. Subsequently,
a layer of parylene-C was deposited on the clean substrate by chemical vapor deposition
(CVD) to serve as a flattened layer, whose thickness was about 1 µm (Figure S1). Then, the
Ag ink was inkjet-printed on the parylene-C films by using an inkjet printer (Scientific3,
Shanghai Zhongbin Technology Co., Ltd., Shanghai, China) at a dot-to-dot spacing of
40 µm and heated at 145 ◦C for 30 min in atmospheric air to obtain the parallel Ag strips.
After forming gate electrodes, the PVP ink was blade-coated on the substrate to form a gate
dielectric layer. The blade coating conditions for PVP layer were as follows: the substrate
temperature was heated at 60 ◦C; the blade coating speed was 12.5 mm s−1; the gap size
between the substrate and blade was set as 100 µm; and blade tilt angle was 30o. After blade
coating, the PVP layer was thermally annealed at 160 ◦C for 2 h in a nitrogen glovebox.
The surface topography of the resulting PVP thin film was characterized by atomic force
microscopy (AFM, Veeco, Plainview, USA). Then, the Ag ink was patterned with the same
process as the gate electrodes to fabricate source/drain electrode pairs. After that, the
source/drain electrodes were modified by dipping them into a PFBT/isopropanol solution
for 5 min and rinsed with isopropanol. Cytop ink was inkjet-printed between adjacent
devices to form superhydrophobic dividing lines, followed by a post-bake at 70 ◦C for 1 h,
allowing the semiconductor material to form patterned films in specified areas. The final
step was the fabrication of an organic semiconductor thin film, which was blade-coated
with the Dif-TES-ADT/PS blended solution at printing speed of 1.25 mm s−1 at 60 ◦C. The
characterization of Dif-TES-ADT crystalline films were performed by X-ray diffractometer
(XRD, D8 Discover, Bruker, Saarbrucken, Germany) and ultraviolet-visible near-infrared
spectrophotometer (Lambda 950).

2.4. OPT Electrical Characterization

The electrical performances of the OPTs were measured by a semiconductor parameter
analyzer (Keithley, 4200-SCS, Columbus, USA) equipped with a probe station under ambi-
ent conditions. The mobility was extracted from the saturation region by using the equation
of IDS = (W/2L)Ciµ(VG − Vt)2. The capacitance per unit area (Ci) of the solution-printed
PVP dielectric was measured to be 8.38 nF cm−2 (Figure S2). During the light-sensing
characteristics, a xenon lamp with tunable light intensities was used as the light source
and the intensity was calibrated by a commercial silicon photodetector. To avoid external
influences, the light source and device were placed in a shield box. The noise spectral
density of the OPT was measured using a semiconductor parameter analyzer (Platform
Design Automation, Inc. FS-Pro, Beijing, China) in an electrically and optically shielded
box. To demonstrate the imaging function, a number “2” optical image was projected
onto the 10 × 10 OPT array. Then, the current of the 100 OPTs was recorded by manually
manipulating the probes and made into maps.

3. Results and Discussion
3.1. Full Printing of the OPT Array

The fully printed fabrication process involves six printing procedures and uses two
kinds of solution printing technologies, including inkjet printing and blade coating, as
illustrated in Figure 1a. To ensure good substrate flatness, we begin with a parylene-C film-
covered glass substrate. First, parallel Ag electrode stripes with an interval of 1760 µm and
thickness of 210 nm as the bottom gate electrode array (Figure S3) were deposited on the
substrate by inkjet printing (Figure 1(a-i)). Next, a gate PVP dielectric layer was deposited
on the Ag electrode array through blade coating technique (Figure 1(a-ii)). The blade-coated
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PVP thin film shows a uniform thickness of 318 nm and a smooth surface with a roughness
of ~0.27 nm rms (Figure S4), providing a good semiconductor-dielectric interface. Then,
patterned source (S) and drain (D) electrode pairs were accurately deposited on the top
of the gate stripe electrodes by aligning the inkjet-print head (Figure 1(a-iii)), followed by
a PFBT solution-modification process. The PFBT could form a chemisorbed monolayer
on the Ag surface that would substantially reduce the injection barrier to reduce contact
resistance. After that, Cytop ink was inkjet-printed on the sample to form the latticed Cytop
lyophobic lines around the patterned S/D electrode pairs (Figure 1(a-iv)). These Cytop lines
would resist the successive deposition of organic semiconducting layers and thus can create
the patterned structure of organic semiconductors, which can effectively eliminate the
“cross-talk” effect between neighboring devices in the array. Finally, organic small-molecule
semiconductor, Dif-TES-ADT crystalline film was deposited on the S/D electrode regions
through a homemade blade-coating equipment (Figure 1(a-v)) to complete the fabrication
of a low-power and high photoresponse OPT array (Figure 1(a-vi)). Figure 1b shows the
schematic diagram of our OPT and energy level values, and chemical structure of Dif-TES-
ADT. We chosen the blade-coating technique to fabricate the device channel layer since the
meniscus could extend from the dielectric surface to the S/D electrode and film growth was
not influenced by the differences in surface energy and height between the dielectric and
S/D electrodes during blade-coating process [32]. More importantly, directly fabricating an
organic semiconductor layer on the S/D electrodes could substantially reduce the disorder
and defects at the semiconductor-electrode contact interface, which can help overcome
the metal penetration problems of conventional vacuum-deposited organic devices. Since
the Dif-TES-ADT crystalline thin film and electrodes were combined with non-bonding
van der Waals interactions, the pristine interface has been preserved, which is crucial for
achievement of the trap-free organic device.

In this study, Dif-TES-ADT was chosen as the active material for the proof-of-concept
since it has excellent adsorption properties in the visible wavelength range and can easily
acquire high-crystallinity and oriented thin films through simple solution processing [33,34].
As shown in Figure 1c, the blade-coated Dif-TES-ADT thin film exhibited absorption peaks
at wavelengths of about 419, 518, and 546 nm, as was found previously for the Dif-TES-ADT
films [33]. Figure 1d shows out-of-plane X-ray diffraction date for the blade-coated Dif-TES-
ADT thin film. Diffraction peak at only 5.35◦ corresponding to (001) plane was observed,
confirming the highly oriented Dif-TES-ADT thin film is primarily deposited in the (001)
direction. Using the proposed full printing procedures, we demonstrated a 10 × 10 device
array comprising 100 OPTs, indicating that our approach can be readily applied to large-
scale device fabrication. As shown in Figure 1e, the OPTs occupy a 2.5 × 2 cm2 area and all
of the OPTs have complete components. In a magnified polarized microscopy image of one
OPT device among the array, all of the fully patterned and well-aligned electrodes can be
clearly seen and the typical channel length and width are 96.75 and 1019.92 µm, respectively.
We observed that the Dif-TES-ADT thin film in the channel zone was comprised of large
and lamellar-like crystal domains (Figure 1f). The bright color of most of the crystal
domains under the polarized optical microscope would disappear when the polarizers’ axis
was parallel to the direction of the blade coating (Figure 1g), revealing a well-organized
orientation of the grains. Moreover, high-quality Dif-TES-ADT thin film was obtained over
the whole area, even if the area includes the patterned S/D electrodes. This is conducive to
charge carrier transport and thus can yield an excellent photoresponse performance.
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mV dec−1, respectively; the SS value is much smaller than that of most of the solution-
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Figure 1. Platform for fabricating the OPT array. (a) Schematic illustrating the flow diagram of the
proposed fully printed fabrication process. (a-i) Inkjet-printing gate electrodes. (a-ii) Blade coating
PVP dielectric layer. (a-iii) Inkjet-printing source/drain electrodes. (a-iv) Inkjet-pringting CYTOP
lines. (a-v) Blade coating organic semiconductor film. (a-vi) Obtained OPT array. (b) Schematic
cross section of the OPT, energy level values, and chemical structure of Dif-TES-ADT. (c) Absorption
spectrum of Dif-TES-ADT crystalline films fabricated by blade coating in the visible wavelength range.
(d) XRD spectrum of the blade-coated Dif-TES-ADT. (e) Polarized microscopy image of the device
array with 100 OPTs. (f,g) Polarized microscopy images of a representative OPT under different
polarization angles 0◦ and 45◦.

3.2. Electrical Performance of the Fully Printed OPT Array

Next, we characterized the electrical properties of the fully printed OPT array by
performing systematic tests. Figure 2a shows the transfer curves of 90 (out of 100) OPTs
in the dark at a drain voltage of −1 V. 90% of devices presented ideal transistor switching
behaviour with an on/off current ratio as high as 106. The output characteristics of a
typical OPT device presented in Figure 2b show unambiguous saturation features at a
drain voltage >−3 V, indicating the low operation voltage feature of our device. We carried
out a statistical analysis of the field-effect mobility and SS of the 90 devices to evaluate
the performance uniformity. The average mobilities and SS values are 0.032 cm2 V−1 s−1

and 445 mV dec−1, respectively; the SS value is much smaller than that of most of the
solution-printed organic devices [14–21]. The variations in mobility and SS are 40.6 and
39.6%, respectively, remaining at reasonably low levels (Figure 2c,d). The performance
uniformity is partly limited by several practical factors: (1) the variation in the feature size
of inkjet-printed Ag electrodes; (2) the alignment offset between the gate electrode and
S/D electrodes limited by the unoptimized alignment process with an optical microscope;
(3) occasional particle contamination on the sample surface. With further improvement
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of inkjet printing technique and apparatus, we expect these practical challenges could be
largely addressed to considerably improve the performance consistency. Even so, more than
half of the devices still have an SS of less than 400 mV dec−1, the small SS proves the high
crystallinity of the Dif-TES-ADT channel layer and the high quality of the semiconductor-
dielectric interface, which contributes to the low working voltages. More importantly, such
small SS would yield a large signal amplification efficiency (Aeff, defined as In(10)/SS)
of 5.58 ± 1.64 S A−1 (Figure 2e); a high Aeff was essential for the OPTs to achieve a high
photoresponse at low power. Excellent bias stress stability for the OPT is crucial to ensure
photoresponse reliability. To investigate the bias stress stability, the OPTs were measured
under positive gate bias and negative bias stress with a long stress time. The transfer
characteristics before and after the bias stresses (2000 s and ± 2 V) show good overlap
without obvious threshold voltage shift (Figure 2f), indicating the good bias stress stability
of our OPT. This result also confirms the low defect density within the device [34].
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3.3. Photoresponse of the Fully Printed OPTs

The photoresponse of the fully-printed, low-voltage OPTs was investigated system-
atically by using a white light source with different incidence light intensities. Upon
light irradiation, photogenerated carriers would generate within the Dif-TES-ADT light
absorption layer. Owing to the longer lifetime of the electrons in the Dif-TES-ADT, they
would be trapped in the Dif-TES-ADT and induce a space-negative charge layer, which
could trigger a photogating effect. According to our previous report [3], the density of
electron traps buried in the Dif-TES-ADT reaches as high as 8.24 × 1017 cm−3, indicating
that abundant photoinduced electrons would be trapped within the Dif-TES-ADT. Under
the circumstances, holes would be again injected into the semiconductor channel from the
source and move by the S/D electric field. As a result, more holes involved in conduc-
tive channel compared to the situation in the dark, producing photocurrent and inducing
threshold voltage shifts. Figure 3a exhibits the typical transfer characteristics of the OPT in
the dark and under different illumination intensity. From the transfer curves, a positive
threshold voltage shift along with a current increase was observed as the light illumination
intensity increased, which could be attributed to the trapped photogenerated electrons.
In addition, we observed a significant hysteresis in the OPTs under light illumination
(Figure S5), which further confirms the existence of a number of electron traps within the
bandgap of Dif-TES-ADT [35]. The threshold voltage and photocurrent obtained at gate
voltage (VG) of 2.5 V were plotted as functions of the incident light intensities (Figure 3b).
It was found that threshold voltage and photocurrent kept rising with an increase in light
illumination. The increased current suggested that a large number of holes produced
in the conductive channel, leading to large photoresponse. The maximum photocurrent
of 14.34 nA was obtained under a light intensity of 5400 µW cm−2, suggesting the large
photosensitivity of the device. We then calculated the photosensitivity (P), which can be
written as Iph/Idark, where Iph is the photocurrent and Idark is the dark current. Figure 3c
depicts the light intensity dependence of the photosensitivity of our OPT device under
various VG. As expected, the photosensitivity at the transistor subthreshold regime is
significantly higher than that in other regimes, and the maximum photosensitivity reaches
5.7× 105 at a light intensity of 5400 µW cm−2, which is much higher than that of previously
reported low-voltage OPTs [24–27]. Especially under weak illumination intensity of 11 µW
cm−2, the P value still exceeded 28.35, proving strong ability of the device to detect dim
light.

The R, defined as Iph/(PlightS), where Plight signifies the incident light intensity and S is
the effective area of the OPT, is a key parameter to evaluate the photoresponse of the device.
The R values of a representative OPT as function of VG under various light intensities at a
fixed VDS of −1 V are presented in Figure 3d. R values follow a continuously increasing
trend with the applied VG. It should be noted that, at the transistor on-state regime, the
increasing trend of R values considerably slowed, followed by saturation. When the VG is
−0.6 V and the light intensity is 26 µW cm−2, R reaches a maximum value of 0.17 A W−1,
which is comparable to that of commercial Si photodetectors [36]. The R value for different
light intensities is plotted in Figure 3e, showing that the photoresponse of the fully-printed
OPT can be effectively modulated by the gate electric field. The R value is raised as the
reduced light intensities and the peak of R for our device is 0.17 A W−1. However, for
lower light intensity (i.e., 11 µW cm−2), the R value decreased rather than increased. This
is possibly a result of the increased photocarrier recombination probability under the weak
light irradiation [37].
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in the dark and under light illumination with various intensities. (b) Photocurrent and threshold
voltage as a function of the light intensity. Photosensitivity (c) and photoresponsivity (d) as a function
of gate voltage under different light intensities. Light intensity-dependent photoresponsivity (e) and
specific detectivity (f) of the OPT.

To further assess the device photoresponse performance, we tested the D*. The D*
represents the capacity of a device to detect weak light signals [11,38,39], which can be
expressed as

D∗ =
√

SB
NEP

(1)

where B is the measurement bandwidth and NEP is the noise equivalent power (in/R, in is
the noise current). To accurately calculate the D* value, we measured the noise spectra of
our fully printed OPT (Figure S6). It was found that the device noise was dominated by
low-frequency noise, causing by scattering of acoustic phonons and ionized impurities. The
in was determined to be 3.73 fA Hz−1 under VG = 2.5 V. The extracted in value was rether
low, which is consistent with the low dark current of ~0.2 pA for the fully printed OPT at
off state. Then, we calculated the D* values at different light intensities. The light-intensity-
dependent D* reveals that the fully printed OPT for B = 1 Hz exhibits comparatively large
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D* values. Moreover, the D* shows the same trend with R and reaches a maximum value of
1.3 × 109 Jones at a light intensity of 26 µW cm−2 (Figure 3f), which is comparable with the
reported high-voltage OPTs [40,41].

3.4. Imaging Function Demonstration

As an ultimate proof, we demonstrated the application of the fully printed, low-voltage
OPT array in imaging. The OPT array was placed on a shadow mask with hollowed “2”
character and a flat light-emitting diode was placed underneath the device array to make
pixels zone-selective illumination, as illustrated in Figure 4a. Beforehand, all of the OPTs
among the array were measured (Figure S7), and the photoresponse performance and
uniformity were evaluated by making statistics on the Idark, Iph, and P. As summarized in
Figure 4b, the statistical results show that the Idark and Iph ranged from 16.3 fA to 0.63 pA
and 4.04 nA to 17.7 nA, respectively. The average Idark and Iph are 0.162 pA and 10.88 nA,
respectively. The calculated P values for the all devices are >104 and the P values are
distributed in a narrow range with a relatively small variable coefficient of 7.9%, indicating
good uniformity. This result illustrates that the proposed fully printed fabrication platform
has a high yield, stability, and repeatability, allowing us to develop a more complicated
circuit. Subsequently, the device imaging capability was examined by projecting the optical
number pattern “2” onto the substrate. The current of each pixel in the device array was
recorded and the measured current values were converted to a heatmap ranging from black
to red. The current signals of pixels shielded by the shadow mask from exposure were in
the tens of pA level, while pixels under exposure output signals from 0.168 to 10 nA, which
resulted in a distinct signal contrast over two orders of magnitude. Therefore, the imaged
number “2” in Figure 4c delivered a high contrast with clear edges. The response speed of
a pixel in the OPT array was further measured, revealing a rise time of 2.8 s and a decay
time of 0.17 s under a low erasing VG of 4 V (Figure S8). This speed is reasonable, but the
response speed needs to be further improved by shortening the device channel length or
introducing a heterojunction for meeting imaging applications [42–44].
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4. Conclusions

In summary, we have developed a full printing and facile fabrication process for
manufacturing a high-photosensitivity but low-voltage OPT array over a large area. The
proposed fully printed procedures involved six solution printing steps and utilized two
kinds of solution printing technologies. In particular, by direct solution printing of an
organic crystalline thin film on the inkjet-printed electrodes, the interfacial disorder and
defects at the semiconductor-electrode contact were reduced. Therefore, the fully printed
OPTs realized extremely sharp switching characteristics with a small SS of 445 ± 176 mV
dec−1 and a high Aeff of 5.45 ± 2.17 S A−1 at a low operation voltage of −1 V. Leveraging
the low SS and high Aeff, the OPTs exhibited excellent comprehensive performance in terms
of a large P of 5.7 × 105, a reasonable R, and a large D*. Simultaneously, the OPT array
had a >90% device yield and unexpected uniformity with a P variable coefficient of <7.9%,
allowing us to demonstrate the high-contrast imaging functions. Our fabrication provides
great potential for achieving scalable, cost-effective manufacturing of integrated organic
optoelectronic devices with high performance but low power. Additionally, our OPTs
provide alternatives for the optoelectronic detection of various chemical signals in ambient.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11040231/s1, Figure S1: 3D morphology of the
Parylene-C layer with a thickness of 1.0 µm; Figure S2: Frequency dependence of capacitance for the
blade-coated PVP dielectric. Inset: photograph of the capacitor. Figure S3: (a) Optical image of the
inkjet-printed gate electrodes with an interval of 1760 µm. (b) 3D image of the gate electrodes with a
thickness of 210 nm. Figure S4: (a) 3D morphology of the blade-coated PVP thin film. (b) Atomic
force microscope image of PVP dielectric with a surface roughness of 0.27 nm. Figure S5: Hysteresis
of transfer curve of a fully printed OPT under white light illumination. Figure S6: Noise power
density of the fully printed OPT at different gate voltage. Figure S7: Transfer characteristics of the
OPTs under white light illumination (600 µW/cm2). Figure S8: Transient photoresponse of the OPT.
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